Advertisement

Catchment Modeling

  • Ulrich Kern
  • Frank Wendland
  • Ekkehard Christoffels
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The Water Framework Directive (WFD) sets ambitious objectives for the protection of European water resources (EC 2000). For priority substances and other pollutants environmental quality standards have been defined for surface water. An understanding of the sources and pathways of these substances within river catchments is crucial to establish effective monitoring programs and to develop emission control strategies as a part of cost-effective programs of measures. In this context, source-related emission modeling offers the potential to support WFD implementation, since these catchment models provide annual load balances and highlight the relevance of various pollutant sources and pathways (Fig. 5.1).

Keywords

Soil Erosion Sediment Transport Suspended Particulate Matter Land Cover Change Water Framework Directive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auerswald K (1998) Bodenerosion durch Wasser. In: Richter G (ed) Bodenerosion–Analyse und Bilanz eines Umweltproblems. Wissenschaftliche Buchgesellschaft, Darmstadt, pp 33–42 (in German)Google Scholar
  2. Becker A, Christoffels E, Großkinsky B, Hiller A, Kern U, Krump R, Thormann D, Firchhof W, Palm N, Tiedemann K (2005) Verbundvorhaben Stoff-und Datenmanagement in Flusseinzugsgebieten am Beispiel von Schwermetallen in der Erft (SAFE). Institut für Siedlungswasserwirtschaft, RWTH Aachen und Erftverband, Bergheim (in German)Google Scholar
  3. Behrendt H, Bach M, Kunkel R, Opitz D, Pagenkopf WG, Dannowski R, Deumlich D (1999) Nährstoffbilanzierung der Flussgebiete Deutschlands, UBA Texte 75/99, Umweltbundesamt Berlin (in German)Google Scholar
  4. Blöch H (2004) European water policy and the water framework directive: an overview. JEEPL 3:170–178Google Scholar
  5. BMU (ed 2005) Die Wasserrahmenrichtlinie–Ergebnisse der Bastandsaufnahme 2004 in Deutschland. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Berlin (in German)Google Scholar
  6. Böhm E, Hillebrand T, Marscheider-Weidemann F, Schrempp C, Fuchs S, Scherer U, Lüttgert M (2000) Emissionsinventar Wasser für die Bundesrepublik Deutschland. UBA Texte 53/00, Umweltbundesamt Berlin (in German)Google Scholar
  7. Böhm E, Hillenbrand T, Marscheider-Weidemann F, Schempp C, Fuchs S, Scherer U (2001) Bilanzierung des Eintrags prioritärer Schwermetalle in Gewässer. UBA Texte 29/01, Umweltbundesamt Berlin (in German)Google Scholar
  8. De Toffol S, Achtleitner S, Engelhard C, Rauch W (2005) Challenges in the implementation of the Water Framework Directive: case study of the alpine river Drau, Austria. Wat Sci Technol 52(9):243–250Google Scholar
  9. EC (1994a) Council Decision 94/156/EC on the accession of the Community to the Convention on the protection of the marine environment of the Baltic Sea Area 1974 (Helsinki Convention),OJ L73,16.03.1994Google Scholar
  10. EC (1994b) Council Decision 94/157/EC on the conclusion, on behalf of the Community, of the Convention on the protection of the marine environment of the Baltic Sea Area (Helsinki Convention as revised in (1992), OJ L73,16.03.1994Google Scholar
