Advertisement

Managing River Sediments

  • Bernhard Westrich
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Sediments play an important role in river engineering and water resources management. In the past, many rivers in developed countries have been engineered by training and regulation works for navigation, hydropower generation and flood protection. In the past decades, municipal and industrial waslewaler discharge and various diffusive sources from agriculture have caused a widespread contamination of river sediments by heavy metals, organic toxicants and agrochemicals. Meanwhile, many historically contaminated sites in rivers are localized and identified as a severe latent hazard for the river ecosystem (see Sect. 1.1.3). Most of the contaminated sites have been detected in low flowing water bodies which are either permanently or temporarily connected to the main river channel such as near bank groyne fields in waterways or harbors, river dead arms, flood plains and last not least flood retention reservoirs (Fig. 2.1). Many deposits are most likely to be resuspended and transported over a long distance by extreme discharges causing contamination of not yet polluted surface water bodies and unpolluted soils subject to flooding.

Keywords

Suspended Sediment Flood Event Critical Shear Stress Cohesive Sediment Sediment Erosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asselmann NEM (1997) Suspended sediment in the river Rhine, the impact of climate change on erosion, transport and deposition ISBN 90-6809-254-5 (NGS)Google Scholar
  2. Baart AC, Boon JG, Villars MT (2001) Generic model for contaminants (GEMCO), Z2725, Delft Hydraulics, DelftGoogle Scholar
  3. Boudreau BP (1997) Diagenetic models and their implementation. Modeling transport and reactions in aquatic sediments, Springer-Verlag, BerlinGoogle Scholar
  4. Carlon C, Norbiato C, Critto A, Marcomini A, (2000) Risk analysis applied to a contaminated site. Determination of risk based remedial targets. Ann Chim 90(5–6):349–358Google Scholar
  5. Debnath K, Nokora V, Aberle J, Westrich B, Muste M (2006) Erosion of cohesive sediments: resuspension, bed load and erosion patterns from field experiments, to be published by Journal Hydraulic Research, ASCEGoogle Scholar
  6. De Deckere, EM, van der Waal P, Andree S (2002) A flume study on the effect of Corophium volutator on the sediment stability. J Experimental Marine Biology and EcologyGoogle Scholar
  7. De Zwart D (2005) Impact of toxicity on species, composition of aquatic communities: Concordance of predictions and field observations, Netherlands National Institue for public helth and the Environment (RIVM)Google Scholar
  8. Formica SJ, Baron JA, Thibodeaux LJ, Valsaraj KT (1988) PCB transport into lake sediments: conceptual model and laboratory simulation. Environmental Sc. Technology, 22:1435–1440CrossRefGoogle Scholar
  9. Gerbersdorf S, Jancke T, Westrich B (2004) Physico-chemical and biological sediment properties determining erosion resistance of contaminated riverine sediments–Temporal and vertical pattern at the Lauffen reservoir river Neckar, Germany. Limnologia 5:132–144Google Scholar
  10. Haag I, Westrich B (2001) Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated aquatic sediments. The Science of The Total Environment 266:249–257CrossRefGoogle Scholar
  11. Jacoub G (2004) Development of a 2-d numerical code of particulate contaminant transport in impounded rivers and flood retention reservoirs. Institut für Wasserbau, Universität Stuttgart, Mitteilunge. Heft 133Google Scholar
  12. Jacoub G, Westrich B (2006) Modelling transport dynamics of contaminated sediments in the headwater of a hydropower plant at the Upper River Rhine. Acta Hydrochimica and Hydrobiologica 33(3)Google Scholar
  13. Kern U (1997) Transport von Schweb–und Schadstoffen in staugeregelten Fließgewässern am Beispiel des Neckars. Institut für Wasserbau, Universität Stuttgart, Mitteilungen, Heft 93, ISBN-3-921694-94-9 (in German)Google Scholar
  14. Lek S, Guegan JF (2000) Artifical Neuronal Networks: application to ecology and evolution. Springer-VerlagGoogle Scholar
  15. Li, Chien Chen (2004) Deterministisch-stochastisches Berechnungskonzept zur Beurteilung der Auswirkungen erosiver Hochwasserereignisse in Flussstauhaltungen. Universität Stuttgart, Institut für Wasserbau, Mitteilungen Heft 129Google Scholar
  16. Lick W, Lick J, Ziegler CK (1994) The resuspension and transport of fine-grained sediments in Lake Erie. J Great Lakes, vol. 20, pp 599–612CrossRefGoogle Scholar
  17. Öberg T, Bergbäck B (2005) A review of probabilistic risk assessment of contaminated land. J Soils and Sediments 5(4):213–224CrossRefGoogle Scholar
  18. Onishi Y (1981) Sediment contaminant transport model. American Society of Civil Engineering. Journal of Hydraulic Division 107:1089–1107Google Scholar
  19. Paterson DM (1997) Biological mediation of sediment erodibility: ecology and physical dynamics. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments. Wiley and Sons, pp 215–229Google Scholar
  20. Westrich B, Förstner U (2005) Sediment dynamics and pollutant mobility in rivers (SEDYMO), assessing catchment-wide emission-immission relationship from sediment studies. J Soil and Sediments 5(4):194–200Google Scholar
  21. Westrich B, Schmid G, Entwicklung und Einsatz eines mobilen Gerätes zur in-situ Bestimmung der Erosionsstabilität kontaminierter Feinsedimente. Institut für Wasserbau, Universität Stuttgart, Report TB 2004/05-VA 49Google Scholar
  22. Westrich B, Witt O (2004) Untersuchungen zum Resuspensionsrisiko von Sedimentablagerungen in ausgewählten Staustufen des Rheingebiets. IKSR Report, Institut für Wasserbau, Universität Stuttgart (in German, not published)Google Scholar
  23. Winkler H, Stein A (1997) Optimal sampling for monitoring and dredging contaminated sediments. International Conference on Contaminated Sediments, vol. II, pp 1019–1028Google Scholar
  24. Witt O (2004) Erosionstabilität von Gewässersedimenten mit Auswirkungen auf den Stofftransport bei Hochwasser am Beispiel ausgewählter Staustufen am Oberrhein. Institut für Wasserbau, Universität Stuttgart, Mitteilungen Heft 127, ISBN 3-933761-30-1Google Scholar
  25. Witt O, Westrich B (2003) Quantification of erosion rates for undisturbed cohesive sediment cores by image analysis. Hydrobiologia 494(l-3):271–276CrossRefGoogle Scholar
  26. Zreik DA, Krishnappan G, Germaine JT, Madson OS, Ladd C (1998) Erosional and mechanical Strength of deposited cohesive sediments. Hydraulic Engineering 124:1076–1085CrossRefGoogle Scholar

References

  1. Alderton DHM (1985) Sediments. In: Historical Monitoring, pp 1–95. MARC Technical Report 31. Monitoring and Assessment Research Centrer, University of London, UKGoogle Scholar
  2. Anonymous (1982) National Handbook of Recommended Methods for Water-Data Acquisition. Chapter 3–Sediment pp 3-1-3-100. U.S. Geological SurveyGoogle Scholar
  3. Anonymous (2004a) Expert Group on Analysis and Monitoring of Priority Substances (AMPS). WFD AMPS Sediment Monitoring Guidance Discussion Document, AMPS and SedNet, Draft Version 1 from 16 April 2004Google Scholar
  4. Anonymous (2004b) Evaluation of Current Gaps and Recommendations for further Actions in the Field of Environmental Analysis and Monitoring. METROPOLIS (Metrology in Support of EU Policies) Position Paper, March 2004, 8 p. Verneuil-en-Halatte/FranceGoogle Scholar
  5. Anonymous (2006) Proposal for a Directive of the European Parliament and of the Council on Environmental Quality Standards in the Field of Water Policy and Amending Directive 2000/60/EC. Commission of the European Communities, Brussels, 17.7.2006. http://ec.europa.eu/environment/water/water-dangersub/pdf/com_2006_397_en.pdf Google Scholar
  6. Apte SC, Batley G, Mäher WA (2002) Monitoring of trace metals and metalloids in natural waters. In: Burden FR, McKelvie I, Förstner U, Guenther A (eds) Environmental Monitoring Handbook, Chapter 6. McGraw-Hill, New YorkGoogle Scholar
  7. Brock TD (1983) Membrane Filtration: A User’s Guide and Reference Manual. Springer-Verlag, BerlinGoogle Scholar
  8. Buffle J, Perret J, Newman J (1992) The use of filtration and ultrafiltration for size fractionation of aquatic particles, colloids, and macromolecules. In: Buffle J, Van Leeuwen HP (eds) Environmental Particles, vol. I, Chap 5. Lewis Publ Chelsea MIGoogle Scholar
  9. Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown N, Lloyd J, Hobman J, Csöregi E, Johannsson G, Mattiasson B (1999) Whole celland protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244CrossRefGoogle Scholar
  10. Cornelisse JM, Mulder HPJ, Houwing EJ, Williamson HJ, Witte G (1997) On the development of instruments for in-situ erosion measurements. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments. John Wiley & Sons, pp 175–186Google Scholar
  11. Efron B, Tibshirani R (1993) An Introduction to the Bootstrap. Chapman and Hall, New YorkGoogle Scholar
  12. Eisma D, Dyer KR, van Leussen W (1997) The in-situ determination of the settling velocities of suspended fine-grined sediment–a review. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments. John Wiley & Sons, pp 17–44Google Scholar
  13. Förstner U (1989) Contaminated Sediments. Lecture Notes in Earth Sciences 21, Springer-Verlag, Berlin, 157 pGoogle Scholar
  14. Förstner U (2003) Geochemical techniques on contaminated sediments–river basin view. Environ Sci Pollut Res 10:58–68Google Scholar
  15. Förstner U (2004) Traceability of sediment analysis. Trends Anal Chem 23(3):217–236CrossRefGoogle Scholar
  16. Golterman HL, Sly PG, Thomas RL (1983) Study of the Relationship between Water Quality and Sediment Transport. Technical Papers in Hydrology no. 26, 231 p. UNESCO, ParisGoogle Scholar
  17. Gust G, Müller V (1997) Interfacial hydrodynamics and entrainment functions of currently used erosion devices. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments. John Wiley & Sons, pp 149–174Google Scholar
  18. Haag I, Hollert I, Kern U, Braunbeck T, Westrich B (2002) Flood event sediment budget for a lockregulated river reach and toxicity of suspended particulate matter. Proc 3rd Intern Conf on Water Resources and Environment Research (ICWRER), Dresden, Germany, July 2002Google Scholar
  19. Horowitz A (1991) A Primer on Sediment-Trace Element Chemistry. 2nd ed. 136 p. Lewis Publ. Chelsea/ MichGoogle Scholar
  20. Hunt DTE, Wilson AL (1986) The Chemical Analysis of Water: General Principles and Techniques. 2nd ed. Royal Society of Chemistry LondonGoogle Scholar
  21. Keith L (1991) Environmental Samples and Anayses: A Practical Guide. 143 p. Lewis Publ. Chelsea/ MichGoogle Scholar
  22. Kern U (1997) Transport von Schwebund Schadstoffen in staugeregelten Fließgewässern am Beispiel des Neckars. Mitteilung des Intituts für Wasserbau, Heft 93, Universität StuttgartGoogle Scholar
  23. Kern U, Westrich B (1996) Mobilität von Schadstoffen in den Sediment staugeregelter Flüsse–Natur versuche in der Stauhaltung Lauffen, Modellierung und Abschätzung des Remobilisierungsrisikos kontaminierter Altsedimente. Wissenschaftlicher Bericht Nr. 96/23 (HG 237), Institut für Wasserbau, Universität StuttgartGoogle Scholar
  24. Kersten M, Förstner U (1987) Effect of sample pretreatment on the reliability of solid speciation data of heavy metals–implication for the study of diagenetic processes. Mar Chem 22:299–312CrossRefGoogle Scholar
  25. Kosian PA, West MS, Pasha CW, Cox JS, Mount DR, Huggett RJ, Ankley GT (1999) Use of nonpolar resin for reduction of fluoranthene bioavailability in sediment. Environ Toxicol Chem 18:201–206CrossRefGoogle Scholar
  26. Kuijper C, Cornelisse JM, Winterwerp JC (1989): Research on erosive properties of cohesive sediments. J Geophys Res 94(C10):341–350Google Scholar
  27. Landenberger H (1998) CoTReM–A Multi-component Transport and Reaction Model (in German). Section of Geochemistry and Hydrogeology, University of Bremen, GermanyGoogle Scholar
  28. Li CC (2004) Deterministisch-stochastisches Bemessungskonzept zur Beurteilung der Auswirkungen erosiver Hochwasserereignisse in Flußstauhaltungen. Mitteilungen des Instituts für Wasserbau, Heft 129, Universität Stuttgart, ISBN 3-933761-32-8Google Scholar
  29. Li CC, Westrich B (2004) Modeling reservoir sediment erosion by floods for assessing the effect of uncertainties and variability of input parameters. Presentation held at 6th Inter Conf on Hydroscience and Engineering (ICHE-2004), May 30-June 3, Brisbane, AustraliaGoogle Scholar
  30. Mudroch A, Azcue JM (1995) Manual of Aquatic Sediment Sampling. 219 p. Lewis Publ, Boca RatonGoogle Scholar
  31. Mudroch A, Bourbonniere RA (1994) Sediment preservation, processing, and storage. In: Mudroch A, MacKnight SD (eds) Techniques for Aquatic Sediments Sampling. 2nd ed., pp 131–169, Lewis Publ. Boca RatonGoogle Scholar
  32. Ongley E, Blachford N (1982) Application of continuous-flow centrifugation to contaminant analysis of suspended sediment in fluvial systems. Environ Technol Letts 3:219–228CrossRefGoogle Scholar
  33. Parkhurst DL, Postma CAJ (1999) User’s Guide to PHREEQC (Version 2)–A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resources Investigations Report 99–4259. U.S. Geol. Survey, Denver, Colorado, USAGoogle Scholar
  34. Quevauviller Ph (ed) (2002) Methodologies for Soil and Sediment Fractionation Studies. 180 p. The Royal Society of Chemistry Cambridge UKGoogle Scholar
  35. Thomas R, Meybeck M (1992) The use of particulate material. In: Chapman D (ed) Water Quality Assessments. A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. Chapter 4, pp 121–170, Chapman & Hall, LondonGoogle Scholar
  36. Thompson HA, Parks GA, Brown GE jr (1999) Dynamic interaction of dissolution, surface adsorption and precipitation in an aging cobalt(II)-clay-water-system. Geochim Cosmochim Acta 63: 1767–1779CrossRefGoogle Scholar
  37. Verbruggen EMJ, Vaes WHJ, Parkerton TF, Hermens JLM (2000) Polyacrylate-coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity. Environ Sci Technol 34:324–331CrossRefGoogle Scholar
  38. Wallmann K Kersten M, Gruber JU. Förstner U (1993) Artifacts in the determination of trace metal binding forms in anoxic sediments by sequential extraction. In: Rauret G, Quevauviller P (eds) Sequential Extraction of Trace Metals in Soils and Sediment. Int J Environ Anal Chem151:187–200Google Scholar
  39. Zhang H, Zhao F-J, Sun B, Davison W, McGrath SP (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35:2602–2607CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bernhard Westrich
    • 1
  1. 1.Institute of Hydraulic EngineeringUniversity of StuttgartStuttgartGermany

Personalised recommendations