Skip to main content

Abstract

In this closing chapter of the book, we dwell upon various schemes for the physical implementation of quantum computation. We begin with an outline of the necessary requirements on physical systems for implementing quantum information processing. We then describe a simple model system in which basic quantum gates between Rydberg atoms and microwave cavity field are realized. The sections that follow deal with several representative schemes for scalable quantum computation with trapped ions, atoms, photons and electrons. Some of the systems are only in the proposal stage, while for others significant experimental progress, although on a small scale, has recently been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 10

  1. D. P. DiVincenzo, The physical implementation of quantum computation, Fortschr. Phys. 48, 771 (2000).

    Article  MATH  Google Scholar 

  2. J.-M. Raimond, M. Brune and S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565 (2001); L. Davidovich, M. Brune, J.-M. Raimond and S. Haroche, Mesoscopic quantum coherence in cavity QED: Preparation and decoherence monitoring schemes, Phys. Rev. A 53, 1295 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  3. J, I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091 (1995); A. Steane, The ion trap quantum information processor, Appl. Phys. B. 64, 623 (1997).

    Article  ADS  Google Scholar 

  4. M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano and D. J. Wineland, Ionic crystals in a linear Paul trap, Phys. Rev. A 45, 6493 (1992).

    Article  ADS  Google Scholar 

  5. D. Kielpinski, C. Monroe and D. J. Wineland, Architecture for a large-scale ion-trap quantum computer, Nature 417, 709 (2002).

    Article  ADS  Google Scholar 

  6. T. Pellizzari, S. A. Gardiner, J, I. Cirac and P. Zoller, Decoherence, continuous observation, and quantum computing: A cavity QED model, Phys. Rev. Lett. 75, 3788 (1995).

    Article  ADS  Google Scholar 

  7. D. Petrosyan, Towards deterministic optical quantum computation with coherently driven atomic ensembles, J. Opt. B 7, S141 (2005).

    ADS  Google Scholar 

  8. C. K. Hong and L. Mandel, Experimental realization of a localized one-photon state, Phys. Rev. Lett. 56, 58 (1986).

    Article  ADS  Google Scholar 

  9. P. Grangier, G. Roger and A. Aspect, Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences, Europhys. Lett. 1, 173 (1986).

    Article  ADS  Google Scholar 

  10. D. Loss and D.P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57 120 (1998).

    Article  ADS  Google Scholar 

  11. L. Vandersypen, R. Hanson, L. Willems van Beveren, J. Elzerman, J. Greidanus, S. De Franceschi and L. Kouwenhoven, Quantum computing with electron spins in quantum dots, in Quantum Computing and Quantum Bits in Mesoscopic Systems (Kluwer Academic, 2002).

    Google Scholar 

  12. G. M. Nikolopoulos, D. Petrosyan and P. Lambropoulos, Coherent electron wavepacket propagation and entanglement in array of coupled quantum dots, Europhys. Lett. 65 297 (2004); J. Phys.: Condens. Matter 16, 4991 (2004); D. Petrosyan and P. Lambropoulos, Coherent population transfer in a chain of tunnel coupled quantum dots, Optics Commun. (2006), in press.

    Article  ADS  Google Scholar 

  13. D. Deutsch, Quantum computational networks, Proc. R. Soc. London A 425, 73 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005).

    Article  ADS  Google Scholar 

  15. E. Knill, R. Laflamme and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409, 46 (2001).

    Article  ADS  Google Scholar 

  16. R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86 5188 (2001).

    Article  ADS  Google Scholar 

  17. L. M. K. Vandersypen and I. L. Chuang, NMR techniques for quantum control and computation, Rev. Mod. Phys. 76, 1037 (2004).

    Article  ADS  Google Scholar 

  18. B. Kane, A silicon-based nuclear spin quantum computer, Nature 393, 133 (1998); D. P. DiVincenzo, Real and realistic quantum computers, Nature 393, 113 (1998).

    Article  ADS  Google Scholar 

  19. D. Esteve, Superconducting qubits, in Proceedings of the Les Houches 2003 Summer School on Quantum Entanglement and Information Processing, edited by D. Esteve and J.-M. Raimond (Elsevier, 2004).

    Google Scholar 

  20. C. Monroe, Quantum information processing with atoms and photons, Nature 416, 238 (2002).

    Article  ADS  Google Scholar 

  21. P. Zoller et al., Quantum information processing and communication, Eur. Phys. J. D 36, 203 (2005).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Physical Implementations of Quantum Computation. In: Fundamentals of Quantum Optics and Quantum Information. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34572-5_10

Download citation

Publish with us

Policies and ethics