Skip to main content

General Requirements of MRI of the Lung and Suggested Standard Protocol

  • Chapter
Book cover MRI of the Lung

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

MRI of the lung has been shown to be highly sensitive to infiltrative and solid pathology. It offers particular advantages beyond the scope of CT such as dynamic studies of respiratory mechanics and first pass perfusion imaging. However, challenges such as motion artifacts and low signal have delayed the introduction into clinical routine. This chapter discusses the strategies to overcome these obstacles and suggests a comprehensive protocol for a spectrum of indications. This comprises a basic selection of non-contrast enhanced sequences and can be extended by contrast enhanced series. Breath hold T1- and T2-weighted imaging are applied for the detection of small solid lesions and infiltrates. Inversion recovery series visualize enlarged lymph nodes and skeletal lesions. Steady-state gradient echo series in free breathing contribute to the detection of pulmonary embolism, cardiac dysfunction and impairment of respiratory mechanics. Tumors, suspicious pleural effusions and inflammatory diseases warrant additional contrast-enhanced sequences. Perfusion studies contribute to imaging of thromboembolic vascular and obstructive airway diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abolmaali ND, Schmitt J, Krauss S, Bretz F, Deimling M, Jacobi V, Vogl TJ (2004) MR imaging of lung parenchyma at 0.2 T: evaluation of imaging techniques, comparative study with chest radiography and interobserver analysis. Eur Radiol 14:703–708

    Article  PubMed  Google Scholar 

  • Albertin KH (1996) Structural organization and quantitative morphology of the lung. In: Cutillo AG (ed) Application of magnetic resonance to the study of lung. Futura, Armonk, New York, USA, pp 73–114

    Google Scholar 

  • Arnold JF, Mörchel P, Glaser E, Pracht ED, Jakob PM (2007) Lung MRI using an MR-compatible active breathing control (MR-ABC). Magn Reson Med 58:1092–1098

    Article  PubMed  Google Scholar 

  • Biederer J, Graessner J, Heller M (2001) Magnetic resonance imaging of the lung with a volumetric interpolated 3D-gradient echo sequence. Rofo 173:883–887

    PubMed  CAS  Google Scholar 

  • Biederer J, Reuter M, Both M, Muhle C, Grimm J, Graessner J et al. (2002a) Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering. Eur Radiol 12:378–384

    Article  CAS  Google Scholar 

  • Biederer J, Busse I, Grimm J, Reuter M, Muhle C, Freitag S et al. (2002b) [Sensitivity of MRI in detecting alveolar infiltrates: experimental studies]. Rofo 174:1033–1039

    CAS  Google Scholar 

  • Biederer J, Schoene A, Freitag S, Reuter M, Heller M (2003a) Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology 227:475–483

    Article  Google Scholar 

  • Biederer J, Both M, Graessner J, Liess C, Jakob P, Reuter M et al. (2003b) Lung morphology: fast MR imaging assessment with a volumetric interpolated breath-hold technique: initial experience with patients. Radiology 226:242–249

    Article  Google Scholar 

  • Biederer J, Puderbach M, Hintze C (2006) A practical approach to lung MRI at 1.5 T. Magnetom Flash 2/2006:38-43. Siemens MR Customer Magazine, Siemens AG, München

    Google Scholar 

  • Both M, Schultze J, Reuter M, Bewig B, Hubner R, Bobis I et al. (2005) Fast T1- and T2-weighted pulmonary MR-imaging in patients with bronchial carcinoma. Eur J Radiol 53:478–488

    Article  PubMed  CAS  Google Scholar 

  • Brau AC, Brittain JH (2006) Generalized self-navigated motion detection technique: Preliminary investigation in abdominal imaging. Magn Reson Med 55:263–270

    Article  PubMed  Google Scholar 

  • Bruegel M, Gaa J, Woertler K et al. (2007) MRI of the lung: value of different turbo spin-echo, single-shot turbo spin-echo, and 3D gradient-echo pulse sequences for the detection of pulmonary metastases. J Magn Reson Imaging 25:73–81

    Article  PubMed  Google Scholar 

  • Deng J, Miller FH, Salem R, Omary RA, Larson AC (2006) Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen Invest Radiol 41:769–775

    Article  PubMed  Google Scholar 

  • Eichinger M, Puderbach M, Fink C, Gahr J, Ley S, Plathow C, Tuengerthal S, Zuna I, Muller FM, Kauczor HU (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis-initial results. Eur Radiol 16:2147–2152

    Article  PubMed  Google Scholar 

  • Fink C, Puderbach M, Bock M, Lodemann KP, Zuna I, Schmahl A et al. (2004) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231:175–184

    Article  PubMed  Google Scholar 

  • Fink C, Puderbach M, Biederer J, Fabel M, Dietrich O, Kauczor HU, Reiser M, Schönberg S (2007) Lung MRI at 1.5 T and 3 T: observer preference study and lesion contrast using five different pulse sequences. Invest Radiol 42:377–383

    Article  PubMed  Google Scholar 

  • Finn JP, Nael K, Deshpande V, Ratib O, Laub G (2006) Cardiac MR imaging: state of the technology. Radiology 241:338–354

    Article  PubMed  Google Scholar 

  • Goyen M, Laub G, Ladd ME, Debatin JF, Barkhausen J, Truemmler KH et al. (2001) Dynamic 3D MR angiography of the pulmonary arteries in under four seconds. J Magn Reson Imaging 13:372–377

    Article  PubMed  CAS  Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  • Hatabu H, Gaa J, Kim D, Li W, Prasad PV, Edelman RR (1996) Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 36:503–508

    Article  PubMed  CAS  Google Scholar 

  • Heidemann RM, Griswold MA, Kiefer B, Nittka M, Wang J, Jellus V, Jakob PM (2003) Resolution enhancement in lung 1H imaging using parallel imaging methods. Magn Reson Med 49:391–394

    Article  PubMed  CAS  Google Scholar 

  • Heussel CP, Sandner A, Voigtlander T, Heike M, Deimling M, Kuth R et al. (2002) [Prospective feasibility study of chest X-ray vs thoracic MRI in breath-hold technique at an open low-field scanner]. Rofo 174:854–861

    PubMed  CAS  Google Scholar 

  • Hintze C, Biederer J, Wenz HW, Eberhardt R, Kauczor HU (2006) [MRI in staging of lung cancer]. Radiologe 46:251–259

    Article  PubMed  CAS  Google Scholar 

  • Jerecic R, Bock M, Nielles-Vallespin S, Wacker C, Bauer W, Schad LR (2004) ECG-gated 23Na-MRI of the human heart using 3D-radial projection technique with ultra-short echo times. MAGMA 16:297–302

    Article  PubMed  CAS  Google Scholar 

  • Kluge A, Gerriets T, Muller C, Ekinci O, Neumann T, Dill T et al. (2005) [Thoracic real-time MRI: experience from 2200 examinations in acute and ill-defined thoracic diseases]. Fortschr Roentgenstr 177:1513–1521

    Article  CAS  Google Scholar 

  • Landwehr P, Schulte O, Lackner K (1999) MR imaging of the chest: mediastinum and chest wall. Eur Radiol 9:1737–1744

    Article  PubMed  CAS  Google Scholar 

  • Leutner C, Schild H (2001) [MRI of the lung parenchyma]. Rofo 173:168–175

    PubMed  CAS  Google Scholar 

  • Leutner C, Gieseke J, Lutterbey G, Kuhl CK, Flacke S, Glasmacher A et al. (1999) [MRT versus CT in the diagnosis of pneumonias: an evaluation of a T2-weighted ultrafast turbo-spin-echo sequence (UTSE)]. Rofo 170:449–456

    PubMed  CAS  Google Scholar 

  • Levin DL, Chen Q, Zhang M, Edelman RR, Hatabu H (2001) Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 46:166–171

    Article  PubMed  CAS  Google Scholar 

  • Lima JA, Desai MY (2004) Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 44:1164–1171

    Article  PubMed  Google Scholar 

  • Lutterbey G, Gieseke J, von FM, Morakkabati N, Schild H (2005) Lung MRI at 3.0 T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease. Eur Radiol 15:324–328

    Article  PubMed  CAS  Google Scholar 

  • Lutterbey G, Grohe C, Gieseke J et al. (2007) Initial experience with lung-MRI at 3.0 T: comparison with CT and clinical data in the evaluation of interstitial lung disease activity. Eur J Radiol 61:256–261

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y, Hatabu H, Takenaka D, Higashino T, Watanabe H, Ohbayashi C, Yoshimura M, Satouchi M, Nishimura Y, Sugimura K (2004) Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative and qualitative assessment with STIR turbo spin-echo MR imaging. Radiology 231:872–879

    Article  PubMed  Google Scholar 

  • Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  PubMed  CAS  Google Scholar 

  • Plathow C, Ley S, Zaporozhan J, Schobinger M, Gruenig E, Puderbach M et al. (2006) Assessment of reproducibility and stability of different breath-hold maneuvres by dynamic MRI: comparison between healthy adults and patients with pulmonary hypertension. Eur Radiol 16:173–179

    Article  PubMed  Google Scholar 

  • Prince MR (2004) Gadolinium-enhanced MR aortography. Radiology 191:155–164

    Google Scholar 

  • Regier M, Kandel S, Kaul MG, Hoffmann B, Ittrich H, Bansmann PM, Kemper J, Nolte-Ernsting C, Heller M, Adam G, Biederer J (2007) Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. Eur Radiol 17:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Remmert G, Biederer J, Lohberger F, Fabel M, Hartmann GH (2007) Four-dimensional magnetic resonance imaging for the determination of tumour movement and its evaluation using a dynamic porcine lung phantom. Phys Med Biol 52 N401–N415. doi:10.1088/0031-9155/52/18/N02

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht T, Bowing B, Kuth R, Deimling M, Rascher W, Wagner M (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Eur Radiol 12:2752–2756

    PubMed  Google Scholar 

  • Schaefer JF, Vollmar J, Schick F, Seemann MD, Mehnert F, Vonthein R, Aebert H, Claussen CD (2002) [Imaging diagnosis of solitary pulmonary nodules on an open low-field MRI system – comparison of two MR sequences with spiral CT] Rofo 174:1107–1114

    Google Scholar 

  • Schaefer JF, Vollmar J, Schick F, Seemann MD, Kamm P, Erdtmann B, Claussen CD (2005) [Detection of pulmonary nodules with breath-hold magnetic resonance imaging in comparison with computed tomography] Rofo 177:41–49

    Google Scholar 

  • Schoenberg SO, Bock M, Floemer F, Grau A, Williams DM, Laub G et al. (1999) High-resolution pulmonary arterio- and venography using multiple-bolus multiphase 3D-Gd-MRA. J Magn Reson Imaging 10:339–346

    Article  PubMed  CAS  Google Scholar 

  • Schroeder T, Ruehm SG, Debatin JF, Ladd ME, Barkhausen J, Goehde SC (2005) Detection of pulmonary nodules using a 2D HASTE MR sequence: comparison with MDCT. Am J Roentgenol 185:979–984

    Article  Google Scholar 

  • Shiotani S, Sugimura K, Sugihara M, Kawamitsu H, Yamauchi M, Yoshida M et al. (2000) Diagnosis of chest wall invasion by lung cancer: useful criteria for exclusion of the possibility of chest wall invasion with MR imaging. Radiat Med 18:283–290

    PubMed  CAS  Google Scholar 

  • Strollo DC, Rosado de Christenson ML, Jett JR (1997a) Primary mediastinal tumors. Part 1. Tumors of the anterior mediastinum. Chest 112:511–522

    Article  CAS  Google Scholar 

  • Strollo DC, Rosado-de-Christenson ML, Jett JR (1997b) Primary mediastinal tumors. Part II. Tumors of the middle and posterior mediastinum. Chest 112:1344–1357

    Article  CAS  Google Scholar 

  • Su S, Saunders JK, Smith ICP (1995) Resolving anatomical details in lung parenchyma: theory and experiment for a structurally and magnetically inhomogeneous lung imaging model. Magn Reson Med 33:760–765

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biederer, J. (2009). General Requirements of MRI of the Lung and Suggested Standard Protocol. In: Kauczor, HU. (eds) MRI of the Lung. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34619-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34619-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34618-0

  • Online ISBN: 978-3-540-34619-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics