Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1157 Accesses

Abstract

Few studies in the literature compare the sediment stability of depositional habits across marine, freshwater and brackish ecosystems. This is partly because there is conceptual difficulty in comparing different erosional devices but also because scientist often focus on specific habitats. In addition, many field devices generate shear stresses over the 0–1 N m-2 range, with few capable of generating erosive forces beyond this level (Tolhurst et al. 2000). However, habitats such as intertidal deposits and salt marshes are often quite resistant to hydrodynamic forcing and are considered to provide an “ecosystem service” of coastal protection. Most existing measurements have been made within a “measurement comfort zone” (Fig. 3.1), usually where a bed shear stress between approximately 0.1 and 1 N m-2 surpasses the critical threshold. However, the study of a wider range of habitats is fundamental to the understanding of ecosystem dynamics in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin I, Andersen TJ, Edelvang K (1999) The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mudflat, the Danish Wadden Sea. Estuarine and Coastal and Shelf Science 49:99–111

    Article  Google Scholar 

  • Benoy GA, Kalff J (1999) Sediment acuumulation and Pb burdens in submerged macrophyte beds. Limnology and Oceanography 44(4):1081–1090

    Google Scholar 

  • Decho W (2000) Microbial biofilms in intertidal systems: an overview. Continental Shelf Research 20:1257–1273

    Article  Google Scholar 

  • Grady JR (1981) Properties of seagrass and sand flat sediments from the intertidal zone of St Andrews Bay, Florida. Estuaries 4(4):335–344

    Google Scholar 

  • Goto N, Kawamura T, Mitamura O, Terai H (1999) Importance of extracellular organic carbon production in the total primary production by tidal-flat diatoms in comparison to phytoplankton. Marine Ecology Progress Series 190:289–295

    Article  Google Scholar 

  • Head RM, Jones RI, Bailey-Watts AE (1999) Vertical movements by planktonic cyanobacterial and the translocation of phosphorus: implications for lake restoration. Aquatic Conservation: Marine and Freshwater Ecosystems 9:111–120

    Article  Google Scholar 

  • Hilton J, Lishman P, Allen V (1986) The dominant processes of sediment distribution and focussing in a small, eutrophic, monomictic lake. Limnology and Oceanography 31:125–133

    Google Scholar 

  • HIMOM (2005) Heirarchical Monitoring Methods. European commission fifth framework programme. Contract: EVK3-CT-2001-00052

    Google Scholar 

  • Kenworthy WJ, Ziemen JC, Thayer GW (1982) Evidence for the influence of seagrasses on the benthic nitrogen cycle in a coastal plain estuary near Beaufort, North Carolina (USA). Oecologia 54(2):152–158

    Article  Google Scholar 

  • Lick W, Huang H (1993) Flocculation and the physical properties of flocs. In: Mehta AJ (ed) Nearshore and estuarine cohesive sediment transport. AGU, Washington, DC, pp 21–39

    Google Scholar 

  • Lerman A (1979) Geochemical processes: water and sediment environments. John Wiley and Sons Publishers, New York

    Google Scholar 

  • Madsen KN, Nilsson P, Sundbäck K (1993) The influence of benthic micro-algae on the stability of a subtidal sediment. Journal of Experimental Marine Biology and Ecology 170:159–177

    Article  Google Scholar 

  • Nedwell DB, Raffaelli DG (eds) (1999) Advances in Ecological Research Estuaries 29. Academic Press, San Diego, CA

    Google Scholar 

  • Nedwell DB, Jickells TD, Trimmer M, Sanders R (1999) Nutrients in estuaries. In: Nedwell DB, Raffaelli DG (eds) Advances in Ecological Research: Estuaries 29. Academic Press, San Diego, CA

    Google Scholar 

  • Packman AI, Jerolmack D (2004) The role of physicochemical processes in controlling sediment transport and deposition in turbidity currents. Marine Geology 204:1–9

    Article  Google Scholar 

  • Paterson DM (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms. Limnology and Oceanography 24:223–234

    Google Scholar 

  • Paterson DM (1994) Microbiological mediation of sediment structure and behaviour. In: Stal LJ, Caumette P (eds) Microbial Mats. NATO ASI Series vol. G35, Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Paterson DM (1997) Biological mediation of sediment erodibility, ecology and physical dynamics. In: Burt N, Parker R, Watts I (eds) Cohesive Sediments. pp 215–229, Wiley Interscience, Chichester

    Google Scholar 

  • Paterson DM, Black KS (1999) Water flow, sediment dynamics, and benthic biology. In: Raffaelii D, Nedwell D (eds) Advances in Ecological Research. pp 155–193, Oxford University Press, Oxford

    Google Scholar 

  • Perkins RG, Honeywill C, Consalvey M, Austin HA, Tolhurst TJ, Paterson DM (2003) Changes in microphytobenthic chlorophyll a and EPS resulting from sediment compaction due to de-watering: opposing patterns in concentration and content. Continental Shelf Research 23:575–586

    Article  Google Scholar 

  • Tolhurst TJ (1999) Microbial mediation of intertidal sediment erosion. Ph.D. thesis. University of St Andrews

    Google Scholar 

  • Tolhurst TJ, Black KS, Paterson DM, Mitchener H, Termaat R, Shayler SA (2000) A comparison and measurement standardisation of four in situ devices for determining the erosion sheer stress of intertidal sediments. Continental Shelf Research 20:1397–1418

    Article  Google Scholar 

  • Underwood GJC, Paterson DM, Parkes RJ (1995) The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnology and Oceanography 40:1243–1253

    Google Scholar 

  • Weyenmeyer GA, Meili M, Pierson DC (1995) A simple method to quantify sources of settling particles in lakes: resuspension versus new sedimentation of material from planktonic production. Marine and Freshwater Research 46:223–231

    Google Scholar 

  • Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between rates of microbial production, exopolymer production, microbial biomass and sediment stability in biofilms of intertidal sediments. Microbial Ecology 39:116–127

    Article  Google Scholar 

References

  • Austen I, Witte G (2000) Comparison of the erosion shear stress of oxic and anoxic sediments in the East Frisian Wadden Sea. In: Hemming BW, Delafontaine MT, Liebezeit G (eds) Muddy coast dynamics and resource management, Proc Mar Sci, vol. 2. Elsevier, Amsterdam, pp 75–84

    Chapter  Google Scholar 

  • Datry T, Malard F, Niederreiter R, Gibert J (2003) Video-logging for examining biogenic structures in deep heterogeneous subsurface sediments. C. R. Biologies 326:589–597

    Article  Google Scholar 

  • De Brouwer JFC, Stal LJ (2001) Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of and intertidal mudflat. Mar Ecol Prog Ser 218:33–44

    Article  Google Scholar 

  • De Brouwer JFC, Stal LJ (2002) Daily fluctuations of exopolymers in cultures of benthic diatoms Cylindrotheca closterium and Nitzschia sp. (Bacillariophyceae). J Phycol 38:464–472

    Article  Google Scholar 

  • De Brouwer JFC, Bjelic S, de Deckere, EMGT, Stal, LJ (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, The Netherlands). Cont Shelf Res 20:1159–1177

    Article  Google Scholar 

  • De Deckere EMGT, Tolhurst TJ, de Brouwer JFC (2001) Destabilisation of cohesive intertidal sediments by infauna. Estuar Coast Shelf Sci 56:665–669

    Article  Google Scholar 

  • Dreher T (1997) Non intrusive measurement of particle concentration and experimental characterization of sedimentation. Sonderforschungsbericht 404, Universitaet Stuttgart

    Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPS)–Part I: Structural and ecological aspects. Water Sci Technol 43(6):1–8

    Google Scholar 

  • Foerstner U, Heise S, Schwartz R, Westrich B, Ahlf W (2004) Historical Contaminated Sediments and Soils at the River Basin Scale. J Soil and Sediments 4:247–260

    Article  Google Scholar 

  • Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Wat Res 30:1749–1758

    Article  Google Scholar 

  • Gerbersdorf SU, Jancke T, Westrich B (2005) Physico-chemical and biological sediment properties determining erosion resistance of contaminated riverine sediments–temporal and vertical pattern at the Lauffen reservoir / river Neckar, Germany. Limnologica 35:132–144

    Google Scholar 

  • Gerbersdorf SU, Jancke T, Westrich B (2007) Sediment properties for assessing the erosion risk of contaminated riverine sites. Journal of Soils and Sediments: 7(1):25–35

    Article  Google Scholar 

  • Haag I, Westrich B (2002) Process governing river water quality identified by principal component analysis. Hydrol Process 16:3113–3130

    Article  Google Scholar 

  • Haag I, Kern U, Westrich B (2001) Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated sediments. Sci Total Environ 266:249–257

    Article  Google Scholar 

  • Jepsen R, Roberts J, Lick W (1997) Effects of bulk density on sediment erosion rates. Water Air Soil Poll 99:21–31

