Skip to main content

MR Perfusion in the Lung

  • Chapter
MRI of the Lung

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Pulmonary perfusion is the blood flow of an organ at the capillary level. It is closely related to the blood supply of the lung and moreover to lung function. It is altered in various diseases of the lung such as pulmonary hypertension or cystic fibrosis, etc. Therefore, perfusion is an important functional parameter in the diagnosis of pulmonary diseases and quantitative values are urgently required to study physiology and pathophysiology of various lung diseases as well as monitor treatment response and identify differences under therapy. Pulmonary perfusion MRI is based on three-dimensional time-resolved contrast-enhanced T1-weighted sequences. The rapid acquisition of perfusion images facilitates the tracking of the first pass of a contrast agent through the lung parenchyma. Based on this information, it is possible to quantify perfusion in the entire lung using the indicator dilution theory. Quantification is challenging due to potential extravasation of the contrast agent during the first pass as well as the non-linear relationship between the concentration of the contrast agent and signal intensity. Some of these challenges can be addressed by a dual bolus technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berthezene Y, Vexler V, Clement O et al. (1992) Contrast-enhanced MR imaging of the lung: assessments of ventilation and perfusion. Radiology 183:667–672

    PubMed  CAS  Google Scholar 

  • Bolar DS, Levin DL, Hopkins SR et al. (2006) Quantification of regional pulmonary blood flow using ASL-FAIRER. Magn Reson Med 55:1308–1317

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB, Frank LR, Wong EC et al. (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    Article  PubMed  CAS  Google Scholar 

  • Calamante F, Gadian DG, Connelly A (2003) Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 50:1237–1247

    Article  PubMed  Google Scholar 

  • Chen Q, Levin DL, Kim D et al. (1999) Pulmonary disorders: ventilation-perfusion MR imaging with animal models. Radiology 213:871–879

    PubMed  CAS  Google Scholar 

  • Christian TF, Rettmann DW, Aletras AH et al. (2004) Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR. Radiology 232:677–684

    Article  PubMed  Google Scholar 

  • Fink C, Puderbach M, Bock M et al. (2004a) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231:175–184

    Article  Google Scholar 

  • Fink C, Risse F, Buhmann R et al. (2004b) Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI – initial results. Rofo 176:170–174

    CAS  Google Scholar 

  • Fink C, Ley S, Risse F et al. (2005a) Effect of inspiratory and expiratory breathhold on pulmonary perfusion: assessment by pulmonary perfusion magnetic resonance imaging. Invest Radiol 40:72–79

    Article  Google Scholar 

  • Fink C, Ley S, Kroeker R et al. (2005b) Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT). Invest Radiol 40:40–48

    Article  Google Scholar 

  • Fink C, Puderbach M, Ley S et al. (2005c) Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echoshared sequences. Eur Radiol 156:2070–2074

    Article  Google Scholar 

  • Fishman AP (1963) Dynamic of the pulmonary circulation. In: Hamilton WF (ed) Handbook of physiology. American Physiological Society, p 1708

    Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM et al. (2002) Generalized auto-calibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  • Hansen PC (1987) The truncated SVD as a method for regularization. BIT 27:543–553

    Article  Google Scholar 

  • Hatabu H, Gaa J, Kim D et al. (1996) Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 36:503–508

    Article  PubMed  CAS  Google Scholar 

  • Hatabu H, Tadamura E, Levin DL et al. (1999) Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med 42:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Hopkins SR, Garg J, Bolar DS et al. (2005) Pulmonary blood flow heterogeneity during hypoxia and high-altitude pulmonary edema. Am J Respir Crit Care Med 171:83–87

    Article  PubMed  Google Scholar 

  • Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351

    Article  PubMed  CAS  Google Scholar 

  • Köstler H, Ritter C, Lipp M et al. (2004) Prebolus quantitative MR heart perfusion imaging. Magn Reson Med 52:296–299

    Article  PubMed  Google Scholar 

  • Kuder TA, Risse F, Eichinger M et al. (2007) New method for 3D parametric visualization of contrast-enhanced pulmonary perfusion MRI data. Eur Radiol (EPub ahead of print) DOI 10.1007/s00330-007-0742-7

    Google Scholar 

  • Levin DL, Chen O, Zhang M et al. (2001) Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 46:166–171

    Article  PubMed  CAS  Google Scholar 

  • Liu HL, Pu Y, Liu Y et al. (1999) Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold. Magn Reson Med 42:167–172

    Article  PubMed  CAS  Google Scholar 

  • Mai VM, Berr SS (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 9:483–487

    Article  PubMed  CAS  Google Scholar 

  • Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  CAS  Google Scholar 

  • Nikolaou K, Schoenberg SO, Brix G et al. (2004) Quantification of pulmonary blood flow and volume in healthy volunteers by dynamic contrast-enhanced magnetic resonance imaging using a parallel imaging technique. Invest Radiol 39:537–545

    Article  PubMed  Google Scholar 

  • Ohno Y, Hatabu H, Murase K et al. (2004) Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: preliminary experience in 40 subjects. J Magn Reson Imaging 20:353–365

    Article  PubMed  Google Scholar 

  • Ohno Y, Murase K, Higashino T et al. (2007) Assessment of bolus injection protocol with appropriate concentration for quantitative assessment of pulmonary perfusion by dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 25:55–65

    Article  PubMed  Google Scholar 

  • Pracht ED, Arnold JF, Wang T, Jakob PM (2005) Oxygen-enhanced proton imaging of the human lung using T2. Magn Reson Med 53:1193–1196

    Article  PubMed  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 30:952–962

    Article  Google Scholar 

  • Risse F, Semmler W, Kauczor HU, Fink C (2006) Dual bolus approach to quantitative measurement of pulmonary perfusion by contrast-enhanced MRI. J Magn Reson Imaging 24:1284–1290

    Article  PubMed  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM et al. (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  PubMed  CAS  Google Scholar 

  • Sourbron S, Luypaert R, Van Schuerbeek P et al. (2004) Deconvolution of dynamic contrast-enhanced MRI data by linear inversion: choice of the regularization parameter. Magn Reson Med 52:209–213

    Article  PubMed  Google Scholar 

  • Stock KW, Chen Q, Levin DL et al. (1999) Demonstration of gravity-dependent lung perfusion with contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 9:557–561

    Article  PubMed  CAS  Google Scholar 

  • Thews G (1997) Atmung . In: Schmidt RF, Thews G (eds) Physiologie des Menschen, 27th edn. Springer, Berlin Heidelberg New York, pp 565–591

    Google Scholar 

  • Zierler KL (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10:393–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Risse, F. (2009). MR Perfusion in the Lung. In: Kauczor, HU. (eds) MRI of the Lung. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34619-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34619-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34618-0

  • Online ISBN: 978-3-540-34619-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics