Skip to main content

Radiation belts and ring current

  • Chapter

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.7 References

  • Aggson, T.L., and J.P. Heppner, Observations of large transient magnetospheric electric fields, J. Geophys. Res., 82, 5155–5164, 1977.

    Article  ADS  Google Scholar 

  • Akasofu, S.-I., Polar and magnetospheric substorms, D. Reidel, Dordrecht, 1968.

    Google Scholar 

  • Albert, J.M., Nonlinear interaction of outer zone electrons with VLF waves, Geophys. Res. Lett., 10.1029/2001GL013941, 30 April 2002.

    Google Scholar 

  • Allen, J.H., and D.C. Wilkinson, SolarTerrestrial Activity Affecting Systems in Space and on Earth, in Solar-Terrestrial Predictions-IV, 1, 75–107, Ottawa, Canada, May 1822, 1992.

    ADS  Google Scholar 

  • Baker, D.N., E.W. Hones Jr., D.T. Young, and J. Birn, The possible role of ionospheric oxygen in the initiation and development of plasma sheet instabilities, Geophys. Res. Lett., 9, 1337–1340, 1982.

    Article  ADS  Google Scholar 

  • Baker, D.N., R.A. Goldberg, F.A. Herrero, J.B. Blake, and L.B. Callis, Satellite and rocket studies of relativistic electrons and their influence on the middle atmosphere, J. Atmos. Terr. Phys., 55, 1619, 1993a.

    Article  Google Scholar 

  • Baker, D.N., G.M. Mason, O. Figueroa, G. Colon, J. Watzin, and R. Aleman, An overview of the SAMPEX mission, IEEE Trans. Geosci. Elec., 31, 531, 1993b.

    Article  Google Scholar 

  • Baker, D.N., et al., Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere: ISTP coordinated measurements, J. Geophys. Res., 102, 14141–14148, 1997.

    Article  ADS  Google Scholar 

  • Baker, D.N., T.I. Pulkkinen, M. Hesse, and R.L. McPherron, A quantitative assessment of energy storage and release in the Earth’s magnetotail, J. Geophys. Res., 201, 7159, 1997.

    Article  ADS  Google Scholar 

  • Baker, D.N., T.I. Pulkkinen, X. Li, S.G. Kanekal, J.B. Blake, R.S. Selesnick, M.G. Henderson, G.D. Reeves, H.E. Spence, and G. Rostoker, Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP, J. Geophys. Res., 103, 17279, 1998a.

    Article  ADS  Google Scholar 

  • Baker, D.N., X. Li, J.B. Blake, and S. Kanekal, Strong electron acceleration in the Earth’s magnetosphere, Adv. Space Res., 21, 609, 1998b.

    Article  ADS  Google Scholar 

  • Baker, D.N., T.I. Pulkkinen, X. Li, S.G. Kanekal, K.W. Ogilvie, R.P. Lepping, J.B. Blake, L.B. Callis, G. Rostoker, H.J. Singer, and G.D. Reeves, A strong CME-related magnetic cloud interaction with the earth’s magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15, 1997, Geophys. Res. Lett., 25, 2975–2978, 1998c.

    Article  ADS  Google Scholar 

  • Baker, D.N., S.G. Kanekal, T.I. Pulkkinen, and J.B. Blake, Equinoctial and solstitial averages of magnetospheric relativistic electrons: A strong semiannual modulation, Geophys. Res. Lett., 26, No. 20, 3193, 1999.

    Article  ADS  Google Scholar 

  • Baker, D.N., The occurrence of operational anomalies in spacecraft and their relationship to space weather, IEEE Trans. Plasma Sci., 28, 2007, 2000.

    Article  ADS  Google Scholar 

  • Baker, D.N., S.G. Kanekal, J.B. Blake, and T.I. Pulkkinen, The global eciency of relativistic electron production in the Earth’s magnetosphere, J. Geophys. Res., 106, 19169, 2001.

    Article  ADS  Google Scholar 

  • Baker, D.N., How to cope with space weather, Science, 297, 30 Aug 2002.

    Google Scholar 

  • Baker, D.N., S.G. Kanekal, X. Li, S.P. Monk, J. Goldstein, and J.L. Burch, An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003, Nature, doi:10.1038/nature03116, 2004.

    Google Scholar 

  • Baker, D.N., Specifying and forecasting space weather threats to human technology, in Effects of Space Weather on Technology Infrastructure, edited by I.A. Daglis, pp. 1–25, Kluwer Academic Publishers, Dordrecht, 2004.

    Google Scholar 

  • Baker, D.N., and X. Li, Relativistic electron flux enhancements during strong geomagnetic activity, AGU Monograph Disturbances in Geospace: The StormSubstorm Relationship. Monograph, 142, 217–230, doi: 10.1029/142GM18, 2003.

    ADS  Google Scholar 

  • Blake, J.B., et al., CEPPAD: Comprehensive energetic particle and pitch angle distribution experiment on POLAR, Space Sci. Rev., 71, 531, 1995.

    Article  ADS  Google Scholar 

  • Brautigam, D.H., M.S. Gussenhoven, and E.G. Mullen, Quasi-static model of outer zone electrons, IEEE Trans. Nucl. Sci., 39, 1797, 1992.

    Article  ADS  Google Scholar 

  • Chapman, S., and V.C.A. Ferraro, A new theory of magnetic storms, Nature, 126, 129–130, 1930.

    Article  ADS  Google Scholar 

  • Chapman, S., and V.C.A. Ferraro, A new theory of magnetic storms, I. The initial phase, Terrest. Magn. Atmosph. Elec., 36, 77–97, 1931.

    Article  Google Scholar 

  • Chapman, S., Earth storms: Retrospect and prospect, J. Phys. Soc. Japan, 17 (Suppl. A-I), 6–16, 1962.

    ADS  Google Scholar 

  • Chen, M.W., L. Lyons, and M. Schultz, Simulations of phase space distributions of storm time proton ring current, J. Geophys. Res., 99, 5745–5759, 1994.

    Article  ADS  Google Scholar 

  • Christofilos, N.C., The Argus Experiment, J. Geophys. Res., 64, 869–875, 1959.

    Article  ADS  Google Scholar 

  • Daglis, I.A., The role of magnetosphere-ionosphere coupling in magnetic storm dynamics, in Magnetic Storms, Geophys. Monogr. Ser., 98, edited by B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo, pp. 107–116, American Geophysical Union, Washington, DC, 1997a.

    Google Scholar 

  • Daglis, I.A., Terrestrial agents in the realm of space storms: Missions study oxygen ions, Eos Trans. AGU, 78(24), 245–251, 1997b.

    Article  ADS  Google Scholar 

  • Daglis, I.A., Space storms, ring current and space-atmosphere coupling, in Space Storms and Space Weather Hazards, edited by I. A. Daglis, pp. 1–42, Kluwer Academic Publishers, Dordrecht, 2001a.

    Google Scholar 

  • Daglis, I.A., The storm-time ring current, Space Sci. Rev., 98, 343–363, 2001b.

    Article  ADS  Google Scholar 

  • Daglis, I.A., Magnetic Storm-still an adequate name?, Eos Trans. AGU, 84(22), 207–208, 2003.

    Article  ADS  Google Scholar 

  • Daglis, I.A., and W.I. Axford, Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail, J. Geophys. Res., 101, 5047–5065, 1996.

    Article  ADS  Google Scholar 

  • Daglis, I.A., and Y. Kamide, The role of substorms in storm-time particle acceleration, in Disturbances in Geospace: The StormSubstorm Relationship, edited by A.S. Sharma, Y. Kamide, and G.S. Lakhina, pp. 119–129, Geophysical Monograph Series 142, DOI 10.1029/142GM11, American Geophysical Union, Washington, DC, 2003.

    Google Scholar 

  • Daglis, I.A., and J.U. Kozyra (2002), Outstanding issues of ring current dynamics, J. Atmos. Sol.-Terr. Phys., 64, 253–264.

    Article  ADS  Google Scholar 

  • Daglis, I.A., E.T. Sarris, and B. Wilken, AMPTE/CCE observations of the ion population at geosynchronous altitudes, Ann. Geophys., 11, 685–696, 1993.

    ADS  Google Scholar 

  • Daglis, I.A., S. Livi, E.T. Sarris, and B. Wilken, Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms, J. Geophys. Res., 99, 5691–5703, 1994.

    Article  ADS  Google Scholar 

  • Daglis, I.A., R.M. Thorne, W. Baumjohann, and S. Orsini, The terrestrial ring current: Origin, formation, and decay, Rev. Geophys., 37, 407–438, 1999a.

    Article  ADS  Google Scholar 

  • Daglis, I.A., G. Kasotakis, E.T. Sarris, Y. Kamide, S. Livi, and B. Wilken, Variations of the ion composition during a large magnetic storm and their consequences, Phys. Chem. Earth, 24, 229–232, 1999b.

    Google Scholar 

  • Daglis, I.A., Y. Kamide, C. Mouikis, G.D. Reeves, E.T. Sarris, K. Shiokawa, and B. Wilken, ‘Fine structure’ of the stormsubstorm relationship: Ion injections during Dst decrease, Adv. Space Res., 25(12), 2369–2372, 2000.

    Article  ADS  Google Scholar 

  • Daglis, I.A., J.U. Kozyra, Y. Kamide, D. Vassiliadis, A.S. Sharma, M.W. Liemohn, W.D. Gonzalez, B.T. Tsurutani, and G. Lu, Intense space storms: Critical issues and open disputes, J. Geophys. Res., 108(A5), 1208, doi:10.1029/2002JA009722, 2003.

    Article  Google Scholar 

  • Daglis, I.A., D.N. Baker, J.G. Kappenman, M. Panasyuk, and E.J. Daly, Effects of space weather on technology infrastructure, Space Weather, 2, S02004, doi:10.1029/2003SW000044, 2004a.

    Google Scholar 

  • Daglis, I.A., D. Delcourt, F.-A. Metallinou, and Y. Kamide, Particle acceleration in the frame of the storm-substorm relation, IEEE Trans. Plasma Sci., 32(4), 1449–1454, 2004b.

    Article  ADS  Google Scholar 

  • Delcourt, D.C., Particle acceleration by inductive electric fields in the inner magnetosphere, J. Atmos. Sol.-Terr. Phys., 64, 551–559, 2002.

    Article  ADS  Google Scholar 

  • Ebihara, Y., and M. Ejiri, Simulation study on fundamental properties of the storm-time ring current, J. Geophys. Res., 105, 15843–15859, 2000.

    Article  ADS  Google Scholar 

  • Fok, M.C., et al., 3-Dimensional Ring Current Decay Model, J. Geophys. Res.Space Phys., 100, 9619–9632, 1995.

    Article  ADS  Google Scholar 

  • Fok, M.-C., T.E. Moore, and D.C. Delcourt, Modelling of inner plasma sheet and ring current during substorms, J. Geophys. Res., 104, 14,557–14,569, 1999.

    Article  ADS  Google Scholar 

  • Gloeckler, G., and D.C. Hamilton, AMPTE ion composition results, Phys. Scr., T18, 73–84, 1987.

    Article  ADS  Google Scholar 

  • Gloeckler, G., et al., The charge-energy-mass (CHEM) spectrometer for 0.3 to 300 keV/e ions on the AMPTE/CCE, IEEE Trans. Geosci. Remote Sens., GE-23, 234–240, 1985a.

    Google Scholar 

  • Gloeckler, G., B. Wilken, W. Stüdemann, F.M. Ipavich, D. Hovestadt, D.C. Hamilton, and G. Kremser, First composition measurements of the bulk of the storm time ring current (1 to 300 keV/e) with AMPTE/CCE, Geophys. Res. Lett., 12, 325–328, 1985b.

    Article  ADS  Google Scholar 

  • Gosling, J.T., The solar flare myth, J. Geophys. Res., 98, 18937–18949, 1993.

    Article  ADS  Google Scholar 

  • Hamilton, D.C., G. Gloeckler, F.M. Ipavich, W. Stüdemann, B. Wilken, and G. Kremser, Ring current development during the great geomagnetic storm of February 1986, J. Geophys. Res., 93, 14343–14355, 1988.

    Article  ADS  Google Scholar 

  • Horne, R.B., and R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms, Geophys. Res. Lett., 25, 3011, 1998.

    Article  ADS  Google Scholar 

  • Hudson, M.K., S.R. Elkington, J.G. Lyon, and C.C. Goodrich, Increase in relativistic electron flux in the inner magnetosphere: ULF wave move structure, Adv. Space Res., 25, 2327, 2000.

    Article  ADS  Google Scholar 

  • Iyemori, T., and D.R.K. Rao, Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to stormsubstorm relation, Ann. Geophys., 14, pp. 608–618, 1996.

    Article  ADS  Google Scholar 

  • Jordanova, V.K., L.M. Kistler, M.F. Thomsen, and C.G. Mouikis, Effects of plasma sheet variability on the fast initial ring current decay, Geophys. Res. Lett., 30, 1311, doi:10.1029/2002GL016576, 2003.

    Article  ADS  Google Scholar 

  • Kamide, Y., Is substorm occurrence a necessary condition for a magnetic storm?, J. Geomagn. Geoelectr., 44, 109–117, 1992.

    Google Scholar 

  • Kamide, Y., and J.-H. Allen, Some outstanding problems of the storm/substorm relationship, in SolarTerrestrial Predictions, edited by G. Heckman, K. Marubashi, M.A. Shea, D.F. Smart, and R. Thompson, pp. 207–216, Communications Research Laboratory, Tokyo, 1997.

    Google Scholar 

  • Kamide, Y., et al., Current understanding of magnetic storms: Stormsubstorm relationships, J. Geophys. Res.-Space Phys., 103, 17705–17728, 1998.

    Article  ADS  Google Scholar 

  • Kanekal, S.G., D.N. Baker, J.B. Blake, B. Klecker, R.A. Mewaldt, and G.M. Mason, Magnetospheric response to magnetic cloud (CME) events: Energetic particle observations from SAMPEX and POLAR, J. Geophys. Res., 104, 14885, 1999.

    Article  Google Scholar 

  • Kistler, L.M., E. Möbius, B. Klecker, G. Gloeckler, F.M. Ipavich, and D.C. Hamilton, Spatial variations in the suprathermal ion distribution during substorms in the plasma sheet, J. Geophys. Res., 95, 18871–18885, 1990.

    Article  ADS  Google Scholar 

  • Konradi, A., C.L. Semar, and T. A Fritz, Injection boundary dynamics during a geomagnetic storm, J. Geophys. Res., 81, 3851–3865, 1976.

    Article  ADS  Google Scholar 

  • Koons, H.C., and D.J. Gorney, The relationship between electrostatic discharges on spacecraft P78-2 and the electron environment, The Aerospace Corp., El Segundo, CA, TR-0091 (6940 06)-2, Mar. 1992.

    Google Scholar 

  • Kozyra, J.U., M.W. Liemohn, C.R. Clauer, A.J. Ridley, M.F. Thomsen, J.E. Borovsky, J.L. Roeder, V.K. Jordanova, and W.D. Gonzalez, Multistep Dst development and ring current composition changes during the 46 June 1991 magnetic storm, J. Geophys. Res., 107(A8), DOI 10.1029/2001JA00023, 2002.

    Google Scholar 

  • Krimigis, S.M., G. Gloeckler, R.W. McEntire, T.A. Potemra, F.L. Scarf, and E.G. Shelley, Magnetic storm of 4 September 1985: A synthesis of ring current spectra and energy densities measured with AMPTE-CCE, Geophys. Res. Lett., 12, 329–332, 1985.

    Article  ADS  Google Scholar 

  • Lewis, Z.V., S.W.H. Cowley, and D.J. Southwood, Impulsive energization of ions in the near-Earth magnetotail during substorms, Planet. Space Sci., 38, 491–505, 1990.

    Article  ADS  Google Scholar 

  • Li, X., D.N. Baker, M. Temerin, D. Larson, R.P. Lin, G.D. Reeves, M.D. Looper, S.G. Kanekal, and R.A. Mewaldt, Are energetic electrons in the solar wind the source of the outer radiation belt? Geophys. Res. Lett., 24, 923, 1997a.

    Article  ADS  Google Scholar 

  • Li, X., D.N. Baker, M. Temerin, D. Larson, R.P. Lin, G.D. Reeves, J.B. Blake, M. Looper, R. Selesnick, and R.A. Mewaldt, Source of Relativistic Electrons in the Magnetosphere: Present Knowledge and Remaining Questions, presented at the IAGA, Uppsala, Sweden, 1997b.

    Google Scholar 

  • Li, X., M. Temerin, D. N. Baker, G. D. Reeves, and D. Larson, Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements, Geophys. Res. Lett., 28, 1887, 2001a.

    Article  ADS  Google Scholar 

  • Li, X., D.N. Baker, S.G. Kanekal, M. Looper, and M. Temerin, Long term measurements of radiation belts by SAMPEX and their variations, Geophys. Res. Lett., 28, 3827, 2001b.

    Article  ADS  Google Scholar 

  • Li, X., Variations of 0.76.0 MeV Electrons at geosynchronous orbit as a function of solar wind, Space Weather, 2, No. 3, S0300610.1029/2003SW000017, 2004.

