Skip to main content

Managing River Sediments

  • Chapter
  • 1149 Accesses

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Sediments play an important role in river engineering and water resources management. In the past, many rivers in developed countries have been engineered by training and regulation works for navigation, hydropower generation and flood protection. In the past decades, municipal and industrial waslewaler discharge and various diffusive sources from agriculture have caused a widespread contamination of river sediments by heavy metals, organic toxicants and agrochemicals. Meanwhile, many historically contaminated sites in rivers are localized and identified as a severe latent hazard for the river ecosystem (see Sect. 1.1.3). Most of the contaminated sites have been detected in low flowing water bodies which are either permanently or temporarily connected to the main river channel such as near bank groyne fields in waterways or harbors, river dead arms, flood plains and last not least flood retention reservoirs (Fig. 2.1). Many deposits are most likely to be resuspended and transported over a long distance by extreme discharges causing contamination of not yet polluted surface water bodies and unpolluted soils subject to flooding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asselmann NEM (1997) Suspended sediment in the river Rhine, the impact of climate change on erosion, transport and deposition ISBN 90-6809-254-5 (NGS)

    Google Scholar 

  • Baart AC, Boon JG, Villars MT (2001) Generic model for contaminants (GEMCO), Z2725, Delft Hydraulics, Delft

    Google Scholar 

  • Boudreau BP (1997) Diagenetic models and their implementation. Modeling transport and reactions in aquatic sediments, Springer-Verlag, Berlin

    Google Scholar 

  • Carlon C, Norbiato C, Critto A, Marcomini A, (2000) Risk analysis applied to a contaminated site. Determination of risk based remedial targets. Ann Chim 90(5–6):349–358

    Google Scholar 

  • Debnath K, Nokora V, Aberle J, Westrich B, Muste M (2006) Erosion of cohesive sediments: resuspension, bed load and erosion patterns from field experiments, to be published by Journal Hydraulic Research, ASCE

    Google Scholar 

  • De Deckere, EM, van der Waal P, Andree S (2002) A flume study on the effect of Corophium volutator on the sediment stability. J Experimental Marine Biology and Ecology

    Google Scholar 

  • De Zwart D (2005) Impact of toxicity on species, composition of aquatic communities: Concordance of predictions and field observations, Netherlands National Institue for public helth and the Environment (RIVM)

    Google Scholar 

  • Formica SJ, Baron JA, Thibodeaux LJ, Valsaraj KT (1988) PCB transport into lake sediments: conceptual model and laboratory simulation. Environmental Sc. Technology, 22:1435–1440

    Article  Google Scholar 

  • Gerbersdorf S, Jancke T, Westrich B (2004) Physico-chemical and biological sediment properties determining erosion resistance of contaminated riverine sediments–Temporal and vertical pattern at the Lauffen reservoir river Neckar, Germany. Limnologia 5:132–144

    Google Scholar 

  • Haag I, Westrich B (2001) Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated aquatic sediments. The Science of The Total Environment 266:249–257

    Article  Google Scholar 

  • Jacoub G (2004) Development of a 2-d numerical code of particulate contaminant transport in impounded rivers and flood retention reservoirs. Institut für Wasserbau, Universität Stuttgart, Mitteilunge. Heft 133

    Google Scholar 

  • Jacoub G, Westrich B (2006) Modelling transport dynamics of contaminated sediments in the headwater of a hydropower plant at the Upper River Rhine. Acta Hydrochimica and Hydrobiologica 33(3)

    Google Scholar 

  • Kern U (1997) Transport von Schweb–und Schadstoffen in staugeregelten Fließgewässern am Beispiel des Neckars. Institut für Wasserbau, Universität Stuttgart, Mitteilungen, Heft 93, ISBN-3-921694-94-9 (in German)

    Google Scholar 

  • Lek S, Guegan JF (2000) Artifical Neuronal Networks: application to ecology and evolution. Springer-Verlag

    Google Scholar 

  • Li, Chien Chen (2004) Deterministisch-stochastisches Berechnungskonzept zur Beurteilung der Auswirkungen erosiver Hochwasserereignisse in Flussstauhaltungen. Universität Stuttgart, Institut für Wasserbau, Mitteilungen Heft 129

    Google Scholar 

  • Lick W, Lick J, Ziegler CK (1994) The resuspension and transport of fine-grained sediments in Lake Erie. J Great Lakes, vol. 20, pp 599–612

    Article  Google Scholar 

  • Öberg T, Bergbäck B (2005) A review of probabilistic risk assessment of contaminated land. J Soils and Sediments 5(4):213–224

    Article  Google Scholar 

  • Onishi Y (1981) Sediment contaminant transport model. American Society of Civil Engineering. Journal of Hydraulic Division 107:1089–1107

    Google Scholar 

  • Paterson DM (1997) Biological mediation of sediment erodibility: ecology and physical dynamics. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments. Wiley and Sons, pp 215–229

    Google Scholar 

  • Westrich B, Förstner U (2005) Sediment dynamics and pollutant mobility in rivers (SEDYMO), assessing catchment-wide emission-immission relationship from sediment studies. J Soil and Sediments 5(4):194–200

    Google Scholar 

  • Westrich B, Schmid G, Entwicklung und Einsatz eines mobilen Gerätes zur in-situ Bestimmung der Erosionsstabilität kontaminierter Feinsedimente. Institut für Wasserbau, Universität Stuttgart, Report TB 2004/05-VA 49

    Google Scholar 

  • Westrich B, Witt O (2004) Untersuchungen zum Resuspensionsrisiko von Sedimentablagerungen in ausgewählten Staustufen des Rheingebiets. IKSR Report, Institut für Wasserbau, Universität Stuttgart (in German, not published)

    Google Scholar 

  • Winkler H, Stein A (1997) Optimal sampling for monitoring and dredging contaminated sediments. International Conference on Contaminated Sediments, vol. II, pp 1019–1028

    Google Scholar 

  • Witt O (2004) Erosionstabilität von Gewässersedimenten mit Auswirkungen auf den Stofftransport bei Hochwasser am Beispiel ausgewählter Staustufen am Oberrhein. Institut für Wasserbau, Universität Stuttgart, Mitteilungen Heft 127, ISBN 3-933761-30-1

    Google Scholar 

  • Witt O, Westrich B (2003) Quantification of erosion rates for undisturbed cohesive sediment cores by image analysis. Hydrobiologia 494(l-3):271–276

    Article  Google Scholar 

  • Zreik DA, Krishnappan G, Germaine JT, Madson OS, Ladd C (1998) Erosional and mechanical Strength of deposited cohesive sediments. Hydraulic Engineering 124:1076–1085

    Article  Google Scholar 

References

  • Alderton DHM (1985) Sediments. In: Historical Monitoring, pp 1–95. MARC Technical Report 31. Monitoring and Assessment Research Centrer, University of London, UK

    Google Scholar 

  • Anonymous (1982) National Handbook of Recommended Methods for Water-Data Acquisition. Chapter 3–Sediment pp 3-1-3-100. U.S. Geological Survey

    Google Scholar 

  • Anonymous (2004a) Expert Group on Analysis and Monitoring of Priority Substances (AMPS). WFD AMPS Sediment Monitoring Guidance Discussion Document, AMPS and SedNet, Draft Version 1 from 16 April 2004

    Google Scholar 

  • Anonymous (2004b) Evaluation of Current Gaps and Recommendations for further Actions in the Field of Environmental Analysis and Monitoring. METROPOLIS (Metrology in Support of EU Policies) Position Paper, March 2004, 8 p. Verneuil-en-Halatte/France

    Google Scholar 

  • Anonymous (2006) Proposal for a Directive of the European Parliament and of the Council on Environmental Quality Standards in the Field of Water Policy and Amending Directive 2000/60/EC. Commission of the European Communities, Brussels, 17.7.2006. http://ec.europa.eu/environment/water/water-dangersub/pdf/com_2006_397_en.pdf

    Google Scholar 

  • Apte SC, Batley G, Mäher WA (2002) Monitoring of trace metals and metalloids in natural waters. In: Burden FR, McKelvie I, Förstner U, Guenther A (eds) Environmental Monitoring Handbook, Chapter 6. McGraw-Hill, New York

    Google Scholar 

  • Brock TD (1983) Membrane Filtration: A User’s Guide and Reference Manual. Springer-Verlag, Berlin

    Google Scholar 

  • Buffle J, Perret J, Newman J (1992) The use of filtration and ultrafiltration for size fractionation of aquatic particles, colloids, and macromolecules. In: Buffle J, Van Leeuwen HP (eds) Environmental Particles, vol. I, Chap 5. Lewis Publ Chelsea MI

    Google Scholar 

  • Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown N, Lloyd J, Hobman J, Csöregi E, Johannsson G, Mattiasson B (1999) Whole celland protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244

    Article  Google Scholar 

  • Cornelisse JM, Mulder HPJ, Houwing EJ, Williamson HJ, Witte G (1997) On the development of instruments for in-situ erosion measurements. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments. John Wiley & Sons, pp 175–186

    Google Scholar 

  • Efron B, Tibshirani R (1993) An Introduction to the Bootstrap. Chapman and Hall, New York

    Google Scholar 

  • Eisma D, Dyer KR, van Leussen W (1997) The in-situ determination of the settling velocities of suspended fine-grined sediment–a review. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments. John Wiley & Sons, pp 17–44

    Google Scholar 

  • Förstner U (1989) Contaminated Sediments. Lecture Notes in Earth Sciences 21, Springer-Verlag, Berlin, 157 p

    Google Scholar 

  • Förstner U (2003) Geochemical techniques on contaminated sediments–river basin view. Environ Sci Pollut Res 10:58–68

    Google Scholar 

  • Förstner U (2004) Traceability of sediment analysis. Trends Anal Chem 23(3):217–236

    Article  Google Scholar 

  • Golterman HL, Sly PG, Thomas RL (1983) Study of the Relationship between Water Quality and Sediment Transport. Technical Papers in Hydrology no. 26, 231 p. UNESCO, Paris

    Google Scholar 

  • Gust G, Müller V (1997) Interfacial hydrodynamics and entrainment functions of currently used erosion devices. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments. John Wiley & Sons, pp 149–174

    Google Scholar 

  • Haag I, Hollert I, Kern U, Braunbeck T, Westrich B (2002) Flood event sediment budget for a lockregulated river reach and toxicity of suspended particulate matter. Proc 3rd Intern Conf on Water Resources and Environment Research (ICWRER), Dresden, Germany, July 2002

    Google Scholar 

  • Horowitz A (1991) A Primer on Sediment-Trace Element Chemistry. 2nd ed. 136 p. Lewis Publ. Chelsea/ Mich

    Google Scholar 

  • Hunt DTE, Wilson AL (1986) The Chemical Analysis of Water: General Principles and Techniques. 2nd ed. Royal Society of Chemistry London

    Google Scholar 

  • Keith L (1991) Environmental Samples and Anayses: A Practical Guide. 143 p. Lewis Publ. Chelsea/ Mich

    Google Scholar 

  • Kern U (1997) Transport von Schwebund Schadstoffen in staugeregelten Fließgewässern am Beispiel des Neckars. Mitteilung des Intituts für Wasserbau, Heft 93, Universität Stuttgart

    Google Scholar 

  • Kern U, Westrich B (1996) Mobilität von Schadstoffen in den Sediment staugeregelter Flüsse–Natur versuche in der Stauhaltung Lauffen, Modellierung und Abschätzung des Remobilisierungsrisikos kontaminierter Altsedimente. Wissenschaftlicher Bericht Nr. 96/23 (HG 237), Institut für Wasserbau, Universität Stuttgart

    Google Scholar 

  • Kersten M, Förstner U (1987) Effect of sample pretreatment on the reliability of solid speciation data of heavy metals–implication for the study of diagenetic processes. Mar Chem 22:299–312

    Article  Google Scholar 

  • Kosian PA, West MS, Pasha CW, Cox JS, Mount DR, Huggett RJ, Ankley GT (1999) Use of nonpolar resin for reduction of fluoranthene bioavailability in sediment. Environ Toxicol Chem 18:201–206

    Article  Google Scholar 

  • Kuijper C, Cornelisse JM, Winterwerp JC (1989): Research on erosive properties of cohesive sediments. J Geophys Res 94(C10):341–350

    Google Scholar 

  • Landenberger H (1998) CoTReM–A Multi-component Transport and Reaction Model (in German). Section of Geochemistry and Hydrogeology, University of Bremen, Germany

    Google Scholar 

  • Li CC (2004) Deterministisch-stochastisches Bemessungskonzept zur Beurteilung der Auswirkungen erosiver Hochwasserereignisse in Flußstauhaltungen. Mitteilungen des Instituts für Wasserbau, Heft 129, Universität Stuttgart, ISBN 3-933761-32-8

    Google Scholar 

  • Li CC, Westrich B (2004) Modeling reservoir sediment erosion by floods for assessing the effect of uncertainties and variability of input parameters. Presentation held at 6th Inter Conf on Hydroscience and Engineering (ICHE-2004), May 30-June 3, Brisbane, Australia

    Google Scholar 

  • Mudroch A, Azcue JM (1995) Manual of Aquatic Sediment Sampling. 219 p. Lewis Publ, Boca Raton

    Google Scholar 

  • Mudroch A, Bourbonniere RA (1994) Sediment preservation, processing, and storage. In: Mudroch A, MacKnight SD (eds) Techniques for Aquatic Sediments Sampling. 2nd ed., pp 131–169, Lewis Publ. Boca Raton

    Google Scholar 

  • Ongley E, Blachford N (1982) Application of continuous-flow centrifugation to contaminant analysis of suspended sediment in fluvial systems. Environ Technol Letts 3:219–228

    Article  Google Scholar 

  • Parkhurst DL, Postma CAJ (1999) User’s Guide to PHREEQC (Version 2)–A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resources Investigations Report 99–4259. U.S. Geol. Survey, Denver, Colorado, USA

    Google Scholar 

  • Quevauviller Ph (ed) (2002) Methodologies for Soil and Sediment Fractionation Studies. 180 p. The Royal Society of Chemistry Cambridge UK

    Google Scholar 

  • Thomas R, Meybeck M (1992) The use of particulate material. In: Chapman D (ed) Water Quality Assessments. A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. Chapter 4, pp 121–170, Chapman & Hall, London

    Google Scholar 

  • Thompson HA, Parks GA, Brown GE jr (1999) Dynamic interaction of dissolution, surface adsorption and precipitation in an aging cobalt(II)-clay-water-system. Geochim Cosmochim Acta 63: 1767–1779

    Article  Google Scholar 

  • Verbruggen EMJ, Vaes WHJ, Parkerton TF, Hermens JLM (2000) Polyacrylate-coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity. Environ Sci Technol 34:324–331

    Article  Google Scholar 

  • Wallmann K Kersten M, Gruber JU. Förstner U (1993) Artifacts in the determination of trace metal binding forms in anoxic sediments by sequential extraction. In: Rauret G, Quevauviller P (eds) Sequential Extraction of Trace Metals in Soils and Sediment. Int J Environ Anal Chem151:187–200

    Google Scholar 

  • Zhang H, Zhao F-J, Sun B, Davison W, McGrath SP (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35:2602–2607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Westrich, B. (2007). Managing River Sediments. In: Westrich, B., Förstner, U. (eds) Sediment Dynamics and Pollutant Mobility in Rivers. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34785-9_2

Download citation

Publish with us

Policies and ethics