From Part I we know that standard Galerkin finite element methods on equidistant meshes yield inaccurate approximate solutions of singularly perturbed two-point boundary value problems unless a large number of mesh points are used. The same disappointing behaviour occurs arises when dealing with parabolic convection-diffusion problems, because such methods have no built-in upwinding. Finite element methods will now be developed specifically for the convection-diffusion situation, either by choosing special basis functions or by working on meshes designed for these problems.


Finite Element Method Trial Function Discontinuous Galerkin Method Compute Solution Local Error Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Personalised recommendations