    Google Scholar 

  • Liemohn, M.W., J.U. Kozyra, V.K. Jordanova, G.V. Khazanov, M.F. Thomsen, and T.E. Cayton, Analysis of early phase ring current recovery mechanisms during geomagnetic storms, Geophys. Res. Lett., 26, 2845–2849, 1999.

    Article  ADS  Google Scholar 

  • Liemohn, M.W., J.U. Kozyra, C.R. Clauer, and A.J. Ridley, Computational analysis of the near-Earth magnetospheric current system during two-phase decay storms, J. Geophys. Res., 106, 29531–29542, 2001a.

    Article  ADS  Google Scholar 

  • Liemohn, M.W., J.U. Kozyra, M.F. Thomsen, J.L. Roeder, G. Lu, J.E. Borovsky, and T.E. Cayton, Dominant role of the asymmetric ring current in producing the stormtime Dst*, J. Geophys. Res., 106, 10883–10904, 2001b.

    Article  ADS  Google Scholar 

  • Lopez, R.E., D.N. Baker, and J.H. Allen, Sun unleashes Halloween Storm, Eos, 85, No. 11, 105, 108, 2004.

    Article  ADS  Google Scholar 

  • Mauk, B.H., Quantitative modeling of the convection surge mechanism of ion acceleration, J. Geophys. Res., 91, 13423–13431, 1986.

    Article  ADS  Google Scholar 

  • Meredith, N.P., R.B. Horne, and R.R. Anderson, Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons relativistic energies, J. Geophys. Res., 106, 13165, 2001.

    Article  ADS  Google Scholar 

  • Meredith, N.P., R.B. Horne, R.H. Iles, R.M. Thorne, D. Heynderickx, and R.R. Anderson, Outer zone relativistic electron acceleration associated with substorm enhanced whistler mode chorus, J. Geophys. Res., 107, 1144, doi: 10.1029/2001JA900146, 2002.

    Article  Google Scholar 

  • Metallinou, F.-A., I.A. Daglis, and D. Delcourt, The influence of substorm-induced electric fields on the build-up of particle radiation during geospace magnetic storms, Annales Geophysicae, submitted 2005.

    Google Scholar 

  • Mitchell, D.G., The space environment, in Fundamentals of Space Systems, edited by V.L. Pisacane and R.C. Moore, pp. 45–98, Oxford University Press, Oxford, 1994.

    Google Scholar 

  • Neugebauer, M., and C. Snyder, The mission of Mariner II: Preliminary observations: Solar plasma experiments, Science, 138, 1095–1096, 1962.

    Article  ADS  Google Scholar 

  • Northrop, T.G., The Adiabatic Motion of Charged Particles, Interscience, New York, 1963.

    MATH  Google Scholar 

  • Nosé, M., S. Ohtani, K. Takahashi, A.T.Y. Lui, R.W. McEntire, D.J. Williams, S.P. Christon, and K. Yumoto, Ion composition of the near-Earth plasma sheet in storm and quiet intervals: Geotail/EPIC measurements, J. Geophys. Res., 106, 8391–8404, 2001.

    Article  ADS  Google Scholar 

  • Ohtani, S., M. Nosé, G. Rostoker, H. Singer, A.T.Y. Lui, and M. Nakamura, Storm substorm relationship: Contribution of the tail current to Dst, J. Geophys. Res., 106, 21199–21209, 2001.

    Article  ADS  Google Scholar 

  • Parker, E.N., Newtonian development of the dynamical properties of the ionised gases at low density, Phys. Rev., 107, 924–933, 1957.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Parker, E.N., Interaction of the solar wind with the geomagnetic field, Phys. Fluids, 1, 171, 1958.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Reeves, G.D., Relativistic electrons and magnetic storms: 1992–1995, Geophys. Res. Lett., 25, 1817, 1998.

    Article  ADS  Google Scholar 

  • Roederer, J.G., Dynamics of Geomagnetically Trapped Radiation, Springer Verlag, Berlin, 1970.

    Google Scholar 

  • Rostoker, G., S. Skone, and D.N. Baker, On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms, Geophys. Res. Lett., 25, 3701, 1998.

    Article  ADS  Google Scholar 

  • Rothwell, P.L., L.P. Block, M.B. Silevitch, and C.-G. Fälthammar, A new model for substorm onsets: The pre-breakup and triggering regimes, Geophys. Res. Lett., 15, 1279–1282, 1988.

    Article  ADS  Google Scholar 

  • Schulz, M. and L.J. Lanzerotti, Particle Diusion in the Radiation Belts, Springer Verlag, New York, 1974.

    Google Scholar 

  • Selesnick, R.S., and J.B. Blake, Dynamics of the outer radiation belt, Geophys. Res. Lett., 24, 1347, 1997.

    Article  ADS  Google Scholar 

  • Simpson, S., Massive solar storms inict little damage on Earth, Space Weather, 1, 1012, doi:10.1029/2003SW000042, 2003.

    Article  ADS  Google Scholar 

  • Singer, S.F., Trapped orbits in the Earth’s dipole field, Bull. Am. Phys. Soc. Series II, 1, 229(A), 1956.

    Google Scholar 

  • Singer, S.F., A new model of magnetic storms and aurorae, Trans. Am. Geophys. Union, 38, 175–190, 1957.

    Google Scholar 

  • Summers, D., R.M. Thorne, and F. Xiao, Relativistic theory of wave-particle resonant diusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103, 20487, 1998.

    Article  ADS  Google Scholar 

  • Sun, W., and S.-I. Akasofu, ‘On the formation of the storm-time ring current belt’, J. Geophys. Res., 105, 5411–5418, 2000.

    Article  ADS  Google Scholar 

  • Sun, W., W.-Y. Xu, and S.-I. Akasofu, Mathematical separation of directly driven and unloading components in the ionospheric equivalent currents during substorms, J. Geophys. Res., 103, 11695, 1998.

    Article  ADS  Google Scholar 

  • Temerin, M., I. Roth, M.K. Hudson, J.R. Wygant, New paradigm for the transport and energization of radiation belt particles, Eos Trans AGU, 538, Nov. 1, 1994.

    Google Scholar 

  • Thorne, R. M., and R.B. Horne, Energy transfer between energetic ring current H and O by electromagnetic ion cyclotron waves, J. Geophys. Res., 99, 17275–17282, 1994.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., The interplanetary causes of magnetic storms, substorms and geomagnetic quiet, in Space Storms and Space Weather Hazards, edited by I.A. Daglis, pp. 103–130, Kluwer Academic Publishers, Dordrecht, 2001.

    Google Scholar 

  • Vampola, A.L., Thick dielectric charging on high-altitude spacecraft, J. Electrostatics, 20, 21, 1987.

    Article  Google Scholar 

  • Van Allen, J.A., G.H. Ludwig, E.C. Ray, and C.E. McIlwain, Observations of high intensity radiation by satellites 1958 Alpha and Gamma, Jet Propul., 28, 588–592, 1958.

    Google Scholar 

  • Van Allen, J. A., The geomagnetically trapped corpuscular radiation, J. Geophys. Res., 64, 1683–1689, 1959.

    Article  ADS  Google Scholar 

  • Vette, J., The AE-8 trapped electron model environment, National Space Science Data Center, Report 91-24, Greenbelt, MD, 1991.

    Google Scholar 

  • Violet, M.D., and A.R. Fredrickson, Spacecraft anomalies on the CRRES satellite correlated with the environment and insulator samples, IEEE Trans. Nucl. Sci., 40, 1512, 1993.

    Article  ADS  Google Scholar 

  • Weyland, M., and M. Golightly, Results of radiation monitoring on the International Space Station and associated biological risks, Proceedings of International Space Environment Conference, Queenstown, New Zealand, July 2327, 2001.

    Google Scholar 

  • Wilken B., W. Weiu, D. Hall, M. Grande, F. Suraas, and J.F. Fennell, Magnetospheric Ion Composition Spectrometer onboard the CRRES spacecraft, J. Spacecraft Rockets, 29, 585–591, 1992.

    Article  ADS  Google Scholar 

  • Williams, D.J., Exploration and understanding in space physics, Geophys. Res. Lett., 12, 303, 1985.

    Article  ADS  Google Scholar 

  • Wrenn, G.L., Conclusive evidence for internal dielectric charging anomalies in geosynchronous communications spacecraft, J. Spacecraft Rockets, 32, 3, 514, 1995.

    Article  Google Scholar 

  • Young, D.T., H. Balsiger, and J. Geiss, Correlations of magnetospheric ion composition with geomagnetic and solar activity, J. Geophys. Res., 87, 9077–9096, 1982.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Praxis Publishing Ltd, Chichester

About this chapter

Cite this chapter

Baker, D.N., Daglis, I.A. (2007). Radiation belts and ring current. In: Space Weather- Physics and Effects. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34578-7_6

Download citation

Publish with us

Policies and ethics