    Google Scholar 

  • Kern U (1997) Transport von Schwebund Schadstoffen in staugeregelten Fließgewaessern am Beispiel des Neckars. Mitteilungen des Instituts fuer Wasserbau 93. Universitaet Stuttgart

    Google Scholar 

  • Kern U, Schuerlein V, Holzwarth M, Haag I, Westrich B (1999) Ein Strömungskanal zur Ermittlung der tiefenabhängigen Erosionsstabilität von Gewässersedimenten: das SETEG-System. Wasserwirtschaft 89:72–77

    Google Scholar 

  • McNeil J, Lick W (2004) Erosion rates and bulk properties of sediments from the Kalamazoo River. J Great Lakes Res 30:407–418

    Google Scholar 

  • Olafsson JS, Paterson DM (2004) Alteration of biogenic structure and physical properties by tubebuilding chironomid larvae in cohesive sediments. Aquatic Ecology 38:219–229

    Article  Google Scholar 

  • Perkins RG, Honeywill C, Consalvey M, Austin HA, Tolhurst TJ, Paterson DM (2003) Changes in microphytobenthic chlorophyll a and EPS resulting from sediment compaction due to de-watering: opposing patterns in concentration and content. Cont Shelf Re 23:575–586

    Article  Google Scholar 

  • Smith DJ, Underwood GJC (2000) The production of extracellular carbohydrates by estuarine benthic diatoms: the effects of growth phase and light and dark treatment. J Phycol 36:321–333

    Article  Google Scholar 

  • Underwood GJC, Boulcott M, Raines CA, Waldron K (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. J Phycol 40:293–304

    Article  Google Scholar 

  • Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between Rates of Microbial Production, Exopolymer Production, Microbial Biomass, and Sediment Stability in Biofilms of Intertidal Sediments. Microb Ecol 39:116–127

    Article  Google Scholar 

  • Ziegler CK (2002) Evaluating sediment stability at sites of historic contamination. Environ Manage 29:409–427

    Article  Google Scholar 

  • Zipperle J, Deventer K (2003) Wirkungsbezogene Sedimentuntersuchungen zur Ableitung von Qualitätsmerkmalen und Handlungsempfehlungen, Teilprojekt 1: Entwicklung und Erprobung einer Strategie zur Beurteilung der Sedimentbeschaffenheit auf der Basis von Wirktests. LFU Karlsruhe

    Google Scholar 

References

  • Brunk B, Weber-Shirk M, Jensen A, Jirka G, Lion LW (1996) Modeling natural hydrodynamic systems with a differential-turbulence column. J Hydraulic Engineering 122(7):373–380

    Article  Google Scholar 

  • Gust G (1990) Method of generating precisely-defined wall shearing stresses. US Patent Number: 4,973,165,1990

    Google Scholar 

  • Gust G, Müller V (1997) Interfacial hydrodynamics and entrainment functions of currently used erosion devices. In: Burt N, Parker R, Watts J (eds) Cohesive sediments–Proc. 4th nearshore and estuarine cohesive sediment transport conference INTERCOH’ 94, Wallingford 1994. Wiley, Chichester, UK:149–174

    Google Scholar 

  • Hensse J, Müller V, Gust G (1997) Dynamic temperature compensation for hot film anemometry in turbulent flows–necessity and realisation. In: Shen X, Sun X (eds) Modern techniques and measurements in fluid flows–Proceedings of the 3rd conference on fluid dynamic measurement and its applications, Beijing 1997, Int. Academic Publishers, Beijing, PR. of China, ISBN 7-80003-407-0/TB

    Google Scholar 

  • Kleeberg A, Hupfer M, Gust G (2007) Phosphorus Entrainment due to Resuspension, River Spree, NE Germany. This volume

    Google Scholar 

  • Müller V, Vorrath D, Werner A, Witte G (1995) Schubspannungscharakteristik des EROMES-Systems–Messungen zur Hydrodynamik und Erosionsversuche mit Kaolinit. report GKSS 95/E/43, Geesthacht, Germany, ISSN 0344-9629

    Google Scholar 

  • Nezu I, Nakagawa H (1993) Turbulence in open-channel flow. IAHR Monograph Series, A. A. Balkema Publishers, Rotterdam, Netherlands

    Google Scholar 

  • Paterson D (2007) On the Boundaries: Measurements of Extreme Systems. This volume

    Google Scholar 

  • Siepmann R, von der Kammer F, Calmano W (2007) Mobility of Heavy Metals from Resuspended Anoxic Sediments–Close to Nature Approach in Benthic Chambers. This volume

    Google Scholar 

  • Tengberg A, Stahl H, Gust G, Müller V, Arning U, Andersson H, Hall POJ (2004) Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics. Progress in Oceanography 60:1–28

    Article  Google Scholar 

References

  • Brunk B, Weber-Shirk M, Jensen A, Jirka G, Lion LW (1996) Modeling natural hydrodynamic systems with a differential-turbulence column. J Hydr Eng 122:373–380

    Article  Google Scholar 

  • Brunk B (1997) Turbulent Coagulation of Particles Smaller Than the length Scales of Turbulence and equilibrium Sorption of Phenantrene to Clay. Ph.D. Thesis, Cornell University, New York

    Google Scholar 

  • Ditschke D, Markofsky M (2006) A non-equilibrium, multi-class flocculation model. Proc. SEDYMO International Symposium 2006, Hamburg

    Google Scholar 

  • Fengler G, Köster M, Meyer-Reil L-A (2006) Sediment erodibility in an intertidal groyne field of the Elbe River: Impact on microbial mediated processes. Proc. SEDYMO International Symposium, Hamburg

    Google Scholar 

  • Hopfinger EJ, Toly JA (1976) Spatially decaying turbulence and its relation to mixing across density interfaces. J Fluid Mech 78:155–175

    Article  Google Scholar 

  • Nezu I, Nakagawa H (1993) Turbulence in Open-Channel Flow. Rotterdam, Brookfield: A. A. Balkema Srdic A, Fernando HJS, Montenegro L (1996) Generation of nearly isotropic turbulence using two oscillating grids. Exp Fluids 20:395–397

    Google Scholar 

  • Van Leussen W (1994) Esturaine Macreoflocs and their Role in Fine-Grained Sediment Transport. Ph.D. Thesis, University of Utrecht, Utrecht

    Google Scholar 

References

  • de Brouwer JFC, Bjelic S, de Deckere EMGT, Stal LJ (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, The Netherlands). Continental Shelf Res 20:1159–1177

    Article  Google Scholar 

  • de Brouwer JFC, Stal LJ (2001) Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of an intertidal mudflat. Mar Ecol Prog Ser 218:33–44

    Article  Google Scholar 

  • de Brouwer JFC, Wolfstein K, Ruddy GK, Jones TER, Stal LJ (2005) Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microb Ecol 49:501–512

    Article  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretion in ocean environments: their role(s) in webs and marine processes. Oceanography and Marine Biology: An Annual Review 28:73–153

    Google Scholar 

  • Decho AW, Kawaguchi T, Allison MA, Louchard EM, Reid RP, Stephens FC, Voss KJ, Wheatcroft RA, Taylor BB (2003) Sediment properties influencing upwelling spectral reflectance signatures: The “biofilm gel effect”. Limnol Oceanogr 48:431–443

    Google Scholar 

  • Fengler G, Köster M, Meyer-Reil LA (2006) Mikrobielle Stoffumsätze an resuspendierten Sedimenten. Final report of the interdisciplinary BMBF-project: Sediment Dynamics and Pollutant Mobility in Rivers (SEDYMO)

    Google Scholar 

  • Findlay RH, King GM, Watling L (1989) Efficiacy of phospholipids analysis in determining microbial biomass in sediments. Appl Environ Microbiol 55:2888–2893

    Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs). Part II: Technical aspects. Wat Sci Technol 43:9–16

    Google Scholar 

  • Graf G, Rosenberg R (1997) Bioresuspension and biodeposition: A review. J Mar Systems 11:269–278

    Article  Google Scholar 

  • Grant J, Gust G (1987) Prediction of coastal sediment stability from photopigment content of mats of purple bacteria. Nature 330:244–246

    Article  Google Scholar 

  • HELCOM, Helsinki Commision (1988) Guidelines for the Baltic monitoring programme for the third stage. Baltic Sea Environ Proc 27D: biological determinants. Helsinki Commission, Helsinki, pp 1–60

    Google Scholar 

  • Köster M, Dahlke S, Meyer-Reil LA (1997) Microbiological studies along a gradient of eutrophication in a shallow coastal inlet in the southern Baltic Sea (Nordrügensche Bodden). Mar Ecol Prog Ser 152:27–39

    Article  Google Scholar 

  • Köster M, Meyer-Reil LA (2002) Ecology of marine microbial biofilms. In: Bitton G (ed) The encyclopedia of environmental microbiology. John Wiley & Sons, Inc., New York, pp 1081–1091

    Google Scholar 

  • Meyercordt J, Meyer-Reil LA (1999) Primary production of benthic microalgae in two shallow coastal lagoons of different trophic status in the southern Baltic Sea. Mar Ecol Prog Ser 178:179–191

    Article  Google Scholar 

  • Meyer-Reil LA (1983) Benthic response to sedimentation events during autumn to spring at a shallow-water station in the western Kiel Bight. II. Analysis of benthic bacterial populations. Mar Biol 77:247–256

    Article  Google Scholar 

  • Meyer-Reil LA (2006) Mikrobiologie des Meeres. Eine Einführung. Facultas UTB, Stuttgart

    Google Scholar 

  • Nichols CM, Lädiére SG, Bowman JP, Nichols PD, Gibson JAE, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    Article  Google Scholar 

  • Paterson DM, Tolhurst TJ, Black KS, Shayler SA, Mather S, Black I (1999) Measuring the in situ erosion shear stress of intertidal sediments with the cohesive strength meter (CSM). Est Coast Shelf Sci 49:281–294

    Article  Google Scholar 

  • Petersen W, Hong J, Williamoski C, Wallmann K (1996) Release of trace contaminants during reoxidation of anoxic sediment slurries in oxic water. Arch Hydrobiol Spec Issues Advanc Limnol 47:295–305

    Google Scholar 

  • Ploug H, Zimmermann-Timm H, Schweitzer B (2002) Microbial communities and respiration on aggregates in the Elbe Estuary, Germany. Aquat Microb Ecol 27:241–248

    Article  Google Scholar 

  • Rieling T (2000) Remineralisation organischen Materials in Boddengewässern Mecklenburg-Vorpommerns unter besonderer Berücksichtigung der Bedeutung von Partikeln und Aggregaten. Ph.D. thesis, University Greifswald

    Google Scholar 

  • Roast SD, Widdows J, Pope N, Jones MB (2004) Sediment-biota interactions: mysid feeding activity enhances water turbidity and sediment erodability. Mar Ecol Prog Ser 281:145–154

    Article  Google Scholar 

  • Schlekat CE, Decho AW, Chandler GT (1998) Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions. Environ Toxicol Chem 17:1867–1874

    Article  Google Scholar 

  • Shanks AL, Edmondson EW (1989) Laboratory-made artificial marine snow: A biological model of the real thing. Mar Biol 101:463–470

    Article  Google Scholar 

  • Shimeta J, Amos CL, Beaulieu SE, Katz SL (2004) Resuspension of benthic protists at subtidal coastal sites with differing sediment composition. Mar Ecol Prog Ser 259:103–115

    Article  Google Scholar 

  • Sutherland TF, Amos CL, Grant J (1998) The effect of buoyant biofilms on the erodibility of sublittoral sediments of a temperate microtidal estuary. Limnol Oceanogr 43:225–235

    Article  Google Scholar 

  • Tsai CH, Lick W (1986) A portable device for measuring sediment resuspension. J Great Lakes Res 12:314–321

    Article  Google Scholar 

  • Westrich B, Förstner U (2005) Sediment dynamics and pollutant mobility in rivers (SEDYMO) assessing catchment-wide emission-immission relationships from sediment studies. BMBF coordinated research project SEDYMO (2002–2006). J Soils Sediments 5:197–200

    Article  Google Scholar 

  • Widdows J, Brinsley MD, Bowley N, Barrett C (1998) A benthic annular flume for in situ measurement of suspension feeding/deposition rates and erosion potential of intertidal cohesive sediments. Est Coast Shelf Sci 46:27–38

    Article  Google Scholar 

  • Widdows J, Brinsley MD, Salkeld PN, Lucas CH (2000) Influence of biota on spatial and temporal variation in sediment erodability and material flux on a tidal flat (Westerschelde, The Netherlands). Mar Ecol Prog Ser 194:23–37

    Article  Google Scholar 

  • Widdows J, Brinsley MD, Pope ND, Staff FJ, Bolam SG, Somerfield PJ (2006) Changes in biota and sediment erodability following the placement of fine dredged material on upper intertidal shores of estuaries. Mar Ecol Prog Ser 319:27–41

    Article  Google Scholar 

  • Ziervogel K (2003) Aggregation and transport behaviour of sediment surface particles in Mecklenburg Bight, south-western Baltic Sea, affected by biogenic stickiness. Ph.D. thesis, University Rostock.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paterson, D.M., Spears, B.M., Funnell, J., Saunders, J. (2007). Hydrodynamics. In: Westrich, B., Förstner, U. (eds) Sediment Dynamics and Pollutant Mobility in Rivers. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34785-9_3

Download citation

Publish with us

Policies and ethics