# Local Projection Stabilization for Equal-Order Interpolation

As we saw in Chapter 3, the streamline diffusion method (SDFEM) can handle two types of instabilities: that caused by a violation of the discrete infsup (Babu?ska-Brezzi) condition (2.1) and that due to dominant convection. The SDFEM combines the Pressure Stabilized Petrov-Galerkin (PSPG) approach (testing the residual against \({\nabla{\rm q}}\)) with the Streamline Upwind Petrov- Galerkin (SUPG) technique (testing the residual against \({({\rm b}\cdot\nabla)}{\bf v}\))

Despite the extensive theoretical and practical development of the SDFEM, a fundamental flaw in the method - in particular for higher-order interpolations - is that various terms must be added to the weak formulation to guarantee its consistency. Moreover, the requirement of consistency leads to undesirable effects when using residual-based stabilization methods like the SDFEM in optimal control problems; see the discussion at the beginning of Section III.3.3. LPS relaxes the consistency requirement while preserving the main features of the SDFEM approach; in particular, one can use equal-order interpolation without worrying about the Babuška-Brezzi condition. Furthermore, LPS allows us to separate velocity and pressure in the stabilization terms, which for systems of equations means that one can avoid non-physical couplings.

## Keywords

Projection Space Element Space Approximation Space Interpolation Operator Subgrid Modelling## Preview

Unable to display preview. Download preview PDF.