Skip to main content

Raman Scattering in Carbon Nanotubes

  • Chapter
  • First Online:
Light Scattering in Solid IX

Part of the book series: Topics in Applied Physics ((TAP,volume 108))

Abstract

The vibrational properties of single-walled carbon nanotubes reflect the electron and phonon confinement as well as the cylindrical geometry of the tubes. Raman scattering is one of the prime techniques for studying the fundamental properties of carbon tubes and nanotube characterization. The most important phonon for sample characterization is the radial-breathing mode, an in-phase radial movement of all carbon atoms. In combination with resonant excitation it can be used to determine the nanotube microscopic structure.

Metallic and semiconducting tubes can be distinguished from the high-energy Raman spectra. The high-energy phonons are remarkable because of their strong electron–phonon coupling, which leads to phonon anomalies in metallic tubes. A common characteristic of the Raman spectra in nanotubes and graphite is the appearance of Raman peaks that correspond to phonons from inside the Brillouin zone, the defect-induced modes. In this Chapter we first introduce the vibrational, electronic, and optical properties of carbon tubes and explain important concepts such as the nanotubes’ family behavior. We then discuss the Raman-active phonons of carbon tubes. Besides the vibrational frequencies and symmetries Raman spectroscopy also allows optical (excitonic) transitions, electron–phonon coupling and phase transitions in single-walled carbon nanotubes to be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56 (1991)

    ADS  Google Scholar 

  • S. Iijima, T. Ichihasi: Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603 (1993)

    ADS  Google Scholar 

  • J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, P. Ordej'on: Phys. Rev. Lett. 92, 075501 (2004)

    ADS  Google Scholar 

  • C. Thomsen, S. Reich: Double-resonant Raman scattering in graphite, Phys. Rev. Lett. 85, 5214 (2000)

    ADS  Google Scholar 

  • P. R. Wallace: The band theory of graphite, Phys. Rev. 71, 622 (1947)

    ADS  MATH  Google Scholar 

  • S. Reich, J. Maultzsch, C. Thomsen, P. Ordej' on: Tight-binding description of graphene, Phys. Rev. B 66, 035412 (2002)

    ADS  Google Scholar 

  • V. N. Popov: New. J. Phys. 6, 17 (2004)

    ADS  Google Scholar 

  • D. S'anchez-Portal, E. Artacho, J. M. Soler, A. Rubio, P. Ordej'on: initio structural, elastic, and vibrational properties of carbon nanotubes, Phys. Rev. B 59, 12678 (1999)

    ADS  Google Scholar 

  • S. Reich, C. Thomsen, P. Ordej' on: Electronic band structure of isolated and bundled nanotubes, Phys. Rev. B 65, 155411 (2002)

    ADS  Google Scholar 

  • C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Phys. Rev. Lett. 92, 077402 (2004)

    ADS  Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Phys. Rev. Lett. 94, 027402 (2005)

    ADS  Google Scholar 

  • F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz: The optical resonances in carbon nanotubes arise from excitons, Science 308, 838 (2005)

    ADS  Google Scholar 

  • J. Maultzsch, C. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. Strano, C. Thomsen, C. Lienau: Exciton binding energies from two-photon photoluminescence in single-walled carbon nanotubes, Phys. Rev. B 72, 241402 (2005)

    ADS  Google Scholar 

  • Q. Zhao, H. D. Wagner: Raman spectroscopy of carbon-nanotube-based composites, in A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbon: from Nanotubes to Diamond, vol. 362, Philosophical Transactions of the Royal Society A (The Royal Society, London 2004) p. 2407

    Google Scholar 

  • R. Krupke, F. Hennrich, H. v. Löhneysen, M. M. Kappes: Science 301, 344 (2003)

    ADS  Google Scholar 

  • S. Reich, L. Li, J. Robertson: Control the chirality of carbon nanotubes by epitaxial growth, Chem. Phys. Lett. 421, 469–472 (2006)

    ADS  Google Scholar 

  • N. N. Ilichev: SWNTs as a passive Q-switches for self mode-locking of solid state lasers, in H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.): Electronic Properties of Novel Materials, AIP Conference Proceedings (AIP, College Park 2005)

    Google Scholar 

  • A. B. Dalton, S. Collins, E. Mu~noz, J. M. Razal., V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman: Super-tough carbon-nanotube fibres – these extraordinary composite fibres can be woven into electronic textiles, Nature 423, 703 (2003)

    ADS  Google Scholar 

  • R. H. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz: Carbon nanotube actuators, Science 284, 1340 (1999)

    ADS  Google Scholar 

  • S. Reich, C. Thomsen, J. Maultzsch: Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Berlin 2004)

    Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1995)

    Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, vol. 80, Topics in Applied Physics (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  • R. Saito, G. Dresselhaus, M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Google Scholar 

  • P. J. F. Harris: Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge 1999)

    Google Scholar 

  • T. Ando: Theory of electronic states and transport in carbon nanotubes, J. Phys. Soc. Jpn. 74, 777 (2005)

    ADS  MATH  Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio: Raman spectroscopy of carbon nanotubes, Phys. Rep. 409, 47 (2005)

    ADS  Google Scholar 

  • R. P. Raffaelle, B. J. Landi, J. D. Harris, S. G. Bailey, A. F. Hepp: Carbon nanotubes for power applications, Mater. Sci. Eng. B 116, 233 (2005)

    Google Scholar 

  • J. Wang: Carbon-nanotube based electrochemical biosensors: A review, Electroanal. 17, 7 (2005)

    Google Scholar 

  • U. D. Venkateswaran: Squeezing carbon nanotubes, phys. stat. sol. B 241, 3345 (2004)

    ADS  Google Scholar 

  • C. Thomsen, H. Kataura (Eds.): Focus on Carbon Nanotubes, vol. 5, The New Journal of Physics (Institute of Physics and Deutsche Physikalische Gesellschaft, London 2003)

    Google Scholar 

  • A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbon: from Nanotubes to Diamond, vol. 362, Philosophical Transactions of the Royal Society A (The Royal Society, London 2004)

    Google Scholar 

  • Y. Baskin, L. Meyer: Lattice constant of graphite at low temperatures, Phys. Rev. B 100, 544 (1955)

    ADS  Google Scholar 

  • Y. X. Zhao, I. L. Spain: X-ray diffraction data for graphite to 20,GPa, Phys. Rev. B 40, 993 (1989)

    ADS  Google Scholar 

  • M. Hanfland, H. Beister, K. Syassen: Graphite under pressure: Equation of state and first-order Raman modes, Phys. Rev. B 39, 12 598 (1989)

    Google Scholar 

  • J. C. Boettger: All-electron full-potential calculation of the electronic band structure, elastic constants, and equation of state for graphite, Phys. Rev. B 55, 11202 (1997)

    ADS  Google Scholar 

  • J. Kürti, V. Z'olyomi, M. Kertesz, G. Sun: New J. Phys. 5, 125 (2003)

    Google Scholar 

  • A. Burian, J. Koloczek, J. Dore, A. Hannon, J. Nagy, A. Fonseca: Radial distribution function analysis of spatial atomic correlations in carbon nanotubes, Diam. Relat. Mater. 13, 1261 (2004)

    Google Scholar 

  • S. Reich, C. Thomsen, P. Ordej'on: Eigenvectors of chiral nanotubes, Phys. Rev. B 64, 195416 (2001)

    ADS  Google Scholar 

  • J.-C. Charlier, P. Lambin: Electronic structure of carbon nanotubes with chiral symmetry, Phys. Rev. B 57, 15037 (1998)

    ADS  Google Scholar 

  • A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tom'anek, J. E. Fischer, R. E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273, 483 (1996)

    ADS  Google Scholar 

  • K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306, 1362 (2004)

    ADS  Google Scholar 

  • L. X. Zheng, M. J. O'Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, et al.: Ultralong single-wall carbon nanotubes, Nature Mater. 3, 673 (2004)

    ADS  Google Scholar 

  • M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, R. E. Smalley: J. Vac. Sci. Technol. A 19, 1800 (2001)

    ADS  Google Scholar 

  • S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman: J. Am. Chem. Soc. 125, 11186 (2003)

    Google Scholar 

  • Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama: Chem. Phys. Lett. 387, 198 (2004)

    ADS  Google Scholar 

  • N. Wang, Z. K. Tang, G. D. Li, J. S. Chen: Single-walled 4,Å carbon nanotube arrays, Nature (London) 408, 50 (2000)

    ADS  Google Scholar 

  • R. R. Bacsa, A. Peigney, C. Laurent, P. Puech, W. S. Bacsa: Phys. Rev. B 65, 161404 (2002)

    ADS  Google Scholar 

  • S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, S. Iijima: Chem. Phys. Lett. 337, 48 (2001)

    ADS  Google Scholar 

  • T. W. Ebbesen, P. M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358, 220 (1992)

    ADS  Google Scholar 

  • D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazques, R. Beyers: Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer, Nature 363, 605 (1993)

    ADS  Google Scholar 

  • C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756 (1997)

    ADS  Google Scholar 

  • H. Dai: in M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes, vol. 80, Topics in Applied Physics (Springer, Berlin, Heidelberg 2001) p. 29

    Google Scholar 

  • M. Terrones: Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications, Int. Mater. Rev. 49, 325 (2005)

    Google Scholar 

  • A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov, G. Eres: In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition, Appl. Phys. A: Mater. Sci. Process. 81, 223 (2005)

    ADS  Google Scholar 

  • M. C. Schabel, J. L. Martins: Energetics of interplanar binding in graphite, Phys. Rev. B 46, 7185 (1992)

    ADS  Google Scholar 

  • L. A. Girifalco, M. Hodak: Van der Waals binding energies in graphitic structures, Phys. Rev. B 65, 125404 (2002)

    ADS  Google Scholar 

  • R. Z. H. Ulbricht, T. Hertel: Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons, Phys. Rev. B 69, 155406 (2004)

    ADS  Google Scholar 

  • S. Reich, C. Thomsen, P. Ordej'on: Phys. Rev. B 65, 153407 (2002)

    ADS  Google Scholar 

  • M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes, Science 297, 593 (2002)

    ADS  Google Scholar 

  • S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361 (2002)

    ADS  Google Scholar 

  • S. Lebedkin, F. Hennrich, T. Skipa, M. M. Kappes: Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method, J. Phys. Chem. B 107, 1949 (2003)

    Google Scholar 

  • T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich, M. Kappes, S. Rosenthal, J. McBride, H. Ulbricht, E. Flahaut: Spectroscopy of single- and double-wall carbon nanotubes in different environments, Nano Lett. 5, 511 (2005)

    ADS  Google Scholar 

  • H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen: Phys. Rev. Lett. 93, 177401 (2004)

    ADS  Google Scholar 

  • C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, M. A. Pimenta: Phys. Rev. Lett. 93, 147406 (2004)

    ADS  Google Scholar 

  • M. S. Strano, S. K. Doorn, E. H. Haroz, C. Kittrell, R. H. Hauge, R. E. Smalley: Assignment of (n,m) Raman and optical features of metallic single-walled carbon nanotubes, Nano Lett. 3, 1091 (2003)

    ADS  Google Scholar 

  • Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio: Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282, 1105 (1998)

    ADS  Google Scholar 

  • M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, W. I. Milne: Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, Appl. Phys. Lett. 90, 5308 (2001)

    Google Scholar 

  • J. Lefebvre, Y. Homma, P. Finnie: Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes, Phys. Rev. Lett. 90, 217401 (2003)

    ADS  Google Scholar 

  • J. C. Meyer, M. Paillet, G. S. Duesberg, S. Roth: Electron diffraction analysis of individual single-walled carbon nanotubes, Ultramicroscopy 106, 176 (2005)

    Google Scholar 

  • S. Hofmann, C. Ducati, B. Kleinsorge, J. Robertson: Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates, Appl. Phys. Lett. 83, 4661 (2003)

    ADS  Google Scholar 

  • L. Guan, K. Suenaga, Z. Shi, Z. Gu, S. Iijima: Direct imaging of the alkali metal site in K-doped fullerene peapods, Phys. Rev. Lett. 94, 045502 (2005)

    ADS  Google Scholar 

  • L. Henrard, A. Loiseau, C. Journet, P. Bernier: Synth. Met. 103, 2533 (1999)

    Google Scholar 

  • L. Henrard, A. Loiseau, C. Journet, P. Bernier: Study of the symmetry of single-wall nanotubes by electron diffraction, Eur. Phys. B 13, 661 (2000)

    ADS  Google Scholar 

  • S. Reich, C. Thomsen, J. Robertson: Exciton resonances quench the photoluminescence of zigzag carbon nanotubes, Phys. Rev. Lett. 95, 077402 (2005)

    ADS  Google Scholar 

  • J. Jiang, R. Saito, A. Grüneis, S. G. Chou, G. G. Samsonidze, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Photoexcited electron relaxation processes in single-wall carbon nanotubes, Phys. Rev. B 71, 045417 (2005)

    ADS  Google Scholar 

  • B. W. Smith, M. Monthioux, D. E. Luzzi: Encapsulated C60 in carbon nanotubes, Nature 396, 323 (1998)

    ADS  Google Scholar 

  • H. Kataura, Y. Maniwa, T. Kodama, K. Kikuchi, K. Hirahara, K. Suenaga, S. Iijima, S. Suzuki, Y. Achiba, W. Kratschmer: Synth. Met. 121, 1195 (2001)

    Google Scholar 

  • T. Pichler, H. Kuzmany, H. Kataura, Y. Achiba: Metallic polymers of C60 inside single-walled carbon nanotubes, Phys. Rev. Lett. 87, 267401 (2001)

    ADS  Google Scholar 

  • J. Sloan, M. C. Novotny, S. R. Bailey, G. Brown, C. Xu, V. C. Williams, S. Friedrichs, E. Flahaut, R. L. Callender, A. P. E. York, K. S. Coleman, M. L. H. Green, R. E. Dunin-Borkowskib, J. L. Hutchison: Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes, Chem. Phys. Lett. 329, 61 (2000)

    ADS  Google Scholar 

  • J. Diefenbach, T. P. Martin: Model calculations of alkali halide clusters, J. Chem. Phys. 83, 4585 (1985)

    ADS  Google Scholar 

  • M. Damnjanovi'c, I. Miloševi'c, T. Vukovi'c, R. Sre­da­no­vi'c: Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes, Phys. Rev. B 60, 2728 (1999)

    ADS  Google Scholar 

  • M. Damnjanovi'c, I. Miloševi'c, T. Vukovi'c, R. Sre­da­no­vi'c: Symmetry and lattices of single-wall nanotubes, J. Phys. A 32, 4097 (1999)

    ADS  Google Scholar 

  • J. W. Mintmire, B. I. Dunlap, C. T. White: Are fullerene tubules metallic?, Phys. Rev. Lett. 68, 631 (1992)

    ADS  Google Scholar 

  • M. Damnjanovi'c, T. Vukovi'c, I. Milosevi'c: Modified group projectors: Tight binding method, J. Phys. A: Math. Gen. 33, 6561 (2000)

    ADS  MathSciNet  Google Scholar 

  • J. Maultzsch, S. Reich, C. Thomsen, E. Dobardzi'c, I. Milo sevi'c, M. Damnjanovi'c: Phonon dispersion of carbon nanotubes, Solid State Commun. 121, 471 (2002)

    ADS  Google Scholar 

  • T. Vukovi'c, I. Milosevi'c, M. Damnjanovi'c: Carbon nanotubes band assignation, topology, Bloch states, and selection rules, Phys. Rev. B 65, 045418 (2002)

    ADS  Google Scholar 

  • I. Milosevi'c, T. Vukovi'c, S. Dmitrovi'c, M. Damnjanovi'c: Phys. Rev. B 67, 165418 (2003)

    ADS  Google Scholar 

  • E. Chang, G. Bussi, A. Ruini, E. Molinari: Excitons in carbon nanotubes: An ab initio symmetry-based approach, Phys. Rev. Lett. 92, 196401 (2004)

    ADS  Google Scholar 

  • T. Inui, Y. Tanabe, Y. Onodera: Group Theory and its Application in Physics (Springer Verlag, Berlin Heidelberg New York 1996)

    Google Scholar 

  • E. B. Wilson, J. C. Decius, P. C. Cross: Molecular Vibrations (Dover, New York 1980)

    Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, R. Saito: Carbon fibers based on C60 and their symmetry, Phys. Rev. B 45, 6234 (1992)

    ADS  Google Scholar 

  • R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus: Symmetry properties of chiral carbon nanotubes, Phys. Rev. B 47, 16671 (1993)

    ADS  Google Scholar 

  • M. S. Dresselhaus, P. C. Eklund: Adv. Phys. 49, 705 (2000)

    ADS  Google Scholar 

  • A. Jorio, R. Saito, G. Dresselhaus, M. S. Dresselhaus: Determination of nanotube properties by Raman spectroscopy, in A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbons: From Nanotubes to Diamond (Philosophical Transaction of the Royal Society 2004) p. 2311

    Google Scholar 

  • R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, G. Dresselhaus: Phonon modes in carbon nanotubules, Chem. Phys. Lett. 209, 77–82 (1993)

    ADS  Google Scholar 

  • D. L. Rousseau, R. P. Bauman, S. P. S. Porto: Normal mode determination in crystals, J. Raman Spectrosc. 10, 253 (1981)

    ADS  Google Scholar 

  • A. Fainstein, P. Etchegoin, M. P. Chamberlain, M. Cardona, K. Tötemeyer, K. Eberl: Selection rules and dispersion of GaAs/AlAs multiple-quantum-well optical phonons studied by Raman scattering in right-angle, forward, and backscattering in-plane geometries, Phys. Rev. B 51, 14 448 (1995)

    Google Scholar 

  • B. Jusserand, M. Cardona: Superlattices and other microstructures, in M. Cardona, G. Güntherodt (Eds.): Light Scattering in Solids V, vol. 66, Topics in Applied Physics (Springer, Berlin 1989) p. 49

    Google Scholar 

  • G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, S. Roth: Polarized Raman spectroscopy of individual single-wall carbon nanotubes, Phys. Rev. Lett. 85, 5436 (2000)

    ADS  Google Scholar 

  • A. Ugawa, A. G. Rinzler, D. B. Tanner: Far-infrared gaps in single-wall carbon nanotubes, Phys. Rev. B 60, R11 305 (1999)

    Google Scholar 

  • S. Reich, C. Thomsen, G. S. Duesberg, S. Roth: Intensities of the Raman active modes in single and multiwall nanotubes, Phys. Rev. B 63, R041401 (2001)

    ADS  Google Scholar 

  • A. Jorio, A. G. S. Filho, V. W. Brar, A. K. Swan, M. S. "Unlü, B. B. Goldberg, A. Righi, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus, M. S. Dresselhaus: Phys. Rev. B 65, 121402 (2002)

    ADS  Google Scholar 

  • E. Dobardzi' c, I. M. B. Nikoli'c, T. Vukovi'c, M. Damnjanovi'c: Single-wall carbon nanotubes phonon spectra: Symmetry-based calculations, Phys. Rev. B 68, 045,408 (2003)

    Google Scholar 

  • M. Damnjanovi'c, E. Dobardzi' c, I. Milosevi'c: Chirality dependence of the radial breathing mode: a simple model, J. Phys.: Condens. Matter 16, L505 (2004)

    ADS  Google Scholar 

  • G. D. Mahan: Phys. Rev. B 65, 235402 (2002)

    ADS  Google Scholar 

  • R. Nicklow, N. Wakabayashi, H. G. Smith: Lattice dynamics of pyrolytic graphite, Phys. Rev. B 5, 4951 (1972)

    ADS  Google Scholar 

  • O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, T. Weng: Elastic constants of compression-annealed pyrolytic graphite, J. Appl. Phys. 41, 3373 (1970)

    ADS  Google Scholar 

  • E. J. Seldin, C. W. Nezbeda: Elastic constants and electron-microscope observations of neutron-irradiated compression-annealed pyrolytic and single-crystal graphite, J. Appl. Phys. 41, 3389 (1970)

    ADS  Google Scholar 

  • L. Wirtz, A. Rubio, R. A. de la Concha, A. Loiseau: Phys. Rev. B 68, 45425 (2003)

    ADS  Google Scholar 

  • S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, R. Haddon: Chemistry of single-walled nanotubes, Acc. Chem. Res. 35, 1105 (2002)

    Google Scholar 

  • A. Jorio, C. Fantini, M. A. Pimenta, R. B. Capaz, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, J. Jiang, N. Kobayashi, A. Grüneis, R. Saito: Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes, Phys. Rev. B 71, 075,401 (2005)

    Google Scholar 

  • V. N. Popov, L. Henrard: Phys. Rev. B 65, 235415 (2002)

    ADS  Google Scholar 

  • E. Dobardzi' c, J. Maultzsch, I. Milosevi'c, C. Thomsen, M. Damnjanovi'c: phys. stat. sol. (b) 237, R7 (2003)

    ADS  Google Scholar 

  • G. Wu, J. Zhou, J. Dong: Radial-breathing-like phonon modes of double-walled carbon nanotubes, Phys. Rev. B 72, 115,418 (2005)

    Google Scholar 

  • C. Kramberger, R. Pfeiffer, H. Kuzmany, V. Z'olyomi, J. Kürti: Assignment of chiral vectors in carbon nanotubes, Phys. Rev. B 68, 235,404 (2003)

    Google Scholar 

  • R. Pfeiffer, H. Kuzmany, C. Kramberger, C. Schaman, T. Pichler, H. Kataura, Y. Achiba, J. Kürti, V. Z'olyomi: Phys. Rev. Lett. 90, 225501 (2003)

