Skip to main content

On Preconditioned Uzawa-type Iterations for a Saddle Point Problem with Inequality Constraints

  • Conference paper
Domain Decomposition Methods in Science and Engineering XVI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 55))

Abstract

We consider preconditioned Uzawa iterations for a saddle point problem with inequality constraints as arising from an implicit time discretization of the Cahn-Hilliard equation with an obstacle potential. We present a new class of preconditioners based on linear Schur complements associated with successive approximations of the coincidence set. In numerical experiments, we found superlinear convergence and finite termination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Bank, B. D. Welfert, and H. Yserentant, A class of iterative methods for solving saddle point problems, Numer. Math., 56 (1989), pp. 645–666.

    Article  MathSciNet  Google Scholar 

  2. J. W. Barrett, R. Nürnberg, and V. Styles, Finite element approximation of a phase field model for void electromigration, SIAM J. Numer. Anal., 42 (2004), pp. 738–772.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part I: Mathematical analysis, European J. Appl. Math., 2 (1991), pp. 233–280.

    MATH  MathSciNet  Google Scholar 

  4. J. F. Blowey, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis, European J. Appl. Math., 3 (1992), pp. 147–179.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Braess and R. Sarazin, An efficient smoother for the Stokes problem, Appl. Numer. Math., 23 (1997), pp. 3–19.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. H. Bramble, J. E. Pasciak, and A. T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 1072–1092.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. interfacial energy, J. Chem. Phys., 28 (1958), pp. 258–267.

    Article  Google Scholar 

  8. X. Chen, Global and superlinear convergence of inexact Uzawa methods for saddle point problems with nondifferentiable mappings, SIAM J. Numer. Anal., 35 (1998), pp. 1130–1148.

    Article  MATH  MathSciNet  Google Scholar 

  9. X. Chen, On preconditioned Uzawa methods and SOR methods for saddle-point problems, J. Comput. Appl. Math., 100 (1998), pp. 207–224.

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland, Amsterdam, 1976.

    MATH  Google Scholar 

  11. C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical models for phase change problems, J. F. Rodrigues, ed., Basel, 1989, Birkhäuser, pp. 35–73.

    Google Scholar 

  12. H. C. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., (1994), pp. 1645–1661.

    Google Scholar 

  13. D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, tech. rep., University of Utah, Salt Lake City, UT, 1998.

    Google Scholar 

  14. R. Glowinski, J. L. Lions, and R. Trémolières, Numerical Analysis of Variational Inequalities, no. 8 in Studies in Mathematics and its Applications, North-Holland Publishing Company, Amsterdam, 1981.

    Google Scholar 

  15. C. Gräser and R. Kornhuber, Preconditioned Uzawa iterations for the Cahn-Hilliard equation with obstacle potential. To appear.

    Google Scholar 

  16. Q. Hu and J. Zou, Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems, Numer. Math., 93 (2002), pp. 333–359.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I, Numer. Math., 69 (1994), pp. 167–184.

    MATH  MathSciNet  Google Scholar 

  18. P. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), pp. 964–979.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Novick-Cohen, The Cahn-Hilliard equation: Mathematical and modeling perspectives, Adv. Math. Sci. Appl., 8 (1998), pp. 965–985.

    MATH  MathSciNet  Google Scholar 

  20. J. Schöberl and W. Zulehner, On Schwarz-type smoothers for saddle point problems, Numer. Math., 95 (2003), pp. 377–399.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive variables, J. Comput. Phys., 65 (1986), pp. 138–158.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. J. Wright, Primal-dual interior-point methods, SIAM, Philadelphia, PA, 1997.

    MATH  Google Scholar 

  23. W. Zulehner, A class of smoothers for saddle point problems, Computing, 65 (2000), pp. 227–246.

    Article  MATH  MathSciNet  Google Scholar 

  24. W. Zulehner, Analysis of iterative methods for saddle point problems: A unified approach, Math. Comp., 71 (2002), pp. 479–505.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Gräser, C., Kornhuber, R. (2007). On Preconditioned Uzawa-type Iterations for a Saddle Point Problem with Inequality Constraints. In: Widlund, O.B., Keyes, D.E. (eds) Domain Decomposition Methods in Science and Engineering XVI. Lecture Notes in Computational Science and Engineering, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34469-8_8

Download citation

Publish with us

Policies and ethics