  11. EC (1997) Council Decision 98/249/EC on the conclusion of the Convention for the protection of the marine environment of the North-East Atlantic (Paris Convention), OJ L104,03.04.1998Google Scholar
  12. EC (2000) Directive 2000/60/EC of the European Parliament and the Council establishing a framework for Community action in the field of water policy, OJ L327,22.12.2001Google Scholar
  13. EC (2006) Proposal for a Directive of the European Parliament and of the Council on environmental quality standards and pollution control in the field of water policy and amending the Directive 2000/60/EC. COM 2006(397) final, 17.07.2006, Internet at http://ec.europa.eu/environment/water/ water-dangersub/surface_water.htm
  14. Fuchs S, Scherer U, Hillebrand T, Marschner-Weidemann F, Behrendt H, Opitz D (2002) Schwermetalleinträge in die Oberflächengewässer Deutschlands. UBA-Texte 54/02, Umweltbundesamt Berlin (in German)Google Scholar
  15. Heise S, Förstner U, Westrich B, Jancke T, Karnahl J, Salomons W, Schönberger H (2004) Inventory of historical contaminated sediment in Rhine Basin and its tributaries. Report on behalf of the Port of Rotterdam. Internet at http://www.zu-harburg.de/ut/bis/Projects.htm
  16. Heise S, Claus E, Heininger P, Krämer Th, Krüger F, Schwartz R, Förstner U (2005) Studie zur Schadstoffbelastung der Sedimente im Elbeeinzugsgebiet–Ursachen und Trends. Report on behalf of the Hamburg Port Authority (in German)Google Scholar
  17. Morgan RPC, Quinton JN, Rickson RJ (2006) European Soil Erosion Model. EUROSEM Web Site. Internet at http://www.silsoe.cranfield.ac.uk/nsri/research/erosion/eurosem.htm
  18. MUNLV (ed) (2006) Entwicklung und Stand der Abwasserbeseitigung in Nordrhein-Westfalen. Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes NordrheinWestfalen, Düsseldorf (in German)Google Scholar
  19. USDA (2006) Agricultural Non-Point Source Pollution Model. AGNPS Web Site. Internet at http://www.ars.usda.gov/Research/docs.htm?docid=5233
  20. USDA (2006) Water Erosion Prediction Project. WEPP Web Site. Internet at http://topsoil.nserl.purdue.edu/ fpadmin/weppmain
  21. Schmidt J, von Werne M, Michael A (1996) Entwicklung und Anwendung eines physikalisch begründeten Simulationsmodells für die Erosion geneigter landwirtschaftlicher Nutzflächen, Berliner Geogr. Abhandlungen 61, Eigenverlag, Berlin (in German)Google Scholar
  22. Schwertmann U, Vogl W, Kainz M (1990) Bodenerosion durch Wasser–Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen. Ulmer Verlag, Stuttgart, 2nd edn (in German)Google Scholar
  23. von Werner M (2002) EROSION 3D Benutzerhandbuch Version 3.0. GeoGnostics Software, Berlin (in German)Google Scholar
  24. Westrich B, Förstner U (2005) Sediment dynamics and pollutant mobility in rivers (SEDYMO). JSS 5(4):197–200Google Scholar
  25. Zessner M, Lindtner S (2005) Estimations of municipal point source pollution in the context of river basin management. Wat Sci Technol 52(9):175–182Google Scholar

References

  1. Bathurst JC, Graf WH and Cao HH (1987) Bed load discharge equations for steep mountain rivers. In: Thorne CR, Bathurst JC, Hey RD (eds) Sediment transport in gravel-bed rivers, pp 453–491, Wiley & Sons Ltd.Google Scholar
  2. Brunner GW (1989) Muskingum-Cunge Channel Routing. Lecture Notes, Hydrological Engineering Center, U.S. Army Corps of Engineers, Davis, CAGoogle Scholar
  3. Burch H (1994) Ein Rückblick auf die hydrologische Forschung der WSL im Apital. In: Hydrologie kleiner Einzugsgebiete, Beiträge zur Hydrologie der Schweiz, no. 35, pp 18–33, SGHL, WSL Birmensdorf, Switzerland (in German)Google Scholar
  4. BUWAL (2002) (ed) Lothar Zwischenbericht, Materielle und Finanzielle Bilanz 2001. BUWAL, IttigenGoogle Scholar
  5. BWG (2003) Hochwasserabschätzung in schweizer Einzugsgebieten–Praxishilfe. Berichte des BWG, Nr. 4, BernGoogle Scholar
  6. Chaudhry MH (1993) Open-Channel Flow. Prentice Hall, Englewood CliffsGoogle Scholar
  7. Chow VT (1973) Open-Channel Hydraulics. Mc Graw-Hill Book CompanyGoogle Scholar
  8. Cunge JA (1969) On the subject of a flood propagation computation method. J Hydraul Res 7(2):205–230CrossRefGoogle Scholar
  9. Engmann (1986) Roughness coefficients for routing surface runoff. J Irrig Drain Eng ASCE 112(l):39–53CrossRefGoogle Scholar
  10. Foster GR, Meyer LD (1972) A closed-form soil erosion equation for upland areas. In: Shen HW (ed) Sedimentation–Symposium to honor Prof. H.A. Einstein, 12.1–12.19, Colorado State University, Ft. Collins, USAGoogle Scholar
  11. GEOSTAT (1997) User’s manual of GEOSTAT database. Fed. Office of Statistics, Bern, SwitzerlandGoogle Scholar
  12. Hessel R (2002) Modelling soil erosion in a small catchment on the Chinese Loess Plateau. Ph.D. Dissertation–Proefschrift, NBC: 38.09: fysische geografie. Universiteit Utrecht, NetherlandGoogle Scholar
  13. Hinz E (2004) Auswirkungen von Landnutzungsänderungen auf das Abfluss-und Erosionsverhalten. ETH Diploma Thesis, ETH Zürich, Switzerland, http://e-collection.ethbib.ethz.ch (in German)Google Scholar
  14. Julien PY, Simons DB (1985) Sediment transport capacity of overland flow. Trans. ASAE 28(3):755–762Google Scholar
  15. Kilinc MY (1972) Mechanics of soil erosion from overland flow generated by simulated rainfall. Ph.D. Dissertation, Colorado State University, Ft. Collins, USAGoogle Scholar
  16. Kirsch J, Burlando P (2005) The Influence of Different Land Uses and Catchment Training on Runoff Production and Mitigation of Water Related Hazards in Small Mountainous Basins. Final Report of BUWAL contract SN 20/02, Chair of Hydrology and Water Resour. Manag., ETH Zürich, Switzerland (in German)Google Scholar
  17. Kuntner R (2002) A methodological framework towards the formulation of flood runoff generation models suitable in alpine and prealpine regions. Ph.D. Dissertation, no. 14699, ETH Zürich, Switzerland, http://e-collection.ethbib.ethz.ch Google Scholar
  18. Lässig R, Schönenberger W (1997) Was passiert, wenn man die Natur sich selber überlässt?–Ergebnisse der Sukzessionsforschung auf Windwurfflächen. Aus: Laufener Seminarbeiträge 1/1997, pp 76–84Google Scholar
  19. Lässig R, Motschalow SA (2000) Wiederbewaldung nach Lothar (4). Vielfältige Strukturen nach Windwurf in Naturwäldern. Wald und Holz 81/12:39–43Google Scholar
  20. Mitas L, Mitasova H (1998) Distributed erosion modelling for effective erosion prevention. Water Resour Res 34:505–516CrossRefGoogle Scholar
  21. Montaldo N, Mancini M, Rosso R (2004) Flood hydrograph attenuation induced by a reservoir system: analysis with a distributed rainfall-runoff model. Hydrol Process 18:545–563CrossRefGoogle Scholar
  22. Milzow C, Molnar P, McArdell BW, Burlando P (2006) Spatial organization in the step-pool structure of a steep mountain stream (Vogelbach, Switzerland). Water Resour Res 42, W04418, doi:10.1029/ 2004 WR003870Google Scholar
  23. Molnar P, Burlando P, Kirsch J, Hinz E (2006) Model investigations of the effects of land-use changes and forest damages on erosion in mountainous environments. In: Rowan JS, et al. (eds) Sediment Dynamics and the Hydromorphology of Fluvial Systems. IAHS Publ. 306, pp 589–600Google Scholar
  24. Nepf HM (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35(2):479–489CrossRefGoogle Scholar
  25. Ponce VM (1983) Development of Physically Based Coefficients for the Diffusion Method of Flow Routing, Final Report to the USDA, Soil Conservation Service. Lanham, MDGoogle Scholar
  26. Ponce VM, Yevjevich V (1978) Muskingum-Cunge method with variable parameters. ASCE Hydraul Div HY12:1663–1667Google Scholar
  27. Prosser I, Rustomij P (2000) Sediment transport capacity relations for overland flow. Prog. Phys. Geogr. 24(2):179–193Google Scholar
  28. Rickenmann D (1997) Sediment transport in Swiss torrents. Earth Surf. Proces. Landf. 22:937–951CrossRefGoogle Scholar
  29. SCS–Soil Conservation Service (1972) National Engineering Handbook, Section 4, Hydrology. U.S. Department of Agriculture, Washington D.C., U.S.A.Google Scholar
  30. Shen HW, Li RM (1973) Rainfall effects on sheet flow over smooth surface. Journal of Hydraulics Divisions, ASCE:771–792Google Scholar
  31. Walthert L, Blaser P, Lüscher P, Luster J, Zimmermann D (2003) Langfristige Waldöokosystem-Forschung LWF in der Schweiz. Kernprojekt Bodenmatrix, Ergebnisse der ersten Erhebung 1994-1999, ETH Zürich, Switzerland, http://e-collection.ethbib.ethz.ch (in German)Google Scholar

References

  1. Asselmann NEM, Middelkoop H (1995) Floodplain sedimentation: quantities, patterns and processes. Earth Surf. Process. Landforms 17:687–697Google Scholar
  2. Baborowski M, Claus E, Friese K, Pelzer J, von der Kammer F, Kasimir P, Heininger P (2005) Comparison of different monitoring programs of the 2002 summer flood in the river Elbe. Acta Hydrochim Hydrobiol 22(2005):404–417CrossRefGoogle Scholar
  3. Baborowski M, von Tümpling W, Friese K (2004) Behaviour of suspended particulate matter (SPM) and selected trace metals during the 2002 summer flood in the river Elbe (Germany). Hydrol Earth Syst Sc 8(2):135–150CrossRefGoogle Scholar
  4. Baborowski M (2002) Characterisation of Suspended Particulate Matter (SPM) in the river Elbe (Germany) by survey of the particle size distribution. Dresden, vol. II Matter and particle transport in surface and subsurface flow. In: Water Resources and Environment Research. Proceedings of ICWRER 2002, pp 23–27Google Scholar
  5. Büttner O, Otte-Witte K, Krüger F, Meon G, Rode M (2006) Numerical modeling of floodplain hydraulics and suspended sediment transport and deposition at the event scale in the middle river Elbe, Germany. Acta Hydrochim Hydrobiol 34(3):265–278CrossRefGoogle Scholar
  6. Brunk BK, Weber-Shirk M, Jensen-Lavan A, Jirka GH, Lion LW (1996) Modeling natural hydrodynamic systems with a differential-turbulence column. J Hydraul Eng 122:373–380CrossRefGoogle Scholar
  7. Costa AT, Arias Nalini Jr. H, de Tarso Amorim Castro P, Carvalho de Lena J, Morgenstern P, Friese K (2006) Sediment contamination in floodplains and alluvial terraces as an historical record of gold exploitation in the Carmo River basin, Southeast Quadrilatero Ferrifero, Minas Gerais, Brazil. Acta Hydrochim Hydrobiol 34(3):245–256CrossRefGoogle Scholar
  8. Engelhardt C, Krüger A, Karrasch B, Baborowski M (1999) Input-output balances of nutrients and plankton in a flooded area of the lower Odra. Acta Hydrochim Hydrobiol 27:325–330CrossRefGoogle Scholar
  9. Förstner U (2004) Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach. Lakes and Reservoirs: Research and Management 9:25–40CrossRefGoogle Scholar
  10. Förstner U, Jirka GH, Lang C, et al. (2000) Significance of sediments in aquatic ecosystems–interdisci-plinary process studies on fine sediment dynamics and pollutant mobility in flowing waters. In: Assessment of chemicals–Concepts for Sediments and Marine Ecosytems (in German). pp 75–109, 8th BUA-Colloquium, GDCh Monograph 17. 11 January 1999, Frankfurt, GermanyGoogle Scholar
  11. Friese K, Witter B, Brack W, Büttner O, Krüger F, Kunert M, Rupp H, Miehlich G, Gröngröft G, Schwartz R, van der Veen A, Zachmann DR (2000) Distribution and fate of organic and inorganic contaminants in a river floodplain–results of a case study on the river Elbe, Germany. In: Wise DL, Trantolo D, Cichon EJ, Inyang HI, Stottmeister U (eds) Remediation Engineering of Contaminated Soils. Marcel Dekker, New York, Basel, pp 375–428Google Scholar
  12. Gust G, Müller V (1997) Interfacial hydrodynamics and entrainment functions of currently used erosion devices. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments, pp 149–174, John Wiley & Sons, ChichesterGoogle Scholar
  13. Haag I, Kern T, Westrich B (2001) Erosion investigation and sediment quality mesurements for a comprehensive risk assessment of contaminated aquatic sediments. Sci Total Environ 266:249–257CrossRefGoogle Scholar
  14. Hanisch C, Zerling L, Junge FW, Czega W (2005) Verlagerung, Verdünnung und Austrag von schwermetallbelasteten Flusssedimenten im Einzugsgebiet der Saale. Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Mathematisch-naturwissenschaftliche Klasse 64(1), 164 ppGoogle Scholar
  15. Heise S, Claus E, Heininger P, Krämer Th, Krüger F, Schwartz R, Förstner U (2005) Studie zur Schadstoff-belastung der Sedimente im Elbeeinzugsgebiet, Ursachen und Trends. Im Auftrag der Hamburg Port AuthorityGoogle Scholar
  16. IKSE/MKOL (2001) Bestandsaufnahme des vorhandenen Hochwasserschutzniveaus im Einzugsgebiet der Elbe. MagdeburgGoogle Scholar
  17. Kronvang B, Falkum O, Svendsen LM, Laubel A (2002) Deposition of sediment and phosphorus during overbank flooding. Verh Int Verein Limnol 18:1289–1293Google Scholar
  18. Krüger F, Schwartz R, Kuhnert M, Friese K (2006) Methods to calculate sedimentation rates of flood-plain soils in the middle region of the Elbe River. Acta Hydrochim Hydrobiol 34(3):175–187CrossRefGoogle Scholar
  19. Krüger F, Meissner R, Gröngröft A, Grunewald K (2005) Flood induced heavy metal and arsenic contamination of Elbe River floodplain soils. Acta Hydrochim Hydrobiol 33(5):455–465CrossRefGoogle Scholar
  20. Lawler DM, Petts GE, Foster IDL, Harper S (2006) Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK. Sci Total Environ 360:109–126CrossRefGoogle Scholar
  21. Lane SN (1998) Hydraulic modelling in hydrology and geomorphology: a review of high resolution approaches. Hydrological Processes 12:1131–1150CrossRefGoogle Scholar
  22. McNeal J, Taylor C, Lick W (1996) Measurements of erosion of undisturbed bottom sediments with depth. J Hydraul Eng 122:316–324CrossRefGoogle Scholar
  23. Spott D, Guhr H (1996) The dynamics of suspended solids in the tidally unaffected area of the river Elbe as function of flow and shipping. Arch Hydrobiol Spec Issues Advanc Limnol 47:127–133Google Scholar

References

  1. Alexander RB, Elliott AH, Shankar U, McBride GB (2002) Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand. Water Resources Res 38:1268–1291CrossRefGoogle Scholar
  2. Auerswald K (1989) Prognose des P-Eintrags durch Bodenerosion in die Oberflächengewässer der BRD. Mitt Dtsch Bodenkundl Ges 59/11: 661–664Google Scholar
  3. Auerswald K, Placke W, Neufang L (1988) Räumlich differenzierende Berechnung großmaßstäblicher Erosionsprognosekarten–Modellgrundlagen der dABAG. Z Pflanzenernähr Bodenk 151:369–373CrossRefGoogle Scholar
  4. Behrendt H, Opitz D (2000) Retention of nutrients in river systems dependence on specific runoff and hydraulic load. Hydrobiologia 410:111–122CrossRefGoogle Scholar
  5. Behrendt H, Huber P, Kornmilch M, Opitz D, Schmoll O, Scholz G and Uebe R (1999) Nutrient emissions into river basins in Germany. Umweltbundesamt, BerlinGoogle Scholar
  6. Frede HG, Dabbert S (eds) (1999) Handbuch zum Gewässerschutz in der Landwirtschaft. 2nd ed, LandsbergGoogle Scholar
  7. Fried JS, Brown DG, Zweifler MO, Gold MA (2000) Mapping Contributing Areas for Stormwater Discharge to Streams Using Terrain Analysis. In: Wilson JP, Gallant JC (eds) Terrain Analysis–Prin-ciples and Applications. New York, pp 183–203Google Scholar
  8. IAP, FAL (eds) (1996) Entwicklung des gesamtdeutschen Agrarsektormodells RAUMIS96–Endbericht zum Kooperationsprojekt. Bonn and Braunschweig-VölkenrodeGoogle Scholar
  9. Kirchner WB, Dillon PJ (1975) An empirical method of estimating the retention of phosphorus in lakes. Water Resources Res 11:182–183Google Scholar
  10. Molot LA, Dillon PJ (1993) Nitrogen mass balances and denitrification rates in central Ontario Lakes. Biogeochem 20:195–212CrossRefGoogle Scholar
  11. Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: Simplified method of estimation. J Soil Water Cons 49:174–180Google Scholar
  12. OSPAR Commission (ed) (1998) Principles of the comprehensive study on riverine inputs and direct discharges (RID). Reference 1998–2005Google Scholar
  13. Prasuhn V, Grünig K (2001) Evaluation der Ökomaßnahmen–Phosphorbelastung der Oberflächengewässer durch Bodenerosion. SchrR FAL 37, Zürich-ReckenholzGoogle Scholar
  14. Schwertmann U, Vogl W, Kainz M (1990) Bodenerosion durch Wasser–Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen. 2nd ed., StuttgartGoogle Scholar
  15. Sommer M, Murschel B (1999) Erosion und Nährstoffabtrag. In: Dabbert S, Herrmann S, Kaule G, Sommer M (eds) Landschaftsmodellierung für die Umweltplanung. Berlin, pp 68–79Google Scholar
  16. Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Res 33:309–319CrossRefGoogle Scholar
  17. Tetzlaff B (2006) Die Phosphatbelastung großer Flusseinzugsgebiete aus diffusen und punktuellen Quellen. Research Centre Jülich, Umwelt/Environment, 65, JülichGoogle Scholar
  18. Tetzlaff B, Kreins P, Kunkel R, Wendland F (2007) Area-differentiated modelling of P-fluxes in heterogeneous macroscale river basins. Water Science and Technology 55(3):123–131CrossRefGoogle Scholar
  19. Werner W, Olfs HW, Auerswald K, Isermann K (1991) Stickstoff-und Phosphateintrag in Oberflächengewässer über “diffuse Quellen”. In: Hamm A (ed) Studie über Wirkungen und Qualitätsziele von Nährstoffen in Fließgewässern. Sankt Augustin, pp 665–764Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ulrich Kern
    • 2
  • Frank Wendland
    • 1
  • Ekkehard Christoffels
    • 2
  1. 1.Research Centre JülichInstitute of Chemistry and Dynamics of the GeosphereJülichGermany
  2. 2.Erftverband, Bereich GewässerBergheimGermany

Personalised recommendations