    ADS  Google Scholar 

  • A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, Y. Nishina: Evidence for size-dependent discrete dispersions in single-wall nanotubes, Phys. Rev. Lett. 78, 4434 (1997)

    ADS  Google Scholar 

  • O. Dubay, G. Kresse: Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes, Phys. Rev. B 67, 035,401 (2003)

    Google Scholar 

  • C. Thomsen, S. Reich, P. Ordej'on: initio determination of the phonon deformation potentials of graphene, Phys. Rev. B 65, 073403 (2002)

    ADS  Google Scholar 

  • S. A. Solin, A. K. Ramdas: Raman spectrum of diamond, Phys. Rev. B 1, 1687 (1970)

    ADS  Google Scholar 

  • J. Kulda, H. Kainzmaier, D. Strauch, B. Dorner, M. Lorenzen, M. Krisch: Phys. Rev. B 66, 241202(R) (2002)

    ADS  Google Scholar 

  • S. Reich, A. C. Ferrari, R. Arenal, A. Loiseau, I. Bello, J. Robertson: Resonant Raman scattering in cubic and hexagonal boron nitride, Phys. Rev. B 71, 205201 (2005)

    ADS  Google Scholar 

  • G. Kern, G. Kress, J. Hafner: -initio lattice dynamics and phase diagram of boron nitride, Phys. Rev. B 59, 8851 (1999)

    ADS  Google Scholar 

  • S. Reich, H. Jantoljak, C. Thomsen: Shear strain in carbon nanotubes under hydrostatic pressure, Phys. Rev. B 61, R13 389 (2000)

    Google Scholar 

  • S. Reich, C. Thomsen: Raman spectroscopy of graphite, in A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbons: From Nanotubes to Diamond (Philosophical Transaction of the Royal Society 2004) p. 2271

    Google Scholar 

  • R. Saito, A. Jorio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus: Chirality-dependent G-band Raman intensity of carbon nanotubes, Phys. Rev. B 64, 085312 (2001)

    ADS  Google Scholar 

  • S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, J. Robertson: Phys. Rev. Lett. 93, 185503 (2004)

    ADS  Google Scholar 

  • M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson: Electron transport and hot phonons in carbon nanotubes, Phys. Rev. Lett. 95, 236802 (2005)

    ADS  Google Scholar 

  • J. Maultzsch, S. Reich, U. Schlecht, C. Thomsen: High-energy phonon branches of an individual metallic carbon nanotube, Phys. Rev. Lett. 91, 087402 (2003)

    ADS  Google Scholar 

  • Z. M. Li, V. N. Popov, Z. K. Tang: A symmetry-adapted force-constant lattice-dynamical model for single-walled carbon nanotubes, Solid State Commun. 130, 657 (2005)

    Google Scholar 

  • S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp: Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes, Phys. Rev. B 63, 155414 (2001)

    ADS  Google Scholar 

  • K. Kempa: Phys. Rev. B 66, 195406 (2002)

    ADS  Google Scholar 

  • O. Dubay, G. Kresse, H. Kuzmany: Phys. Rev. Lett. 88, 235506 (2002)

    ADS  Google Scholar 

  • P. Y. Yu, M. Cardona: Fundamentals of Semiconductors (Springer-Verlag, Berlin 1996)

    MATH  Google Scholar 

  • X. Blase, L. X. Benedict, E. L. Shirley, S. G. Louie: Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett. 72, 1878 (1994)

    ADS  Google Scholar 

  • M. Damnjanovi'c, T. Vukovi'c, I. Milosevi'c: Fermi level quantum numbers and secondary gap of conducting carbon nanotubes, Solid State Commun. 116, 265 (2000) Table 1 in the reference contains a small error: For chiral tubes and the k quantum numbers kF=2qπ/3na for =3 tubes and kF=0 for =1 nanotubes.

    ADS  Google Scholar 

  • A. Kleiner, S. Eggert: Curvature, hybridization, and STM images of carbon nanotubes, Phys. Rev. B 64, 113402 (2001)

    ADS  Google Scholar 

  • W. Kohn: Image of the Fermi Surface in the Vibration Spectrum of a Metal, Phys. Rev. Lett. 2, 393 (1959)

    ADS  Google Scholar 

  • M. V. Klein: Raman studies of phonon anomalies in transition-metal compounds, in M. Cardona, G. Güntherodt (Eds.): Light Scattering in Solids III, vol. 51, Topics in Applied Physics (Springer, Berlin 1982) p. 121

    Google Scholar 

  • K.-P. Bohnen, R. Heid, H. J. Liu, C. T. Chan: Lattice dynamics and electron-phonon interaction in (3,3) carbon nanotubes, Phys. Rev. Lett. 93, 245501 (2004)

    ADS  Google Scholar 

  • S. Piscanec, M. Lazzeri, A. C. Ferrari, F. Mauri, J. Robertson: private communication

    Google Scholar 

  • D. Conn'etable, G.-M. Rignanese, J.-C. Charlier, X. Blase: Room temperature Peierls distortion in small diameter nanotubes, Phys. Rev. Lett. 94, 015503 (2005)

    ADS  Google Scholar 

  • J. Kürti, G. Kresse, H. Kuzmany: First-principles calculations of the radial breathing mode of single-wall carbon nanotubes, Phys. Rev. B 58, 8869 (1998)

    ADS  Google Scholar 

  • M. Mach'on, S. Reich, H. Telg, J. Maultzsch, P. Ordej'on, C. Thomsen: Phys. Rev. B 71, 35416 (2005)

    ADS  Google Scholar 

  • C. Thomsen: Second-order Raman spectra of single and multi-walled carbon nanotubes, Phys. Rev. B 61, 4542 (2000)

    ADS  Google Scholar 

  • A. C. Ferrari, J. Robertson: Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, in (2004) p. 2477 of Ref. 04

    Google Scholar 

  • H. H. Gommans, J. W. Alldredge, H. Tashiro, J. Park, J. Magnuson, A. G. Rinzler: Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy, J. Appl. Phys. 88, 2509 (2000)

    ADS  Google Scholar 

  • N. Hamada, S.-I. Sawada, A. Oshiyama: New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 68, 1579 (1992)

    ADS  Google Scholar 

  • R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Electronic structure of graphene tubules based on C60, Phys. Rev. B 46, 1804 (1992)

    ADS  Google Scholar 

  • S. Reich, C. Thomsen: Chirality dependence of the density-of-states singularities in carbon nanotubes, Phys. Rev. B 62, 4273 (2000)

    ADS  Google Scholar 

  • G. G. Samsonidze, R. Saito, A. Jorio, M. A. Pimenta, A. G. Souza, A. Gruneis, G. Dresselhaus, M. S. Dresselhaus: The concept of cutting lines in carbon nanotube science, J. Nanosci. Nanotech. 3, 431 (2003)

    Google Scholar 

  • R. F. Willis, B. Feuerbacher, B. Fitton: Graphite conduction band states from secondary electron emission spectra, Phys. Lett. A 34, 231 (1971)

    ADS  Google Scholar 

  • J. W. Mintmire, C. T. White: Universal density of states for carbon nanotubes, Phys. Rev. Lett. 81, 2506 (1998)

    ADS  Google Scholar 

  • M. Machon, S. Reich, C. Thomsen, D. S'anchez-Portal, P. Ordej' on: Phys. Rev. B 66, 155410 (2002)

    ADS  Google Scholar 

  • Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan, R. Saito, S. Okada, G. D. Li, J. S. Chen, N. Nagasawa, S. Tsuda: Polarized absorption spectra of single-walled 4,Å carbon nanotubes aligned in channels of an AlPO4-5 single crystal, Phys. Rev. Lett. 87, 127401 (2001)

    ADS  Google Scholar 

  • T. Miyake, S. Saito: Quasiparticle band structure of carbon nanotubes, Phys. Rev. B 68, 155424 (2003)

    ADS  Google Scholar 

  • V. Barone, G. E. Scuseria: Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: Beyond the local density approximation, J. Chem. Phys. 121, 10376 (2004)

    ADS  Google Scholar 

  • V. N. Popov, L. Henrard: Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and nonorthogonal tight-binding models, Phys. Rev. B 70, 115470 (2004)

    Google Scholar 

  • V. Z'olyomi, J. Kürti: First-principles calculations for the electronic band structures of small diameter single-wall carbon nanotubes, Phys. Rev. B 70, 085403 (2004)

    ADS  Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Phys. Rev. Lett. 92, 257402 (2004)

    ADS  Google Scholar 

  • H. Zhao, S. Mazumdar: Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 95, 157,402 (2005)

    Google Scholar 

  • A. Grüneis, R. Saito, G. G. Samsonidze, T. Kimura, M. A. Pimenta, A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus: Phys. Rev. B 67, 165402 (2003)

    ADS  Google Scholar 

  • C. T. White, J. W. Mintmire: Density of states reflects diameter in nanotubes, Nature (London) 394, 29 (1998)

    ADS  Google Scholar 

  • T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber: Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62 (1998)

    ADS  Google Scholar 

  • J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker: Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59 (1998)

    ADS  Google Scholar 

  • H. Ajiki, T. Ando: Carbon nanotubes: Optical absorption in Aharonov-Bohm flux, Jpn. J. Appl. Phys. Suppl. 34-1, 107 (1994)

    Google Scholar 

  • H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba: Optical properties of single-wall carbon nanotubes, Synth. Met. 103, 2555 (1999)

    Google Scholar 

  • P. M. Rafailov, H. Jantoljak, C. Thomsen: Electronic transitions in single-walled carbon nanotubes: A resonance Raman study, Phys. Rev. B 61, 16 179 (2000)

    Google Scholar 

  • R. Saito, G. Dresselhaus, M. S. Dresselhaus: Trigonal warping effect of carbon nanotubes, Phys. Rev. B 61, 2981 (2000)

    ADS  Google Scholar 

  • V. N. Popov, L. Henrard, P. Lambin: Nano Lett. 4, 1795 (2004)

    ADS  Google Scholar 

  • R. B. Capaz, C. D. Spataru, P. Tagney, M. L. Cohen, S. G. Louie: Temperature dependence of the band gap of semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 036801 (2005)

    ADS  Google Scholar 

  • X.-F. He: Excitons in anisotropic solids: The model of fractional-dimensional space, Phys. Rev. B 43, 2063 (1991)

    ADS  Google Scholar 

  • P. Lefebvre, P. Cristol, H. Mathieu: Unified formulation of excitonic spectra of semiconductor quantum wells, superlattices, and quantum wires, Phys. Rev. B 48, 17308 (1993)

    ADS  Google Scholar 

  • C. L. Kane, E. J. Mele: Phys. Rev. Lett. 93, 197402 (2004)

    ADS  Google Scholar 

  • S. G. Chou, F. Plentz, J. Jiang, R. Saito, D. Nezich, H. B. Ribeiro, A. Jorio, M. A. Pimenta, G. G. Samsonidze, A. P. Santos, M. Zheng, G. B. Onoa, E. D. Semke, G. Dresselhaus, M. S. Dresselhaus: Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy, Phys. Rev. Lett. 94, 127402 (2005)

    ADS  Google Scholar 

  • S. Lebedkin, K. Arnold, F. Hennrich, R. Krupke, B. Renker, M. M. Kappes: FTIR-luminescence mapping of dispersed single-walled carbon nanotubes, New J. Phys. 5, 140 (2003)

    ADS  Google Scholar 

  • X. H. Qiu, M. Freitag, V. Perebeinos, P. Avouris: Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states, Nano Lett. 5, 749 (2005)

    ADS  Google Scholar 

  • J.-S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, L. Capes: Phys. Rev. Lett. 90, 57404 (2003)

    ADS  Google Scholar 

  • T. Hertel, G. Moos: Phys. Rev. Lett. 84, 5002 (2000)

    ADS  Google Scholar 

  • G. N. Ostojic, S. Zaric, J. Kono, M. S. Strano, V. C. Moore, R. H. Hauge, R. E. Smalley: Phys. Rev. Lett. 92, 117402 (2004)

    ADS  Google Scholar 

  • S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, M. S. Strano: Excited-state carrier lifetime in single-walled carbon nanotubes, Phys. Rev. B 71, 033402 (2005)

    ADS  Google Scholar 

  • O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, R. H. Baughman: Phys. Rev. Lett. 92, 17403 (2004)

    ADS  Google Scholar 

  • M. Cardona, G. Güntherodt (Eds.): Light Scattering in Solids I–VIII (Springer, Berlin, Heidelberg 1982–2000)

    Google Scholar 

  • M. Cardona: Resonance phenomena, in M. Cardona, G. Güntherodt (Eds.): Light Scattering in Solids II, vol. 50, Topics in Applied Physics (Springer, Berlin 1982) p. 19

    Google Scholar 

  • R. M. Martin, L. M. Falicov: Resonant Raman scattering, in M. Cardona (Ed.): Light Scattering in Solids I: Introductory Concepts, vol. 8, 2 ed., Topics in Applied Physics (Springer-Verlag, Berlin Heidelberg New York 1983) p. 79

    Google Scholar 

  • J. Maultzsch: Vibrational properties of carbon nanotubes and graphite, Ph.D. thesis, Technische Universität Berlin, Berlin (2004)

    Google Scholar 

  • A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus: Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science 275, 187 (1997)

    Google Scholar 

  • M. A. Pimenta, A. Marucci, S. A. Empedocles, M. G. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus: Raman modes of metallic carbon nanotubes, Phys. Rev. B 58, R16 016 (1998)

    Google Scholar 

  • M. Milnera, J. Kürti, M. Hulman, H. Kuzmany: Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes, Phys. Rev. Lett. 84, 1324 (2000)

    ADS  Google Scholar 

  • R. R. Schlittler, J. W. Seo, J. K. Gimzewski, C. Durkan, M. S. M. Saifullah, M. E. Welland: Science 292, 1136 (2001)

    ADS  Google Scholar 

  • M. F. Chisholm, Y. H. Wang, A. R. Lupini, G. Eres, A. A. Puretzky, B. Brinson, A. V. Melechko, D. B. Geohegan, H. T. Cui, M. P. Johnson, S. J. Pennycook, D. H. Lowndes, S. Arepalli, C. Kittrell, S. Sivaram, M. Kim, G. Lavin, J. Kono, R. Hauge, R. E. Smalley: Science 300, 5623 (2001)

    Google Scholar 

  • M. E. Welland, C. Durkan, M. S. M. Saifullah, J. W. Seo, R. R. Schlittler, J. K. Gimzewski: Science 300, 1236 (2001)

    Google Scholar 

  • S. Hofmann, C. Ducati, J. Robertson: Low-temperature self-assembly of novel encapsulated compound nanowires, Adv. Mater. 14, 1821 (2002)

    Google Scholar 

  • J. Maultzsch, S. Reich, C. Thomsen: Raman scattering in carbon nanotubes revisited, Phys. Rev. B 65, 233402 (2002)

    ADS  Google Scholar 

  • Y. Miyauchi, S. Maruyama: Identification of excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes, Phys. Rev. Lett. (2005) submitted, cond-mat/0508232

    Google Scholar 

  • C. Fantini, A. Jorio, M. Souza, L. Ladeira, A. S. Filho, R. Saito, G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, M. A. Pimenta: One-dimensional character of combination modes in the resonance Raman scattering of carbon nanotubes, Phys. Rev. Lett. 93, 087401 (2004)

    ADS  Google Scholar 

  • F. Simon, C. Kramberger, R. Pfeiffer, H. Kuzmany, V. Z'olyomi, J. Kürti, P. M. Singer, H. Alloul: Isotope engineering of carbon nanotube systems, Phys. Rev. Lett. 95, 017401 (2005)

    ADS  Google Scholar 

  • G. Bussi, J. Men'endez, J. Ren, M. Canonico, E. Molinari: Quantum interferences in the Raman cross section for the radial breathing mode in metallic carbon nanotubes, Phys. Rev. B 71, 041404 (2005)

    ADS  Google Scholar 

  • C. Trallero-Giner, A. Cantarero, M. Cardona, M. Mora: Phys. Rev. B 45, 6601 (1992)

    ADS  Google Scholar 

  • M. Canonico, G. B. Adams, C. Poweleit, J. Men'endez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, J. Rubio: Phys. Rev. B 65, 201402(R) (2002)

    ADS  Google Scholar 

  • G. Bussi, J. Men'endez, J. Ren, M. Canonico, E. Molinari: Quantum interferences in the Raman cross section for the radial breathing mode in metallic carbon nanotubes, Phys. Rev. B 71, 041404 (2005)

    ADS  Google Scholar 

  • J. Mathews, R. L. Walker: Mathematical Methods of Physics, 2 ed. (Addison-Wesley, Redwood City 1970)

    Google Scholar 

  • A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus, R. Saito, J. H. Hafner, C. M. Lieber, F. M. Matinaga, M. S. S. Dantas, M. A. Pimenta: Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering, Phys. Rev. B 63, 245416 (2001)

    ADS  Google Scholar 

  • A. G. S. Filho, A. Jorio, J. H. Hafner, C. M. Lieber, R. Saito, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus: Electronic transition energy Eii for an isolated (n,m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio, Phys. Rev. B 63, 241404 (2001)

    ADS  Google Scholar 

  • A. G. Souza Filho, S. G. Chou, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, L. An, J. Liu, A. K. Swan, M. S. "Unlü, B. B. Goldberg, A. Jorio, A. Grüneis, R. Saito: Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes, Phys. Rev. B 69, 115,428 (2004)

    Google Scholar 

  • J. Maultzsch, S. Reich, C. Thomsen: Chirality selective Raman scattering of the D-mode in carbon nanotubes, Phys. Rev. B 64, 121407(R) (2001)

    ADS  Google Scholar 

  • J. Maultzsch, S. Reich, C. Thomsen: Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion, Phys. Rev. B 70, 155403 (2004)

    ADS  Google Scholar 

  • S. I. Gubarev, T. Ruf, M. Cardona: Doubly resonant Raman scattering in the semimagnetic semiconductor Cd0.95Mn0.05Te, Phys. Rev. B 43, 1551 (1991)

    ADS  Google Scholar 

  • V. Sapega, M. Cardona, K. Ploog, E. Irchenko, D. Mirlin: Spin-flip Raman scattering in GaAs/AlxGa1-xAs multiple quantum wells, Phys. Rev. B 45, 4320 (1992)

    ADS  Google Scholar 

  • R. P. Vidano, D. B. Fischbach, L. J. Willis, T. M. Loehr: Observation of Raman band shifting with excitation wavelength for carbons and graphites, Solid State Commun. 39, 341 (1981)

    ADS  Google Scholar 

  • P.-H. Tan, Y.-M. Deng, Q. Zhao: Temperature-dependent Raman spectra and anomalous Raman phenomenon of highly oriented pyrolytic graphite, Phys. Rev. B 58, 5435 (1998)

    ADS  Google Scholar 

  • V. A. Gaisler, I. G. Neizvestnyi, M. P. Singukov, A. B. Talochkin: JETP Lett. 45, 441 (1987)

    ADS  Google Scholar 

  • D. Mowbray, H. Fuchs, D. Niles, M. Cardona, C. Thomsen, B. Friedl: Raman study of the Ge phonon side band, in E. Anastassakis, J. Joannopoulos (Eds.): 20th International Conference on the Physics of Semiconductors (World Scientific, Singapore 1990) p. 2017

    Google Scholar 

  • M. Mohr, M. Mach'on, J. Maultzsch, C. Thomsen: Double-resonant Raman processes in germanium: Group theory and initio calculations, Phys. Rev. B 73, 035217 (2006)

    ADS  Google Scholar 

  • I. P'ocsik, M. Hundhausen, M. Koos, L. Ley: Origin of the D peak in the Raman spectrum of microcrystalline graphite, J. Non-Cryst. Solids 227–230B, 1083 (1998)

    Google Scholar 

  • Y. Wang, D. C. Alsmeyer, R. L. McCreery: Raman spectroscopy of carbon materials: Structural basis of observed spectra, Chem. Mater. 2, 557 (1990)

    Google Scholar 

  • M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, M. Endo: Origin of dispersive effects of the Raman D band in carbon materials, Phys. Rev. B 59, R6585 (1999)

    ADS  Google Scholar 

  • F. Tuinstra, J. L. Koenig: Raman spectrum of graphite, J. Chem. Phys. 53, 1126 (1970)

    ADS  Google Scholar 

  • V. Z'olyomi, J. Kürti: Phys. Rev. B 66, 73418 (2002)

    ADS  Google Scholar 

  • C. Mapelli, C. Castiglioni, G. Zerbi, K. Müllen: Phys. Rev. B 60, 12710 (1999)

    ADS  Google Scholar 

  • C. Castiglioni, F. Negri, M. Rigolio, G. Zerbi: J. Chem. Phys. 115, 3769 (2001)

    ADS  Google Scholar 

  • A. Ferrari, J. Robertson: Phys. Rev. B 64, 75414 (2001)

    ADS  Google Scholar 

  • P. Tan, L. An, L. Liu, Z. Guo, R. Czerw, D. L. Carroll, P. M. Ajayan, N. Zhang, H. Guo: Phys. Rev. B 66, 245410 (2002)

    ADS  Google Scholar 

  • L. D. Landau, E. M. Lifschitz: Elektrodynamik der Kontinua (Akademie-Verlag, Berlin 1967)

    MATH  Google Scholar 

  • L. X. Benedict, S. G. Louie, M. L. Cohen: Phys. Rev. B 52, 8541 (1995)

    ADS  Google Scholar 

  • S. Tasaki, K. Maekawa, T. Yamabe: π -band contribution to the optical properties of carbon nanotubes: Effects of chirality, Phys. Rev. B 57, 9301 (1998)

    ADS  Google Scholar 

  • C. Thomsen, S. Reich, P. M. Rafailov, H. Jantoljak: Symmetry of the high-energy modes in carbon nanotubes, phys. stat. sol. B 214, R15 (1999)

    ADS  Google Scholar 

  • J. Hwang, H. H. Gommans, A. Ugawa, H. Tashiro, R. Haggenmueller, K. I. Winey, J. E. Fischer, D. B. Tanner, A. G. Rinzler: Polarized spectroscopy of aligned single-wall carbon nanotubes, Phys. Rev. B 62, R13 310 (2000)

    Google Scholar 

  • A. Hartschuh, E. J. S'anchez, X. S. Xie, L. Novotny: Phys. Rev. Lett. 90, 95503 (2003)

    ADS  Google Scholar 

  • C. Thomsen, S. Reich, J. Maultzsch: Resonant Raman spectroscopy of nanotubes, in A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbons: From Nanotubes to Diamond (Philosophical Transaction of the Royal Society 2004) p. 2337

    Google Scholar 

  • H. Kuzmany, R. Pfeiffer, M. Hulman, C. Kramberger: Raman spectroscopy of fullerenes and fullerene-nanotube composites, in A. C. Ferrari, J. Robertson (Eds.): Raman Spectroscopy in Carbons: From Nanotubes to Diamond (Philosophical Transaction of the Royal Society 2004) p. 2375

    Google Scholar 

  • R. Pfeiffer, H. Kuzmany, T. Pichler, H. Kataura, Y. Achiba, M. Melle-Franco, F. Zerbetto: Electronic and mechanical coupling between guest and host in carbon peapods, Phys. Rev. B 69, 035404 (2004)

    ADS  Google Scholar 

  • P. M. Rafailov, V. G. Hadjiev, H. Jantoljak, C. Thomsen: Raman depolarization ratio of vibrational modes in solid C60, Solid State Commun. 112, 517 (1999)

    ADS  Google Scholar 

  • W. Hayes, R. Loudon: Scattering of Light by Crystals (Wiley and Sons Inc., New York 1978)

    Google Scholar 

  • P. Rafailov, C. Thomsen, K. Gartsman, I. Kaplan-Ashiri, R. Tenne: Orientation dependence of the polarizability of an individual WS2 nanotube by resonant Raman spectroscopy, Phys. Rev. B 72, 205436 (2005)

    ADS  Google Scholar 

  • A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Phys. Rev. Lett. 86, 1118 (2001)

    ADS  Google Scholar 

  • H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba: Determination of SWCNT diameters from the Raman response of the radial breathing mode, Eur. Phys. J. B 22, 307 (2001)

    ADS  Google Scholar 

  • C. L. Kane, E. J. Mele: Phys. Rev. Lett. 90, 207401 (2003)

    ADS  Google Scholar 

  • G. G. Samsonidze, R. Saito, N. Kobayashi, A. Grüneis, J. Jiang, A. Jorio, S. G. Chou, G. Dresselhaus, M. S. Dresselhaus: Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters, Appl. Phys. Lett. 85, 5703 (2005)

    ADS  Google Scholar 

  • C. Thomsen, H. Telg, J. Maultzsch, S. Reich: Chirality assignments in carbon nanotubes based on resonant Raman scattering, phys. stat. sol. 242 (2005)

    Google Scholar 

  • S. K. Doorn, D. A. Heller, P. W. Barone, M. L. Usrey, M. S. Strano: Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution, Appl. Phys. A: Mater. Sci. Process. 78, 1147 (2004)

    ADS  Google Scholar 

  • J. Maultzsch, H. Telg, S. Reich, C. Thomsen: Resonant Raman scattering in carbon nanotubes: Optical transition energies and chiral-index assignment, Phys. Rev. B 72, 205438 (2005)

    ADS  Google Scholar 

  • I. Farkas, D. Helbing, T. Vicsek: Nature 419, 131 (2002)

    ADS  Google Scholar 

  • C. Thomsen, S. Reich, A. R. Go~ni, H. Jantoljak, P. Rafailov, I. Loa, K. Syassen, C. Journet, P. Bernier: Intramolecular interaction in carbon nanotube ropes, phys. stat. sol. B 215, 435 (1999)

    ADS  Google Scholar 

  • M. J. O'Connell, S. Sivaram, S. K. Doorn: Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: A direct comparison of bundled and individually dispersed hipco nanotubes, Phys. Rev. B 69, 235,415 (2004)

    Google Scholar 

  • R. B. Weisman, S. M. Bachilo: Nano Lett. 3, 1235 (2003)

    ADS  Google Scholar 

  • A. Hagen, G. Moos, V. Talalaev, T. Hertel: Electronic structure and dynamics of optically excited single-wall carbon nanotubes, Appl. Phys. A: Mater. Sci. Process. 78, 1137 (2004)

    ADS  Google Scholar 

  • R. Krupke: (2005) private communication

    Google Scholar 

  • R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M. S. Dresselhaus: Raman intensity of single-wall carbon nanotubes, Phys. Rev. B 57, 4145 (1998)

    ADS  Google Scholar 

  • M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson: Phonon linewidths and electron phonon coupling in nanotubes, Phys. Rev. B 73, 155426 (2006)

    ADS  Google Scholar 

  • H. Telg, J. Maultzsch, S. Reich, C. Thomsen: Chirality dependence of the high-energy Raman modes in carbon nanotubes, in H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.): Electronic Properties of Novel Materials, IWEPNM Kirchberg (2005) p. 162

    Google Scholar 

  • M. Paillet, P. Poncharal, A. Zahab, J.-L. Sauvajol, J. C. Meyer, S. Roth: Vanishing of the Breit-Wigner-Fano component in individual single-wall carbon nanotubes, Phys. Rev. Lett. 94, 237,401 (2005)

    Google Scholar 

  • C. Thomsen, J. Maultzsch, H. Telg, S. Reich: private communication

    Google Scholar 

  • A. J. Shields, M. P. Chamberlain, M. Cardona, K. Eberl: Raman scattering due to interface optical phonons in GaAs/AlAs multiple quantum wells, Phys. Rev. B 51, 17 728 (1995)

    Google Scholar 

  • C. Liu, A. J. Bard, F. Wudl, I. Weitz, J. R. Heath: Electrochem. Solid-State Lett. 2, 577 (1999)

    Google Scholar 

  • A. S. Claye, J. E. Fisher, C. B. Huffman, A. G. Rinzler, R. E. Smalley: J. Electrochem. Soc. 147, 2845 (2000)

    Google Scholar 

  • S. J. Tans, A. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature (London) 393, 6680 (1998)

    Google Scholar 

  • A. Modi, N. Koratkar, E. Lass, B. Wei, P. M. Ajayan: Nature (London) 424, 171 (2003)

    ADS  Google Scholar 

  • A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, R. E. Smalley: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature 388, 257 (1997)

    ADS  Google Scholar 

  • S. Kazaoui, N. Minami, R. Jacquemin: Phys. Rev. B 60, 13339 (1999)

    ADS  Google Scholar 

  • L. Grigorian, K. A. Williams, S. Fang, G. U. Sumanasekera, A. L. Loper, E. C. Dickey, S. J. Pennycook, P. C. Eklund: Phys. Rev. Lett. 80, 5560 (1998)

    ADS  Google Scholar 

  • N. Bendiab, L. Spina, A. Zahab, P. Poncharal, C. Marliere, J. L. Bantignies, E. Anglaret, J. L. Sauvajol: Phys. Rev. B 63, 153407 (2001)

    ADS  Google Scholar 

  • N. Bendiab, E. Anglaret, J. L. Bantignies, A. Zahab, J. L. Sauvajol, P. Petit, C. Mathis, S. Lefrant: Phys. Rev. B 64, 245424 (2001)

    ADS  Google Scholar 

  • T. Pichler, A. Kukovecz, H. Kuzmany, H. Kataura, Y. Achiba: Phys. Rev. B 67, 125416 (2003)

    ADS  Google Scholar 

  • L. Kavan, P. Rapta, L. Dunsch: Raman and Vis-NIR spectroelectrochemistry at single-walled carbon nanotubes, Chem. Phys. Lett. 328, 363 (2000)

    ADS  Google Scholar 

  • L. Kavan, L. Dunsch, H. Kataura: Carbon 42, 1011 (2004)

    Google Scholar 

  • P. Rafailov, J. Maultzsch, C. Thomsen, H. Kataura: Electrochemical switching of the Peierls-like transition in metallic single-walled carbon nanotubes, Phys. Rev. B 72, 045411 (2005)

    ADS  Google Scholar 

  • P. Corio, A. Jorio, N. Demir, et al.: Spectro-electrochemical studies of single wall carbon nanotubes films, Chem. Phys. Lett. 392, 396 (2004)

    ADS  Google Scholar 

  • L. Kavan, P. Rapta, L. Dunsch, M. J. Bronikowski, P. Willis, R. Smalley: J. Phys. Chem. B 105, 10764 (2001)

    Google Scholar 

  • J. N. Barisci, G. G. Wallace, R. H. Baughman, L. Dunsch: J. Electroanalyt. Chem. 488, 92 (2000)

    Google Scholar 

  • M. Stoll, P. M. Rafailov, W. Frenzel, C. Thomsen: Chem. Phys. Lett. 375, 625 (2003)

    ADS  Google Scholar 

  • S. Gupta, M. Hughes, A. H. Windle, J. Robertson: Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy, J. Appl. Phys. 95, 2038 (2004)

    ADS  Google Scholar 

  • P. Rafailov, M. Stoll, C. Thomsen: J. Phys. Chem. Solids 108, 19241 (2004)

    Google Scholar 

  • P. Corio, P. S. Santos, V. W. Brar, G. G. Samsonidze, S. G. Chou, M. S. Dresselhaus: Chem. Phys. Lett. 370, 675 (2003)

    ADS  Google Scholar 

  • L. Kavan, L. Dunsch, H. Kataura: Chem. Phys. Lett. 361, 79 (2002)

    ADS  Google Scholar 

  • N. W. Ashcroft, N. D. Mermin: Solid State Physics (Saunders College, Philadelphia 1976)

    Google Scholar 

  • J. B. Renucci, R. N. Tyte, M. Cardona: Resonant Raman scattering in silicon, Phys. Rev. B 11, 3885 (1975)

    ADS  Google Scholar 

  • R. Trommer, M. Cardona: Phys. Rev. B 17, 1865 (1973)

    ADS  Google Scholar 

  • J. M. Calleja, J. Kuhl, M. Cardona: Phys. Rev. B 17, 876 (1978)

    ADS  Google Scholar 

  • S. V. Goupalov: Chirality dependence in the Raman cross section, Phys. Rev. B 71, 153404 (2005)

    ADS  Google Scholar 

  • F. S. Khan, P. B. Allen: Deformation potentials and electron-phonon scattering: Two new theorems, Phys. Rev. B 29, 3341 (1984)

    ADS  Google Scholar 

  • J. Jiang, R. Saito, A. Grüneis, S. G. Chou, G. G. Samsonidze, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes, Phys. Rev. B 71, 205420 (2005)

    ADS  Google Scholar 

  • R. E. Peierls: Quantum Theory of Solids (Oxford University Press, New York 1955)

    MATH  Google Scholar 

  • A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. "Unlü, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, R. Saito: Phys. Rev. B 65, 155412 (2002)

    ADS  Google Scholar 

  • J. Kürti, V. Z'olyomi, A. Grüneis, H. Kuzmany: Phys. Rev. B 65, 165433 (2002)

    ADS  Google Scholar 

  • C. Jiang, J. Zhao, H. A. Therese, M. Friedrich, A. Mews: J. Phys. Chem. B 107, 8742 (2003)

    Google Scholar 

  • L. Cancado, M. A. Pimenta, B. R. A. Nevesand, M. S. S. Dantas, A. Jorio: Influence of the atomic structure on the Raman spectra of graphite edges, Phys. Rev. Lett. 93, 247401 (2004)

    ADS  Google Scholar 

  • M. Mach'on, S. Reich, J. Maultzsch, H. Okudera, A. Simon, R. Herges, C. Thomsen: Structural, electronic and vibrational properties of (4,4) picotube crystals, Phys. Rev. B 72, 155,402 (2005)

    Google Scholar 

  • S. Kammermeier, P. G. Jones, R. Herges: Angew. Chem. Int. Ed. Engl. 35, 2669 (1996)

    Google Scholar 

  • S. Kammermeier, P. G. Jones, R. Herges: Angew. Chem. 108, 2834 (1996)

    Google Scholar 

  • M. Souza, A. J. C. Fantini, B. R. A. Neves, M. A. Pimenta, R. Saito, A. Ismach, E. Joselevich, V. W. Brar, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus: Single- and double-resonance Raman G-band processes in carbon nanotubes, Phys. Rev. B 69, 241403 (2004)

    ADS  Google Scholar 

  • J. Maultzsch, S. Reich, C. Thomsen, S. Webster, R. Czerw, D. L. Carroll, S. M. C. Vieira, P. R. Birkett, C. A. Rego: Raman characterization of boron-doped multiwalled carbon nanotubes, Appl. Phys. Lett. 81, 2647 (2002)

    ADS  Google Scholar 

  • R. J. Nemanich, S. A. Solin: First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B 20, 392 (1979)

    ADS  Google Scholar 

  • M. Reedyk, C. Thomsen, M. Cardona, J. S. Xue, J. E. Greedan: Observation of the effects of phonon dispersion on the Fröhlich-interaction-induced second-order Raman scattering in Pb2Sr2PrCu3O8, Phys. Rev. B 50, 13762 (1994)

    ADS  Google Scholar 

  • R. Saito, A. Jorio, A. G. Souza-Filho, G. Dresselhaus, M. S. Dresselhaus, M. A. Pimenta: Phys. Rev. Lett. 88, 27401 (2002)

    ADS  Google Scholar 

  • Y. Kawashima, G. Katagiri: Phys. Rev. B 52, 10053 (1995)

    ADS  Google Scholar 

  • P. Tan, C. Hu, J. Dong, W. Shen, B. Zhang: Phys. Rev. B 64, 214301 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel Cardona Roberto Merlin

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Thomsen, C., Reich, S. (2006). Raman Scattering in Carbon Nanotubes. In: Cardona, M., Merlin, R. (eds) Light Scattering in Solid IX. Topics in Applied Physics, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34436-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34436-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34435-3

  • Online ISBN: 978-3-540-34436-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics