Skip to main content

Apple

  • Chapter

Part of the book series: Genome Mapping and Molecular Breeding in Plants ((GENMAPP,volume 4))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldwinckle HS (1975a) Flowering of apple seedlings 16–20 months after germination. HortScience 10:124–126

    Google Scholar 

  • Aldwinckle HS (1975b) Pathogenic races of Gymnosporangium juniperi-virginianae on apple. Phytopathology 65

    Google Scholar 

  • Aldwinckle HS, Lamb RC, Gustafson HL (1977) Nature and inheritance of resistance to Gymnosporangium juniperi-virginianae in apple cultivars. Phytopathology 67:259–266

    Article  Google Scholar 

  • Aldwinckle HS, Borejsza-Wysocka EE, Malnoy M, Brown SK, Norelli JL, Beer SV, Meng X, He SY, Jin QL (2003) Development of fire blight resistant apple cultivars by genetic engineering. Acta Hort 622:105–111

    CAS  Google Scholar 

  • Alston FH (1970) Resistance to collar rot, Phytophthora cactorum (Leb. and Cohn) Schroet., in apple. Rep E Malling: 143–145

    Google Scholar 

  • Alston FH (1977) Practical aspects of breeding for mildew (Podosphaera leucotricha) resistance in apples. Proc Eucarpia Fruit Section Symp. VII Top Fruit Breed

    Google Scholar 

  • Alston FH, Briggs JB (1968) Resistance to Sappaphis devecta (Wlk) in apple. Euphytica 17:468–472

    Article  Google Scholar 

  • Alston FH, Briggs JB (1970) Inheritance of hypersensitivity to rosy apple aphid Dysaphis plantaginea in apple. Can J Genet Cytol 12:257–258

    Google Scholar 

  • Alston FH, Briggs JB (1977) Resistance genes in apples and biotypes of Dysaphis devecta. Ann Appl Biol 87:75–81

    Article  Google Scholar 

  • Alston FH, Phillips KL, Evans KM(2000) A Malus gene list. Acta Hort 538:561–570

    CAS  Google Scholar 

  • Bagga HS, Boone DM (1968a) Genes in Venturia inaequalis controlling pathogenicity to crabapples. Phytopathology 58:1176–1182

    Google Scholar 

  • Bagga HS, Boone DM (1968b) Inheritance of resistance to Venturia inaequalis in crabapples. Phytopathology 58:1183–1187

    Google Scholar 

  • Baldi P, Patocchi A, Zini E, Toller C, Velasco R, Komjanc M (2004) Cloning and linkage mapping of resistance gene homologues in apple. Theor Appl Genet 109:231–239

    Article  PubMed  CAS  Google Scholar 

  • Batlle I, Alston FH (1996) Genes determining leucine aminopeptidase and mildew resistance from the ornamental apple, ‘White Angel’. Theor Appl Genet 93:179–182

    Article  CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    Article  PubMed  CAS  Google Scholar 

  • Bénaouf G, Parisi L (2000) Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90:236–242

    PubMed  Google Scholar 

  • Benaouf G, Parisi L, Laurens F (1997) Inheritance of Malus floribunda clone 821 resistance to Venturia inaequalis. IOBC/WPRS Bull 20:1–7

    Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) Rps2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265:1856–1860

    Article  PubMed  CAS  Google Scholar 

  • Bink MCAM, Uimari P, Sillanpää MJ, Janss LLG, Jansen RC (2002) Multiple QTL mapping in related plant populations via a pedigree-analysis based approach. Theor Appl Genet 104:751–762

    Article  PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS, Wong KW(2000) Expression of endochitinase from Trichoderma harzianumin transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    CAS  PubMed  Google Scholar 

  • Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543

    Article  PubMed  CAS  Google Scholar 

  • Boone DM, Keitt GW (1957) Venturia inaequalis (Cke.) Wint. XII. Genes controlling pathogenicity of wild-type lines. Phytopathology 47:403–409

    Google Scholar 

  • Boudichevskaia A, Fischer C, Flachowsky H, Hanke V, Dunemann F (2004) Development of molecular markers for Vr1, a scab resistance factor from R12740-7A apple. Acta Hort 663:171–176

    CAS  Google Scholar 

  • Bouvier L, Lespinasse Y, Schuster M (2000) Karyotype analysis of an haploid plant of apple (Malus domestica). Acta Hort 538:321–324

    Google Scholar 

  • Bringhurst RS (1983) Breeding strategy. In: Moore JN, Janick J (eds) Methods in Fruit Breeding. Purdue University Press, West Lafayette, IN, USA

    Google Scholar 

  • Brown AG (1975) Apples. In: Janick J, Moore JN (eds) Advances in Fruit Breeding. Purdue University Press, West Lafayette, IN, USA, pp 3–37

    Google Scholar 

  • Brunner AM, Busov VB, Strauss SH (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci 9:49–56

    Article  PubMed  CAS  Google Scholar 

  • Bulley SM, Wilson FM, Hedden P, Phillips AL, Croker SJ, James DJ (2005) Modification of gibberellin biosynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotechnol J 3:215–223

    Article  PubMed  CAS  Google Scholar 

  • Bus V, Ranatunga C, Gardiner S, Bassett H, Rikkerink E (2000) Marker assisted selection for pest and disease resistance in the New Zealand apple breeding programme. Acta Hort 538:541–547

    Google Scholar 

  • Bus V, Brooking I, Davies L, Norling C, Ranatunga C, Gardiner S (2001) Accelerated breeding of apple. The New Zealand Controlled Environment Laboratory (NZCEL)-Workshop proceedings: “Use of Controlled Environments in Containment Research”

    Google Scholar 

  • Bus V, White A, Gardiner S, Weskett R, Ranatunga C, Samy A, Cook M, Rikkerink E (2002) An update on apple scab resistance breeding in New Zealand. Acta Hort 595:43–47

    Google Scholar 

  • Bus V, van de Weg WE, Durel CE, Gessler C, Calenge F, Parisi L, Rikkerink E, Gardiner S, Patocchi A, Meulenbroek M, Schouten H, Laurens F (2004) Delineation of a scab resistance gene cluster on linkage group 2 of apple. Acta Hort 663:57–62

    CAS  Google Scholar 

  • Bus VGM, Laurens FND, van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, Plummer KM (2005a) The Vh8 locus of a new gene-forgene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytol 166:1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Bus VGM, Rikkerink EHA, van de Weg WE, Rusholme RL, Gardiner SE, Bassett HCM, Kodde LP, Parisi L, Laurens FND, Meulenbroek EJ, Plummer KM (2005b) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Mol Breed 15:103–116

    Article  CAS  Google Scholar 

  • Calenge F, Durel C-E (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Molecular Breeding 17:329–339

    Article  Google Scholar 

  • Calenge F, Faure F, Drouet D, Parisi L, Brisset MN, Paulin JP, van der Linden CG, van de Weg WE, Schouten HJ, Lespinasse Y, Durel CE (2003) Genomic organization of resistance factors against scab (Venturia inaequalis), powdery-mildew (Podosphaera leucotricha), and fire blight (Erwinia amylovora) in apple (oral communication). Proceedings XI International Congress on Molecular Plant Microbe Interactions, 18–26 July, St Petersburg, Russia

    Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel C-E (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    CAS  PubMed  Google Scholar 

  • Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denancé C, Durel CE (2005a) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668

    Article  PubMed  CAS  Google Scholar 

  • Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset M-N, Paulin J-P, Durel CE (2005b) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 11I:128–135

    Article  Google Scholar 

  • Celton J-M, Rusholme R, Tustin T, Ward S, Ambrose B, Ferguson I, Gardiner S (2006) Genetic mapping of Dw1, a locus required for dwarfing of apple scions by “M.9” rootstock. Abstract, The 3rd International Rosaceae Genomics Conference, March 19–22, Napier, New Zealand http://www.rgc3.co.nz/files/abstracts.pdf

    Google Scholar 

  • Cevik V, King GJ (2002a) High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor Appl Genet 105:346–354

    Article  PubMed  CAS  Google Scholar 

  • Cevik V, King GJ (2002b) Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45:939–945

    Article  PubMed  CAS  Google Scholar 

  • Chagne D, Brown GR, Lalanne C, Madur D, Pot D, Neale DB, Plomion C (2003) Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed 12:185–195

    Article  CAS  Google Scholar 

  • Challice JS (1974) Rosaceae chemotaxonomy and the origin of the Pomoidae. Bot J Linn Soc 69:239–259

    Google Scholar 

  • Chapman PJ, Catlin GA (1976) Growth stages in fruit trees — from dormant to fruit set NY Food Life Sci Bull 58:1–5

    Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet 93:222–227

    Article  CAS  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK, Aldwinckle HS, Gardiner SE, Bus VG (1998) Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome 41:208–214

    Article  CAS  Google Scholar 

  • Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol 40:249–256

    Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J Am Soc Hort Sci 122:350–359

    CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1998) Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96:1027–1035

    Article  CAS  Google Scholar 

  • Cook M, Gardiner S (2004) Development of a fully automated system to extract DNA from difficult plant tissues for genomics research. In: Plant & Animal Genome XII Conf, San Diego, CA, USA: http://www.intl-pag.org/12/wwwsubmit/P2c_Poster_182.html

    Google Scholar 

  • Cook MR, Xu P, Gardiner SE (2002) Development of an automated System for DNA extraction from leaf tissue. Projects 7:1–8

    Google Scholar 

  • Costa F, Stella S, van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141:181–190

    Article  CAS  Google Scholar 

  • Courtial B, Feuerbach F, Eberhard S, Rohmer L, Chiapello H, Camilleri C, Lucas H (2001) Tnt1 transposition events are induced by in vitro transformation of Arabidopsis thaliana, and transposed copies integrate into genes. Mol Gen Genet 265:32–42

    CAS  Google Scholar 

  • Crosby JA, Janick J, Pecknold PC, Korban SS, O’Connor PA, Ries SM, Goffreda J, Voordeckers A (1992) Breeding apples for scab resistance: 1945–1990. Fruit Var J 46:145–166

    Google Scholar 

  • Crowhurst RN, Allan AC, Atkinson RG, Beuning LL, Davey M, Friel E, Gardiner SE, Gleave AP, Greenwood DR, Hellens RP, Janssen BJ, Kutty-Amma S, Laing WA, MacRae EA, Newcomb RD, Plummer KM, Schaffer R, Simpson RM, Snowden KC, Templeton MD, Walton EF, Rikkerink EHA (2005) The Hort Research apple EST database-a resource for apple genetics and functional genomics. In: Plant & Animal Genome XIII Conf, San Diego, CA, USA: http://www.intlpag.org/pag/13/abstracts/PAG13_P499.html

    Google Scholar 

  • Crute IR, Pink DAC (1996) Genetics and utilization of pathogen resistance in plants. Plant Cell 8:1747–1755

    Article  PubMed  CAS  Google Scholar 

  • Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ (2004) Effect of down regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 13:373–384

    Article  CAS  Google Scholar 

  • Davey MW, Keulemans J (2004) Determining the potential to breed for enhanced antioxidant status in Malus: mean inter and intravarietal fruit vitamin C and glutathione contents at harvest and their evolution during storage. J Agri Food Chem 52:8031–8038

    CAS  Google Scholar 

  • Dayton DF (1977) Genetic immunity to apple mildew incited by Podosphaera leucotricha. Hort Science 12:225–226

    Google Scholar 

  • Dayton DF, Williams EB (1968) Independent genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hort Sci 92:89–94

    Google Scholar 

  • Dayton DF, Williams EB (1970) Additional allelic genes in Malus for scab resistance of two reaction types. J Am Soc Hort Sci 95:735–736

    Google Scholar 

  • Dayton DF, Mowry JB, Hough LF, Bailey CH, Williams EB, Janick J, Emerson FH (1970) Prima — an early fall red apple with resistance to apple scab. Fruit Var J 24:20–22

    Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Dondini L, Pierantoni L, Gaiotti F, Chiondini R, Tartarini S, Bazzi C, Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418

    Article  CAS  Google Scholar 

  • Dunemann F, Bräcker G, Markussen T, Roche P (1999) Identification of molecular markers for the major mildew resistance gene Pl 2 in apple. Acta Hort 484:411–416

    Google Scholar 

  • Dunemann F, Urbanietz A, Bus V, Gardiner S, Bassett H, Legg W, Ranatunga C, Rusholme R (2004) Marker assisted selection for Pl-1 powdery mildew resistance in apple — old markers for a new resistance gene? Acta Hort 663:757–762

    CAS  Google Scholar 

  • Durel CE, van der Weg WE, Venisse JS, Parisi L (1999) Localisation of a major gene for apple scab resistance on the European genetic map of the Prima X Fiesta cross. 5th Workshop on Integrated Control of Pome Fruit Diseases, 24–27 August, 1999, Fontevraud-l’Abbaye, France

    Google Scholar 

  • Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46:224–234

    Article  PubMed  CAS  Google Scholar 

  • Durel CE, Calenge F, Parisi L, Van de Weg WE, Kodde LP, Liebhard R, Gessler C, Thiermann M, Dunemann F, Gennari F, Tartarini S, Lespinasse Y (2004) Acta Hort 663:135–140

    CAS  Google Scholar 

  • Durham RE, Korban SS (1994) Evidence of gene introgression in apple using RAPD markers. Euphytica 79:109–114

    Article  CAS  Google Scholar 

  • Erdin N, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab resistance gene Vb. Genome In press

    Google Scholar 

  • Evans KM, James CM (2003) Identification of SCAR markers linked to PI-w mildew resistance in apple. Theor Appl Genet 106:1178–1183

    PubMed  CAS  Google Scholar 

  • Fischer C, Schreiber H, Buttner R, Fischer M (1999) Testing scab-resistance stability of new resistant cultivars within the apple breeding programme. Acta Hort 484:449–454

    Google Scholar 

  • Fisher DV (1970) Spur strains of ‘McIntosh’ discovered in British Columbia, Canada. Fruit Var Hort Dig 24:27–32

    Google Scholar 

  • Frey JE, Frey B, Sauer C, Kellerhals M (2004) Efficient low-cost DNA extraction and multiplex flourescent PCR method for marker-assisted selection in breeding. Plant Breed 123:554–557

    Article  CAS  Google Scholar 

  • Gao ZS, van de Weg WE, Schaart JG, van der Meer IM, Kodde L, Laimer M, Breiteneder H, Hoffmann-Sommergruber K, Gilissen LJWJ (2005b) Linkage map positions and allelic diversity of two Mal d 3 (non-specific lipid transfer protein) genes in the cultivated apple (Malus domestica). Theor Appl Genet 110:479–491

    Article  PubMed  CAS  Google Scholar 

  • Gao ZS, van de Weg WE, Schaart JG, Schouten HJ, Tran DH, Kodde LP, van der Meer IM, van der Geest AHM, Kodde J, Breiteneder H, Hoffmann-Sommergruber K, Bosch D, Gilissen LJWJ (2005a) Genomic cloning and linkage mapping of the Mal d 1 (PR-10) gene family in apple (Malus domestica). Theor Appl Genet 111:171–183

    Article  PubMed  CAS  Google Scholar 

  • Gao ZS, van de Weg WE, Schaart JG, van Arkel G, Breiteneder H, Hoffmann-Sommergruber K, Gilissen LJWJ (2005c) Genomic characterization and linkage mapping of apple allergen genes Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin). Theor Appl Genet 111:1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Gardiner SE, Bassett HCM, Noiton DAM, Bus VG, Hofstee ME, White AG, Ball RD, Forster RLS, Rikkerink EHA (1996) A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the V f gene. Theor Appl Genet 93:485–493

    CAS  Google Scholar 

  • Gardiner S, Bassett H, Bus V, Malone M, Tustin S, Ball R, Rikkerink E, Forster R (1997) A genetic map around the Er 3 resistance to woolly apple aphid derived from Malus sieboldii. In: Plant & Animal Genome V Conf, San Diego, CA, USA: http://www.intl-pag.org/pag/5/abstracts/p-5h-263.html

    Google Scholar 

  • Gardiner S, Bassett H, Murdoch J, Meech S, Cook M, Bus V, Ranatunga C, Rikkerink E (2001) Major pest and disease resistance loci in apple available to breeders. In: Plant & Animal Genome IX Conf, San Diego, CA, USA: http://www.intlpag http://www.intlpag.org/pag/9/abstracts/P5h_13.html

    Google Scholar 

  • Gardiner S, Bus V, Bassett H, Goodman M, Greer L, Ranatunga C, Rikkerink E, Forster R (1999a) Identification of molecular markers linked to major resistances to apple scab, powdery mildew and woolly apple aphid in apple. In: Plant & Animal Genome VII Conf, San Diego, CA, USA: http://www.intl-pag.org/pag/7/abstracts/pag7356.html

    Google Scholar 

  • Gardiner S, Bus V, Bassett H, White A, Noiton D, Rikkerink E, Ball R, Forster R (1999b) An updated genetic map around the V fgene for resistance to apple scab and marker assisted selection for resistance. Acta Hort 484:481–485

    Google Scholar 

  • Gardiner S, Murdoch J, Meech S, Rusholme R, Bassett H, Cook M, Bus V, Rikkerink E, Gleave A, Crowhurst R, Ross G, Warrington I (2003) Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Hort 622:141–151

    CAS  Google Scholar 

  • Gardiner S, Rusholme R, Bassett H, Bus V, Legg W, Cook M, Ranatunga C, Rikkerink E, Gleave A, Crowhurst R (2004) Conservation of markers around some genes in apple. In: Plant & Animal Genome XII Conf, San Diego, CA, USA: http://www.intl-pag.org/pag/12/abstracts/W23_PAG12_105.html

    Google Scholar 

  • Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93:199–204

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Seglias N, Kellerhals M, Gessler C (1999) Molecular markers applied to apple breeding: analysis of oligogenic and single gene resistances. Acta Hort 484:417–428

    Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    Article  CAS  Google Scholar 

  • Giliomee JH, Strydom DK, Zyl HJv (1968) Northern Spy, Merton and Malling-Merton rootstocks susceptible to woolly aphid, Eriosoma lanigerum, in the Western Cape. S Afr J Agri Sci 11:183–186

    Google Scholar 

  • Gilissen LJ, Bolhaar ST, Matos CI, Rouwendal GJ, Boone MJ, Krens FA, Zuidmeer L, Van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, Van de Weg WE, Van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115: 364–369

    Article  PubMed  CAS  Google Scholar 

  • Graziani G, D’Argenio G, Tuccillo C, Loguercio C, Ritieni A, Morisco F, Blanco CD, Fogliano V, Romano M (2005) Apple polyphenol extracts prevent damage to human gastric epithelial cels in vitro and to rat gastric mucosa in vivo. Gut 54:193–200

    Article  PubMed  CAS  Google Scholar 

  • Green P, Falls K, Crooks S (1990) CRI-MAP, version 2.4. http://biobase.dk.Embnetut/Crimap

    Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus X domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709

    Article  PubMed  CAS  Google Scholar 

  • Harada T, Sunako T, Wakasa Y, Soejima J, Satoh T, Niizeki M (2000) An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746

    Article  CAS  Google Scholar 

  • Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18(8):426–430

    Article  PubMed  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85:4–11

    PubMed  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Connor PJ, Brown SK (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J Am Soc Hort Sci 122:347–349

    CAS  Google Scholar 

  • Hemmat M, Weeden NF, Aldwinckle HS, Brown SK (1998) Molecular markers for the scab resistance (V f) region in apple. J Am Soc Hort Sci 123:992–996

    CAS  Google Scholar 

  • Hemmat M, Brown SK, Weeden NF (2002) Tagging and mapping scab resistance genes from R12740-7A apple. Jam Soc Hort Sci 127:365–370

    CAS  Google Scholar 

  • Hemmat M, Brown SK, Aldwinckle HS, Mehlenbacher SA, Weeden NF (2003) Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen’s baccata #2’. Acta Hort 622:153–161

    CAS  Google Scholar 

  • Hoffman-Sommergruber K, Consortium S (2005) The SAFE project: ‘plant food allergies: field to table strategies for reducing their incidence in Europe’ an EC-funded study. Allergy 60:436–442

    Article  Google Scholar 

  • Hogenboom NG (1993) Economic importance of breeding for disease resistance. In: T Jacobs, JE Parlevliet (eds) Durability of Disease Resistance. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 5–9

    Google Scholar 

  • Hough LF, Shay JR, Dayton DF (1953) Apple scab resistance from Malus floribunda Sieb. Hortscience 62:341–347

    Google Scholar 

  • Hough LF, Williams EB, Dayton DF, Shay JR, Bailey CH, Mowry JB, Janick J, Emerson FH (1970) Progress and problems in breeding apples for scab resistance. In: Proc Angers Fruit Breed Symp. Editions S.E.I. Versailles, France

    Google Scholar 

  • Huaracha E, Xu M, Korban SS (2004) Narrowing down the region of the Vf locus for scab resistance in apple using AFLP-derived SCARs Theor Appl Genet 108:274–279

    Article  PubMed  CAS  Google Scholar 

  • James CM, Evans KM (2004) Identification of molecular markers linked to the mildew resistance genes Pl-d and Pl-w in apple. Acta Hort 663:123–127

    CAS  Google Scholar 

  • James CM, Clarke JB, Evans KM (2004) Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor Appl Genet 110:175–181

    Article  PubMed  CAS  Google Scholar 

  • James DJ, Passey AJ, Baker SA (1995) Transgenic Apples Display Stable Gene-Expression in the Fruit and Mendelian Segregation of the Transgenes in the R1 Progeny. Euphytica 85:109–112

    Article  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ, Bevan M (1989) Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep 7:658–661

    CAS  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit Breeding: Tree and Tropical Fruits. Vol I. John Wiley, New York, USA, pp 1–77

    Google Scholar 

  • Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W (1995) A molecular method for s-allele identification in apple based on allele-specific PCR. Theor Appl Genet 91:691–698

    Article  CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammond Kosack KE, Balint Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  PubMed  CAS  Google Scholar 

  • Jourjon MF, Durel CE, Goffinet B, Laurens F (2000) An example of application for MCQTL software: fine characterisation of a QTL for apple scab resistance. In: Plant & Animal Genome VIII Conf, San Diego, CA., USA: http://www.intlpag.org/pag/8/abstracts/pag8663.html

    Google Scholar 

  • Juniper BE, Watkins R, Harris SA (1999) The origin of the apple. Acta Hort 484:27–33

    Google Scholar 

  • Kearsey MJ, Luo ZW (2003) Mapping, characterization and deployment of quantitative trait loci. In: Newbury HJ (ed) Plant Molecular Breeding. Blackwell Publishing Ltd, Oxford, UK, pp 1–29

    Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman & Hall, London, UK

    Google Scholar 

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  PubMed  CAS  Google Scholar 

  • Kellerhals M, Gianfranceschi L, Seglias N, Gessler C (2000) Marker-assisted selection in apple breeding. Acta Hort 521:255–265

    CAS  Google Scholar 

  • Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus × domestica Borkh.) based on AFLP and microsatellite markers. Mol Breed 15:205–219

    Article  CAS  Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed (online first)

    Google Scholar 

  • King G, Lynn J, Dover CJ, Evans KM (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor Appl Genet 102:1227–1235

    Article  CAS  Google Scholar 

  • King GJ, Alston FH, Battle I, Chevreau E, Gessler C, Janse J, Lindhout P, Manganaris AG, Sansavini S, Schmidt H, Tobutt K (1991) The ‘European apple genome mapping project’ — developing a strategy for mapping genes coding for agronomic characters in tree species. Euphytica 56:89–94

    CAS  Google Scholar 

  • King GJ, Alston FH, Brown LM, Chevreau E, Evans KM, Dunemann F, Janse J, Laurens F, Lynn JR, Maliepaard C, Manganaris AG, Roche P, Schmidt H, Tartarini S, Verhaegh J, Vrielink R (1998) Multiple field and glasshouse assessments increase the reliability of linkage mapping of the Vf source of scab resistance in apple. Theor Appl Genet 96:699–708

    Article  CAS  Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084

    Article  Google Scholar 

  • Knight RL, Alston FH (1968) Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Can J Genet Cytol 10:294–298

    Google Scholar 

  • Knight RL, Briggs JB, Massee AM, Tydeman HM (1962) The inheritance of resistance to woolly aphid, Eriosoma lanigerum (Hsmnn.), in the apple. J Hort Sci 37:207–218

    Google Scholar 

  • Ko K, Norelli J, Reynoird JP, Aldwinckle HS, Brown S (2002) T4 lyozyme and attacin genes enhance resistance of transgenic Galaxy apple against Erwinia amylovora. J Am Soc Hort Sci 127:515–519

    CAS  Google Scholar 

  • Koller B, Gianfranceschi L, Seglias N, McDermott J, Gessler C (1994) DNA markers linked to Malus floribunda 821 scab resistance. Plant Mol Biol 26:597–602

    Article  PubMed  CAS  Google Scholar 

  • Korban SS (1986) Interspecific hybridization in Malus. HortScience 21(1):41–48

    Google Scholar 

  • Korban SS, Chen H (1992) Apple. In: Hammerschlag FA, Litz RE (eds) Biotechnology of Perennial Fruit Crops. CAB International, Wallingford, UK, pp 203–227

    Google Scholar 

  • Korban SS, Dayton DF (1983) Evaluation of Malus germplasm for resistance to powdery mildew. HortScience 18:219–220

    Google Scholar 

  • Korban SS, Skirvin RM (1984) Nomenclature of the cultivated apple. HortScience 19:177–180

    Google Scholar 

  • Korban SS, Vodkin LO, Liu L, Aldwinckle HS, Ksenija GS, Gasic K, Orlando-Gonzales D, Malnoy M, Thimmapuram J, Carroll NJ, Goldsborough P, Orvis K, Clifton S, Pape D, Martin M, Meyer R (2005) Large-scale analysis of EST sequences in the apple genome. In: Plant & Animal Genome XIII Conf, January, San Diego, CA, USA: http://www.intlpag.org/pag/13/abstracts/PAG13_W130.html

    Google Scholar 

  • Lander ES, Botstein D (1988) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:183–199

    Google Scholar 

  • Lapins KO (1976) Inheritance of growth type in apple. J Am Soc Hort Sci 101:133–135

    Google Scholar 

  • Laurens F (1999) Review of the current apple breeding programmes in the world: objectives for scion cultivar improvement. Acta Hort 484:163–170

    Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Lawson DM, Hemmat M, Weeden N (1995) The use of molecular markers to analyze the inheritance of morphological and developmental traits in apple. J Am Soc Hort Sci 120:532–537

    Google Scholar 

  • Lee S-Y, Seo J-S, Rdriguez-Lanetty M, Lee DH (2003) Comparative analysis of superfamilies of NBS-encoding disease resistance gene analogs in cultivated and wild apple speices. Mol Genet Genom 269:101–108

    CAS  Google Scholar 

  • Lesemann S, Dunemann F (2006) Biodiversity of the apple powdery mildew fungus (Podosphaera leucotricha) and interactions with its host. Abstract, The 3rd International Rosaceae Genomics Conference, March 19–22, Napier, New Zealand http://www.rgc3.co.nz/files/abstracts.pdf

    Google Scholar 

  • Lespinasse Y, Aldwinckle H (2000) Breeding for resistance to fire blight. In: JL Vanneste (ed) Fire blight: the disease and its causitive agent, Erwinia amylovora. CAB International, Wallingford, UK, pp 253–273

    Google Scholar 

  • Lespinasse Y, Durel CE (1999) D.A.R.E. — Durable Apple Resistance in Europe: a new European project on apple scab and powdery-mildew disease resistance based on a close collaboration between geneticists, pathologists, breeders and nurserymen. In: Plant & Animal Genome VII Conf, San Diego, CA, USA: http://www.intl-pag.org/pag/7/abstracts/pag7417.html

    Google Scholar 

  • Lespinasse Y, Bouvier L, Djulbic M, Chevreau E (1999)Haploidy in apple and pear. Acta Hort 484:49–54

    Google Scholar 

  • Lichtenthaler R, Marx F (2005) Total oxidant scavenging capacities of common European fruit and vegetable juices. J Agri Food Chem 53:103–110

    Article  CAS  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003a) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526

    Article  PubMed  CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003b) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    PubMed  CAS  Google Scholar 

  • Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003c) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ × ‘Discovery’ progeny. Phytopathology 93:493–501

    PubMed  CAS  Google Scholar 

  • Liu F, VanToai T, Moy LP, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129

    Article  PubMed  CAS  Google Scholar 

  • Luby JJ, Shaw DV (2001) Does marker-assisted selecton make dollars and sense in a fruit breeding program? HortScience 36:872–879

    Google Scholar 

  • Lynn JR (1998) Variability in a multi-site apple trial for genetic analysis. Acta Hort 484:281–284

    Google Scholar 

  • Mabberley DJ, Jarvis CE, Juniper BE (2001) The name of the apple. Telopea 9:421–430

    Google Scholar 

  • MacHardy WE (1996) Apple Scab: Biology, Epidemiology, and Management. APS Press, St. Paul, MN, USA

    Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielinkvan Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Maliepaard C, Sillanpää MJ, van Ooijen JW, Jansen RC, Arjas E (2001) Bayesian versus frequentist analysis of multiple quantitative trait loci with an application to an outbred apple cross. Theor Appl Genet 103:1243–1253

    Article  CAS  Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka EE, Korban SS, Aldwinckle HS (2006) The role of Vfa RGA’s at the Vf locus in resistance to Venturia inaequalis. Abstract, The 3rd International Rosaceae Genomics Conference, March 19–22, Napier, New Zealand http://www.rgc3.co.nz/files/abstracts.pdf

    Google Scholar 

  • Manganaris AG (1989) Isoenzymes as geneticmarkers in apple breeding. PhD thesis, University of London, London, UK

    Google Scholar 

  • Manganaris AG, Alston FH (1992) Genetics of leucine aminopeptidase in apple. Theor Appl Genet 83:345–352

    CAS  Google Scholar 

  • Manganaris AG, Alston FH, Weeden NF, Aldwinckle HS, Gustafson HL, Brown SK (1994) Isozyme locus Pgm-1 is tightly linked to a gene (V f) for scab resistance in apple. J Am Soc Hort Sci 119:1286–1288

    CAS  Google Scholar 

  • Markussen T, Krüger J, Schmidt H, Dunemann F (1995) Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pl 1 from Malus robusta in cultivated apple. Plant Breed 114:530–534

    Article  CAS  Google Scholar 

  • Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao JL, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res 12:671–681

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu TY, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CL, Hermann SM, Casu RE, Knight D, Drenth J, Tao Y, Brumbley SM, Godwin ID, Williams S, Smith GR, Manners JM (2004) Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum. Theor Appl Genet 109:875–883

    Article  PubMed  CAS  Google Scholar 

  • McNew GL (1938) Differential reaction of apple varieties to Gymnosporangium juniperi-virginiae. Res Bull Iowa Agri Exp Stn 245:113–142

    Google Scholar 

  • Merwin IA, Brown SK, Rosenberger DA, Cooley DR, Berkett LP (1994) Scab-resistant apples for the northeastern United States: new prospects and old problems. Plant Dis 78(1):4–10

    Article  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8(11):1113–1130

    PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Moreau L, Lemarie S, Charcosset A, Gallais A (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40:329–337

    Article  Google Scholar 

  • Morgan J, Richards A (1993) The Book of Apples. Ebury Press, London, UK

    Google Scholar 

  • Mowry JB, Dayton DF (1964) Inheritance of susceptibility to apple blotch. J Hered 55:129–132

    Google Scholar 

  • Murphy C, Schertz Willet L (1991) Issues in the development and marketing of reduced chemical agricultural products: A look at disease resistant apple cultivars. New York State College of Agriculture and Life Sciences, New York, USA, pp 1–42

    Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ Liang WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2006) Analyses of Expressed Sequence Tags from Apple. Plant Phys 141:1–20

    Article  Google Scholar 

  • Niederhauser JS, Whetzel HH (1940) Observations on the varietal susceptibility of apples to Gymnosporangium juniperi-virginiae. Phytopathology 30:691–693

    Google Scholar 

  • Norelli JL, Aldwinckle HS, Destefano Beltran L, Jaynes JM (1994) Transgenic ‘Malling 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77:123–128

    Article  CAS  Google Scholar 

  • Nybom N (1959) On the inheritance of acidity in cultivated apples. Hereditas 45:332–350

    Article  Google Scholar 

  • Oraguzie NC, Rikkerink E, Gardiner S, Bus V, Currie A, Rusholme R, Volz R (2004) A review of developments in breeding techniques and gene technology tools for new cultivar development in apple. Recent Res Dev Genet Breed 1:223–257

    Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Krüger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83:533–537

    Article  Google Scholar 

  • Parlevliet JE, Zadoks JC (1977) The integrated concept of disease resistance: A new view including horizontal and vertical resistance in plants. Euphytica 26:5–21

    Article  Google Scholar 

  • Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr 2: a new apple scab resistance gene. Theor Appl Genet 109:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Patocchi A, Gianfranceschi L, Gessler C (1999a) Towards the map-based cloning of Vf: fine and physical mapping of the Vf Region. Theor Appl Genet 99:1012–1017

    Article  CAS  Google Scholar 

  • Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, Gessler C (1999b) Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol Gen Genet 262:884–891

    Article  PubMed  CAS  Google Scholar 

  • Patocchi A, Walser M, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated to the apple scab resistance gene Vm. Genome 48:630–636

    Article  PubMed  CAS  Google Scholar 

  • Pedersen WL, Leath S (1988) Pyramiding major genes for resistance to maintain residual effects. Annu Rev Phytopathol 26:369–378

    Article  Google Scholar 

  • Peil A, Dunemann F, Garcia T, Richter K, Trognitz B, Hanke V, Flachowsky H (2006) Efforts to elucidate mechanisms and genetics of fire blight resistance in apple. Abstract, The 3rd International Rosaceae Genomics Conference, March 19–22, Napier, New Zealand http://www.rgc3.co.nz/files/abstracts.pdf

    Google Scholar 

  • Pierantoni L, Cho K-H, Shin I-S, Chiodini R, Tartarini S, Dondini L, Kang S-J, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524

    Article  PubMed  CAS  Google Scholar 

  • Pradhan AK, Gupta V, Mukhopadhyay A, Arumugam A, Sodhi YS, Pental D (2003) A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet 106:607–614

    PubMed  CAS  Google Scholar 

  • Puite K, Schaart J (1998) Agrobacterium-mediated transformation of the apple cultivars ‘Gala’, ‘Golden Delicious’ and ‘Elstar’, and the strawberry cultivars ‘Gariguette’, ‘Polka’ and ‘Elsanta’. Acta Hort 484:547–553

    Google Scholar 

  • Quarrie SA, Lazic-Jancic V, Kovacevic D, Steed A, Pekic S (1999) Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot 50:1299–1306

    Article  CAS  Google Scholar 

  • Raskin I, Ripoll C (2004) Can an apple a day keep the doctor away? Curr Pharm Design 10:3419–3429

    Article  CAS  Google Scholar 

  • Rikkerink EHA, Hilario E, Thrush A, Gardiner SE, Bassett HC, Jordan M, Bus VGM, Forster RLS, Crowhurst RN (2006) PCR-based cloning of fragments from the Apple NBS LRR gene class and phylogenetic analysis identifies clades widely conserved in the Rosids. (Submitted manuscript)

    Google Scholar 

  • Roberts AL, Crute IR (1994) Apple scab resistance from Malus floribunda 821 (Vf) is rendered ineffective by isolates of Venturia inaequalis from Malus floribunda. Norw J Agri Sci 17:403–406

    Google Scholar 

  • Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst Evol 226:35–58

    Article  CAS  Google Scholar 

  • Roche P, Alston FH, Maliepaard C, Evans KM, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C, King GJ (1997a) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theor Appl Genet 94:528–533

    Article  CAS  Google Scholar 

  • Roche P, van Arkel G, van Heusden AW (1997b) A specific PCR assay for resistance to biotypes 1 and 2 of the rosy leaf curling aphid in apple based on an RFLP marker closely linked to the Sd 1 gene. Plant Breed 116:567–572

    Article  CAS  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Article  PubMed  CAS  Google Scholar 

  • Rusholme RL, Gardiner SE, Bassett HCM, Tustin DS, Ward SM, Didier A (2005) Identifying genetic markers for an apple rootstock dwarfing gene. Acta Hort 663:405–409

    Google Scholar 

  • Sandanayaka WRM, Bus VGM, Connolly P, Newcomb R (2003) Characteristics associated with woolly apple aphid, Eriosoma lanigerum, resistance of three apple rootstocks. Entomol Exp Appl 109:63–72

    Article  Google Scholar 

  • Seglias NP, Gessler C (1997) Genetics of apple powdery mildew resistance from Malus zumi (Pl2). IOBC/WPRS Bull 20:195–208

    Google Scholar 

  • Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168:513–523

    Article  PubMed  CAS  Google Scholar 

  • Shay JR, Dayton DF, Hough LF (1953) Apple scab resistance from a number of Malus species. Proc Am Soc Hort Sci 62:348–356

    Google Scholar 

  • Silfverberg-Dilworth E, Patocchi A, Belfanti E, Tartarini S, Sansavini S, Gessler C (2005) HcrVf2 introduced into Gala confers race-specific scab resistance. In: Plant & Animal Genome XIII Conf, San Diego, CA, USA: http://www.intlpag.org/pag/13/abstracts/PAG13_P501.html

    Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Tartarini S, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) Tree Genet Genome 2:202–224

    Article  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D 2005 A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  PubMed  CAS  Google Scholar 

  • Sriskandarajah S, Goodwin PB, Speirs J (1994) Genetic transformation of the apple scion cultivar ‘Delicious’ via Agrobactrerium tumefaciens. Plant Cell Tiss Org Cult 36:317–329

    Article  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Stam P, van Ooijen JW (1995) JoinMap, version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen, The Netherlands

    Google Scholar 

  • Stankiewicz-Kosyl M, Pitera E, Gawronski SW (2005) Mapping QTL involved in powdery mildew resistance of the apple clone U 211. Plant Breed 124:63–66

    Article  CAS  Google Scholar 

  • Suiter KA, Wendel JF, Case JS (1983) LINKAGE-1: A Pascal computer program for the detection and analysis of genetic linkage. J Hered 74:203–204

    PubMed  CAS  Google Scholar 

  • Tartarini S (1996) RAPD markers linked to the Vf gene for scab resistance in apple. Theor Appl Genet 92:803–810

    Article  CAS  Google Scholar 

  • Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (1999) Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed 118:183–186

    Article  Google Scholar 

  • Tartarini S, Sansavini S, Vinatzer B, Gennari F, Domizi C (2000) Efficiency of marker assisted selection (MAS) for the Vf scab resistance gene. Acta Hort 538:549–552

    Google Scholar 

  • Tartarini S, Gennari F, Pratesi D, Palazzetti C, Sansavini S, Parisi L, Fouillet A, Fouillet V, Durel CE (2004) Characterisation and genetic mapping of a major scab resistance gene from the old Italian apple cultivar ‘Durello di Forli’. Acta Hort 663:129–133

    CAS  Google Scholar 

  • Taylor JB (1981) The selection of Aotea apple rootstocks for resistance to woolly aphis and to root canker, a decline and replant disease caused by basidiomycete fungi. NZ J Agri Res 24:373–377

    Google Scholar 

  • Thielen C, Will F, Zacharias J, Dietrich H, Jacob H (2004) Polyphenole in Apfeln: Verteilung von Polyphenolen im Apfelgewebe und Vergleich der Frucht mit Apfelsaft. Dtsch Lebensm-Rundsch 100:389–398

    CAS  Google Scholar 

  • Thompson JM, Taylor J (1971) Genetic susceptibility to Glomerella leaf blotch in apple. J Hered 62:303–306

    Google Scholar 

  • Urbanietz, A (2002) Genetische und molekulare Charakterisierung der Resistenz des Apfels gegen den Echten Mehltau und der Virulenz des Erregers Podosphaera leucotricha (Ell. et Ev.) PhD thesis, Universität Hannover, Germany

    Google Scholar 

  • Vales IM, Capettini F, Corey A, Chen X, Hayes PM, Mather D, Mundt C, Richardson K, Sandoval-Islas S, Schoen CC (2004) Effect of population size in the estimation of barley stripe rust QTL. In: Plant & Animal Genome XII Conf, San Diego, CA, USA: http://www.intlpag.org/pag/12/abstracts/P5c_PAG12_479.html

    Google Scholar 

  • Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

    Article  PubMed  Google Scholar 

  • Van de Weg WE, Voorrips RE, Finkers R, Kodde LP, Jansen J, Bink MCAM (2004) Pedigree genotyping: a new pedigree-based approach of QTL identification and gene mining. Acta Hort 663:45–50

    Google Scholar 

  • Van der Linden CG, Wouters DCAE, Mihalka V, Kochieva EZ, Smulders MJM, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109:384–393

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL(r) 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen, The Netherlands

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap version 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • Vanderplank JE (1984) Disease Resistance in Plants. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants; selected writings. Chron Bot 13:1–364

    Google Scholar 

  • Vinatzer BA, Zhang HB, Sansavini S (1998) Construction and characterization of a bacterial artificial chromosome library of apple. Theor Appl Genet 97:1183–1190

    Article  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang H-B, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant-Micr Interact 14:508–515

    CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed 123:321–326

    Article  CAS  Google Scholar 

  • Visser T, Verhaegh JJ (1976) Review of tree fruit breeding carried out at the Institute for Horticultural Plant Breed at Wageningen from 1951–1976. Proc Eucarpia Meeting of Tree Fruit Breeding, September 1976, Wageningen, The Netherlands, pp 113–132

    Google Scholar 

  • Visser T, Verhaegh JJ (1980) Resistance to powdery mildew (Podosphaera leucotricha) of apple seedlings growing under glasshouse and nursery conditions. In: Lespinasse Y (ed) Proc Eucarpia Fruit Section Meeting, Tree Fruit Breeding, Angers, September, 1979, pp 111–120

    Google Scholar 

  • Way RD, Aldwinckle HS, Lamb RC, Rejman A, Sansavini S, Shen T, Watkins R, Westwood MN, Yoshida Y (1989) Apples (Malus). Acta Hort 290:1–62

    Google Scholar 

  • Wearing CH, Colhoun K, McLaren GF, Attfield B, Bus VGM (2003) Evidence for single gene resistance in apple to brownheaded leafroller, Ctenopseustis obliquana, and implications for resistance to other New Zealand leafrollers. Entomol Exp Appl 108:1–10

    Article  Google Scholar 

  • Weeden NF, Hemmat M, Lawson DM, Lodhi M, Bell RL, Manganaris AG, Reisch BI, Brown SK, Ye G-N (1994) Development and application of molecular marker linkage maps in woody fruit crops. Euphytica 77:71–75

    Article  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Williams EB, Dayton DF (1968) Four additional sources of the Vf locus for Malus scab resistance. Proc Am Soc Hort Sci 92:95–98

    Google Scholar 

  • Williams EB, Shay JR (1957) The relationship of genes for pathogenicity and certain other characters in Venturia inaequalis (Cke.) Wint. Genetics 42:704–711

    PubMed  CAS  Google Scholar 

  • Williams EB, Dayton DF, Shay JR (1966) Allelic genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hort Sci 88:52–56

    Google Scholar 

  • Xu ML, Korban SS (2000) Saturation mapping of the apple scab resistance gene Vf using AFLPmarkers. Theor Appl Genet 101:844–851

    Article  CAS  Google Scholar 

  • Xu M, Korban SS (2002a) AFLP-derived SCARs facilitate construction of a 1.1 Mb sequence-ready map of a region that spans the Vf locus in the apple genome. Plant Mol Biol 50:803–818

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Korban SS (2002b) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006

    PubMed  CAS  Google Scholar 

  • Xu M, Korban SS (2004) Somatic variation plays a key role in the evolution of the Vf gene family residing in the Vf locus that confers resistance to apple scab disease. Mol Phylogenet Evol 32:57–65

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Huaracha E, Korban SS (2001a) Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome 44:63–70

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Song JQ, Cheng ZK, Jiang JM, Korban SS (2001b) A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44:1104–1113

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Korban SK, Song J, Jiang J (2002) Constructing a bacterial artificial chromosome library of the apple cultivar Goldrush. Acta Hort 595:103–112

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hort 663:51–56

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Nishitani C, Ohta S, Adachi Y, Hirabayashi T, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2005) Genetic linkage maps of European and Japanese pears. In: Plant & Animal Genome XIII Conf, San Diego, CA, USA

    Google Scholar 

  • Yang HY, Korban SS, Krüger J, Schmidt H (1997a) A randomly amplified polymorphic DNA (RAPD) marker tightly linked to the scab-resistance gene Vf in apple. J Am Soc Hort Sci 122:47–52

    CAS  Google Scholar 

  • Yang HY, Korban SS, Krüger J, Schmidt H (1997b) The use of a modified bulk segregant analysis to identify a molecular marker linked to a scab resistance gene in apple. Euphytica 94:175–182

    Article  Google Scholar 

  • Yang HY, Kruger J (1994) Identification of an RAPD marker linked to the Vf gene for scab resistance in apples. Plant Breed 112:323–329

    Article  Google Scholar 

  • Yao JL, Cohen D, Atkinson R, Richardson K, Morris B (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep 14:407–412

    Article  CAS  Google Scholar 

  • Young ND (2000) The genetic architecture of resistance. Curr Opin Plant Biol 3:285–290

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Nijti VN, Meksem K, Iqbal MJ, Triwitayakorn, Kassem My A, Davis GT, Schmidt ME, Lightfoot DA (2002) Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci 42:271–277

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman RH (1971) Flowering in crabapple seedlings: methods of shortening the juvenile phase. J Am Soc Hort Sci 96:404–411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gardiner, S.E., Bus, V.G.M., Rusholme, R.L., Chagné, D., Rikkerink, E.H.A. (2007). Apple. In: Kole, C. (eds) Fruits and Nuts. Genome Mapping and Molecular Breeding in Plants, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34533-6_1

Download citation

Publish with us

Policies and ethics