Skip to main content

A General Approach to Swarm Coordination using Circle Formation

  • Chapter
Stigmergic Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 31))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks R (1991). Science, 253(5025):1227-1232.

    Article  Google Scholar 

  2. Brooks R, Connell J (1987) SPIE Conference on Mobile Robots, Cambridge, MA (USA), pp. 77-84.

    Google Scholar 

  3. Cao Y, Fukunaga A, Kahng A (1997) Autonomous Robots. 4(1):1-23.

    Article  Google Scholar 

  4. Parke LE (2000) Proceedings of the 5th International Symposium on Distributed Autonomous Robotic Sys tems, DARS, Springer Verlag, 4:3-12.

    Google Scholar 

  5. Yamaguchi H (1997) IEEE International Conference on Robotics and Automation, 3:2300-2305.

    Google Scholar 

  6. Mataric MJ (1995) Robotics and Autonomous Systems, 16:321-331.

    Article  Google Scholar 

  7. Mataric MJ (1991) A Distributed Model for Mobile Robot Environment-Learning and Navigation. Technical Report TR-1228, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

    Google Scholar 

  8. Mataric MJ (1998) Journal of Experimental and Theoretical Artificial Intelligence, 10(3):357-369.

    Article  MATH  Google Scholar 

  9. Mataric MJ (1998) In IEEE Intelligent Systems, 6-9.

    Google Scholar 

  10. Goldberg D, Mataric MJ (2000) Technical Report IRIS-00-387, USC Institute for Robotics and Intelligent Systems.

    Google Scholar 

  11. Ostergaard E, Mataric MJ, Sukhatme GS (2001) In IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), 2:821-826.

    Google Scholar 

  12. Mataric MJ, Fredslund J (2002) IEEE Transactions on Robotics and Automation, 18(5):837-846.

    Article  Google Scholar 

  13. Mataric MJ, Jones C (2004) In Proceedings of the Hawaii International Conference on Computer Sciences, Waikiki, Hawaii, 27-32.

    Google Scholar 

  14. Nolfi S (1998) Connection Science, 10(3-4):167-184.

    Article  Google Scholar 

  15. Unsal C, Bay JS (1994) IEEE International Symposium on Intelligent Control, Columbus, Ohio, 249-254.

    Google Scholar 

  16. Shen W, Chuong C, Will P (2002) IEEE/RSJ International Conference on Intelligent Robots and System, 3:2776-2781.

    Google Scholar 

  17. Baldassarre G, Nolfi S, Parisi D (2003) Artificial Life, 9(3):255-267.

    Article  Google Scholar 

  18. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence: From Natural to Artificial Systems, NY: Oxford University Press Inc.

    MATH  Google Scholar 

  19. Beni G Wang J (1989) Swarm intelligence in cellular robotics systems. Proceeding of NATO Advanced Workshop on Robots and Biological System, I1 Ciocco, Tuscany, Italy.

    Google Scholar 

  20. Arkin RC (1998) Behavior-Based Robotics, Cambridge, MA: MIT Press.

    Google Scholar 

  21. Millonas M (1994) Swarms, phase transitions, and collective intelligence. In: Palaniswami M, Attikiouzel Y, Marks R, Fogel D, Fukuda T (eds) Computational Intelligence: A Dynamic System Perspective, pp.137-151. IEEE Press, Piscataway, NJ.

    Google Scholar 

  22. Dudek G, Jenkin M, Milios E, Wilkes D (1993) A taxonomy for swarm robots, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Japan, 1:441-447.

    Google Scholar 

  23. Sugihara K, Suzuki I (1990) Distributed Motion Coordination of Multiple Mobile Robots, In IEEE International Symposium on Intelligent Control, pp. 138-143.

    Google Scholar 

  24. Dudenhoeffer DD, Jones MP (2000) A Formation Behavior for Large-Scale Micro-Robot Force Deployment, In Proceedings of the 2000 Winter Simulation Conference, pp. 972-982.

    Google Scholar 

  25. Flocchini P, Prencipe G, Santoro N, Widmayer P (2001) Gathering of Asynchronous Mobile Robots with Limited Visibility. In 18th International Symposium on Theoretical Aspects of Computer Science (STACS), 331(1-3):147-168.

    Google Scholar 

  26. Desai J, Kumar V, Ostrowski J (1999) Control of changes in formation for a team of mobile robots, In Proceedings of 1999 International Conference on Robotics and Automation, pp.1556-1561.

    Google Scholar 

  27. Flocchini P, Prencipe G, Santoro N, Widmayer P. Pattern Formation by Autonomous Mobile Robots. Interjournal of Complex Systems, Article 395, (on line publication http://www.interjournal.org).

  28. Sugihara K, Suzuki I (1996) Journal of Robotic Systems, 13:127-139.

    Article  MATH  Google Scholar 

  29. Wang PKC (1989) Navigation Strategies For Multiple Autonomous Mobile Robots Moving In Formation, IEEE/RSJ International Workshop on Intelligent Robots and Systems,pp. 486-493.

    Google Scholar 

  30. Gordon FD, Spears MW (1999) Using Artificial Physics to Control Agents. In Proceedings of IEEE International Conference on Information, Intelligence and Systems.

    Google Scholar 

  31. Gordon FD, Spears MW, Sokolsky W, Lee I (1999) Distributed Spatial Control, Global Monitoring and Steering of Mobile Agents. In Proceedings of IEEE International Conference on Information, Intelligence and Systems (ICIIS).

    Google Scholar 

  32. Molnár P, Starke J (2001) Control of distributed autonomous robotic systems using principles of pattern formation in nature and pedestrian behavior. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 31(3): 433-435.

    Article  Google Scholar 

  33. Chen Q, Luh J (1994) Coordination and control of a group of small mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, pp.2315-2320.

    Google Scholar 

  34. Trivedi M, Hall B, Kogut G, Roche S (2000) Web-based teleautonomy and telepresence, In 45th SPIE Optical Science and Technology Conference, Applications and Science of neural networks, fuzzy systems and evolutionary computation III, San Diego, v.4120.

    Google Scholar 

  35. Suzuki I, Yamashita M (1999) Distributed Anonymous Mobile Robots: Formation of Geometric Patterns, Siam J. Comput., 28(4):1347-1363.

    Article  MATH  MathSciNet  Google Scholar 

  36. Suzuki I, Yamashita M (1996) Distributed Anonymous Mobile Robots- Formation and Agreement Problems, In Proc. Third Colloq. On Struc. Information and Communication Complexity (SIROCCO), pp 313-330.

    Google Scholar 

  37. Tanaka O (1992) Forming a Circle by Distributed Anonymous Mobile Robots. Bachelor thesis, Department of Electrical Engineering, Hiroshima University, Hiroshima, Japan.

    Google Scholar 

  38. Flocchini P, Prencipe G, Santoro N, Widmayer P (1999) Hard Tasks for Weak Robots: The Role of Common Knowledge In Pattern Formation by Autonomous Mobile Robots. In 10th International Symposium on Algorithm and Computation (ISAAC), pp.93-102.

    Google Scholar 

  39. Defago X, Konagaya A (2002) Circle Formation for Oblivious Anonymous Mobile Robots with No Common Sense of Orientation. In Proceedings of the second ACM international workshop on Principles of mobile computing, pp.97-104.

    Google Scholar 

  40. Chatzigiannakis I, Markou M, Nikoletseas S (2004) Distributed Circle Formation for Anonymous Oblivious Robots. In 3rd Workshop on Efficient and Experimental Algorithms, Lecture Notes in Computer Science, 3059:159-174.

    Google Scholar 

  41. Yun X, Alptekin G, Albayrak O (1997) Line and circle formation of distributed physical mobile robots. Journal of Robotic Systems, 14(2):63-76.

    Article  Google Scholar 

  42. Swaminathan K (2005) Self-organized formation of geometric patterns in multi-robot swarms using wireless communication. MS Thesis, University of Cincinnati, Cincinnati.

    Google Scholar 

  43. Ando H, Suzuki I, Yamashita M (1995) Formation and agreement problems for synchronous mobile robots with limited visibility. In Proceedings of the 1995 IEEE International Symposium on Intelligent Control,pp.453-460.

    Google Scholar 

  44. Gordon N, Wagner IA, Brucks AM (2003) Discrete Bee Dance Algorithms for Pattern Formation on a Grid. In IEEE/WIC International Conference on Intelligent Agent Technology, pp.545-549.

    Google Scholar 

  45. Dudek G, Jenkin M, Milios E, Wilkes D (1993) Robust Positioning with a Multi-Agent Robotic System. In Proceedings of the International Joint Conference of Artificial Intelligence (IJCAI) on Dynamically Interacting Robots, Chambery, France, pp.118-123.

    Google Scholar 

  46. Arora A, Kulkarni S (1995) Designing masking fault-tolerance via nonmasking fault-tolerance, 14TH Symposium on Reliable Distributed Systems, pp.174.

    Google Scholar 

  47. Arora A, Gouda M. Distributed Reset. IEEE Transactions on Computers 43(9):1026-1038.

    Google Scholar 

  48. Nagpal R. Programmable Self-Assembly Using Biologically -Inspired Multirobot Control (2002). ACM Joint Conference on Autonomous Agents and Multiagent Systems, Bologna.

    Google Scholar 

  49. Coore D, Nagpal R, Weiss R (1997) Paradigms for Structure in an Amorphous Computer. MIT Artificial Intelligence Laboratory Memo 1614.

    Google Scholar 

  50. Nagpal R, Coore D (1998) An algorithm for group formation in an amorphous computer. Proceedings of the Tenth International Conference on Parallel and Distributed Systems (PDCS).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Karthikeyan, S., Ali, M.A. (2006). A General Approach to Swarm Coordination using Circle Formation. In: Stigmergic Optimization. Studies in Computational Intelligence, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34690-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34690-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34689-0

  • Online ISBN: 978-3-540-34690-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics