Skip to main content

Heterogeneous Domain Decomposition Methods for Fluid-Structure Interaction Problems

  • Conference paper
Domain Decomposition Methods in Science and Engineering XVI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 55))

Abstract

In this note, we propose Steklov-Poincaré iterative algorithms (mutuated from the analogy with heterogeneous domain decomposition) to solve fluidstructure interaction problems. Although our framework is very general, the driving application is concerned with the interaction of blood flow and vessel walls in large arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Causin, J.-F. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 4506–4527.

    Article  MATH  Google Scholar 

  2. M. Cervera, R. Codina, and M. Galindo, On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems, Engrg. Comput., 13 (1996), pp. 4–30.

    Article  MATH  Google Scholar 

  3. S. Deparis, Numerical Analysis of Axisymmetric Flows and Methods for Fluid-Structure Interaction Arising in Blood Flow Simulation, PhD thesis, école Polytechnique Fédérale de Lausanne, 2004.

    Google Scholar 

  4. S. Deparis, M. Discacciati, and A. Quarteroni, A domain decomposition framework for fluid-structure interaction problems, in Proceedings of the Third International Conference on Computational Fluid Dynamics, C. Groth and D. W. Zingg, eds., Springer, May 2006.

    Google Scholar 

  5. M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows, PhDthesis, école Polytechnique Fédérale de Lausanne, 2004.

    Google Scholar 

  6. J. Donea, Arbitrary Lagrangian Eulerian finite element methods, in Computational Methods for Transient Analysis, vol. 1 of Computational Methods in Mechanics, Amsterdam, North-Holland, 1983, pp. 473–516.

    Google Scholar 

  7. L. Fatone, P. Gervasio, and A. Quarteroni, Multimodels for incompressible flows, J. Math. Fluid Mech., 2 (2000), pp. 126–150.

    Article  MATH  Google Scholar 

  8. L. Fatone, Multimodels for incompressible flows: iterative solutions for the Navier-Stokes/Oseen coupling, Math. Model. Numer. Anal., 35 (2001), pp. 549–574.

    Article  MATH  Google Scholar 

  9. M. A. FernĂ¡ndez and M. Moubachir, A Newton method using exact Jacobians for solving fluid-structure coupling, Comput. & Structures, 83 (2005), pp. 127–142.

    Article  Google Scholar 

  10. J. C. Galvis and M. Sarkis, Inf-sup for coupling Stokes-Darcy, in Proceedings of the XXV Iberian Latin American Congress in Computational Methods in Engineering, A. L. et al., ed., Universidade Federal de Pernambuco, 2004.

    Google Scholar 

  11. F. Gastaldi, A. Quarteroni, and G. S. Landriani, On the coupling of two-dimensional hyperbolic and elliptic equations: analytical and numerical approach, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Philadelphia, PA, 1990, SIAM, pp. 22–63.

    Google Scholar 

  12. J.-F. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows, Math. Model. Numer. Anal., 37 (2003), pp. 631–647.

    Article  MATH  Google Scholar 

  13. M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 1–23.

    Article  MATH  Google Scholar 

  14. T. J. Hughes, W. K. Liu, and T. K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible flows, Comput. Methods Appl. Mech. Engrg., 29 (1981), pp. 329–349.

    Article  MATH  Google Scholar 

  15. G. Karner, K. Perktold, M. Hofer, and D. Liepsch, Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model, Comput. Methods Biomech. Biomed. Engrg., 2 (1999), pp. 171–185.

    Article  Google Scholar 

  16. W. J. Layton, F. Schieweck, and I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Num. Anal., 40 (2003), pp. 2195–2218.

    Article  MATH  Google Scholar 

  17. J. E. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity, Dover Publications, Inc., New York, 1994. Reprint.

    Google Scholar 

  18. D. P. Mok and W. A. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, in Proceedings of the International Conference Trends in Computational Structural Mechanics, K. Schweizerhof and W. A. Wall, eds., K.U. Bletzinger, CIMNE, Barcelona, 2001.

    Google Scholar 

  19. J. Mouro, Interactions Fluide Structure en Grands Déplacements. Résolution Numérique et Application aux Composants Hydrauliques Automobiles, PhD thesis, école Polytechnique, Paris, September 1996.

    Google Scholar 

  20. F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics, PhD thesis, école Polytechnique Fédérale de Lausanne, 2001.

    Google Scholar 

  21. A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in Modelling of Living Systems, P. G. Ciarlet and J. L. Lions, eds., vol. 12 of Handbook of Numerical Analysis, Elsevier, Amsterdam, 2004, pp. 3–127.

    Google Scholar 

  22. A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, Texts in Applied Mathematics, Springer, New York, 2000.

    Google Scholar 

  23. A. Quarteroni, A. Veneziani, and P. Zunino, A domain decomposition method for advection-diffusion processes with application to blood solutes, SIAM J. Sci. Comput., 23 (2002), pp. 1959–1980.

    Article  MATH  Google Scholar 

  24. P. L. Tallec and J. Mouro, Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 3039–3067.

    Article  MATH  Google Scholar 

  25. P. Zunino, Iterative substructuring methods for advection-diffusion problems in heterogeneous media, in Challenges in Scientific Computing—CISC 2002, vol. 35 of Lecture Notes in Computational Science and Engineering, Springer, 2003, pp. 184–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Deparis, S., Discacciati, M., Fourestey, G., Quarteroni, A. (2007). Heterogeneous Domain Decomposition Methods for Fluid-Structure Interaction Problems. In: Widlund, O.B., Keyes, D.E. (eds) Domain Decomposition Methods in Science and Engineering XVI. Lecture Notes in Computational Science and Engineering, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34469-8_4

Download citation

Publish with us

Policies and ethics