Skip to main content

The Effects of Migration on Persistence and Extinction

  • Chapter
  • 1680 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Summary

The interrelationship between organisms and the environment is essential to the stability or permanence of an ecological system, and the effect of migration on the possibility of species coexistence in an ecological community has been an important subject of research in population biology. Numerous types of models have been proposed and have been used to describe movement or dispersal of population individuals among patches. Some of the existing models deal with a single population dispersing among patches and others deal with predator-prey and competition interactions in patchy environments. Most previous models are based on autonomous ordinary differential equations. Recently, some authors have also studied the influence of migration on time-dependent population models.

In this chapter, we attempt to review key related research and introduce a set of new results for time-dependent population models in patchy environments. We consider a single-species model described by a set of autonomous ordinary differential equations or non-autonomous equations with periodic functions or with dispersal time delays. Also, we consider an age-structure model with or without dispersal delays. Further, we discuss predator-prey or competitive models described by autonomous or time-dependent ordinary differential equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W.G. and H.I. Freedman (1990), A time-delay model of single-species growth with stage structure, Math. Biosci., 101: 139–153.

    Article  MathSciNet  Google Scholar 

  2. Aiello, W.G., H.I. Freedman and J. Wu (1992), Analysis of a model representing stage-structure population growth with state-dependent time delay, SIAM J. Appl. Math. 52: 855–869.

    Article  MathSciNet  Google Scholar 

  3. Allee, W. C., A. Emerson, O. Park, T. Park and K. Schmidt (1949), Principles of Animal Ecology, (Saunders, Philadelphia).

    Google Scholar 

  4. Allen, L.J.S. (1983), Persistence and extinction in single-species reaction-diffusion models, Bull. Math. Biol. 45: 209–227.

    MathSciNet  Google Scholar 

  5. Allen, L.J.S. (1987), Persistence, extinction, and critical patch number for island populations, J. Math. Biol. 24: 617–625.

    MathSciNet  Google Scholar 

  6. Amarasekare, P. (1998), Interactions between local dynamics and dispersal: Insight from single species species models, Theor. Popul. Biol. 53: 44–59.

    Article  Google Scholar 

  7. Beretta, E. and Y. Takeuchi (1987), Global stability of single-species diffusion Volterra models with continuous time delays, Bull. Math. Biol. 49: 431–448.

    MathSciNet  Google Scholar 

  8. Beretta, E. and Y. Takeuchi (1988), Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delays, SIAM J. Appl. Math., 48: 627–651.

    Article  MathSciNet  Google Scholar 

  9. Beretta, E. and F. Solimano (1987), Global stability and periodic orbits for two patch predator-prey diffusion delay models, Math. Biosci. 85: 153–183.

    Article  MathSciNet  Google Scholar 

  10. Clark, C. W. (1990), Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 2nd edn., (Wiley, New York).

    MATH  Google Scholar 

  11. Cui, J. (2002), The effect of dispersal on permanence in a predator-prey population growth model, Computers Math. Applic. 44: 1085–1097.

    Article  Google Scholar 

  12. Cui, J. and L. Chen (1998) The effect of diffusion on the time varying Logistic population growth, Computers Math. Applic. 36: 1–9.

    Article  MathSciNet  Google Scholar 

  13. Cui, J. and L. Chen (1999), The effect of habitat fragmentation and ecological invasion on population sizes, Computers Math. Applic. 38: 1–11.

    Article  MathSciNet  Google Scholar 

  14. Cui, J. and L. Chen (2001), Permanence and extinction in logistic and Lotka-Volterra systems with diffusion, J. Math. Anal. Appl. 258: 512–535.

    Article  MathSciNet  Google Scholar 

  15. Cui, J., L. Chen and W. Wang (2000), The effect of dispersal on population growth with stage-structure, Computers Math. Applic. 39: 91–102.

    Article  MathSciNet  Google Scholar 

  16. Cui, J., Y. Takeuchi and Z. Lin (2004), Permanence and extinction for dispersal population system, J. Math. Anal. Appl. 298: 73–93.

    Article  MathSciNet  Google Scholar 

  17. Cui, J. and Y. Takeuchi (2005), Permanence of a single-species dispersal system and predator survival, J. Comp. Appl. Math. 175: 375–394.

    Article  MathSciNet  Google Scholar 

  18. Deng, X. and Z. Deng (1997), Progress in the conservation biology of Chinese sturgeon, Zoological Research 18(1): 113–120.

    Google Scholar 

  19. Freedman, H.I. (1987), Single species migration in two habitats: persistence and extinction, Math. Model. 8: 778–780.

    Article  Google Scholar 

  20. Freedman, H.I. and Y. Takeuchi (1989), Global stability and predator dynamics in a model of prey dispersal in a patchy environment, Nonlinear Anal. TMA 13: 993–1002.

    Article  MathSciNet  Google Scholar 

  21. Freedman, H. I. and P. Waltman (1977), Mathematical models of population interaction with dispersal. I. Stability of two habitats with and without a predator, SIAM J. Math. 32: 631–648.

    Article  MathSciNet  Google Scholar 

  22. Gruntfest, Y., R. Arditi and Y. Dombrovsky (1997), A fragmented population in a varying environment, J. Theor. Biol. 185: 539–547.

    Article  Google Scholar 

  23. Gyllenberg, M. and J. Hemminiki (1997), Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape, Theor. Pop. Biol. 52: 198–215.

    Article  Google Scholar 

  24. Gyllenberg, M. and I. Hanski (1999), Allee effects can both conserve and create spatial heterogeneity in population densities, Theor. Pop. Biol. 56: 231–242.

    Article  Google Scholar 

  25. Hanski, I. (1999), Metapopulation Ecology, (Oxford University Press).

    Google Scholar 

  26. Hastings, A. (1977), Spatial heterogeneity and the stability of predator prey systems, Theor. Pop. Biol. 12: 37–48.

    Article  MathSciNet  Google Scholar 

  27. Hastings, A. (1983), Can spatial variation alone lead to selection for dispersal? Theor. Pop. Biol., 24: 244–251.

    Article  MathSciNet  Google Scholar 

  28. Holt, R. D. (1985), Population dynamics in two-patch environments: some anomalous consequences of optimal habitat distribution, Theor. Pop. Biol. 28: 181–208.

    Article  MathSciNet  Google Scholar 

  29. Hui, J., and L. Chen (2005), A single species model with impulsive diffusion, Acta Mathematicae Applicatae Sinica, English Series 21: 43–48.

    Article  MathSciNet  Google Scholar 

  30. Jansen, V. A. A. and A. L. Lloyd (2000), Local stability analysis of spatially homogeneous solutions of multi-patch systems, J. Math. Biol. 41: 232–252.

    Article  MathSciNet  Google Scholar 

  31. Kuang, Y. and Y. Takeuchi (1994), Predator-prey dynamics in models of prey dispersal in two-patch environments, Math. Biosci. 120: 77–98.

    Article  MathSciNet  Google Scholar 

  32. Levin, S. A. (1974), Dispersion and population interactions, Amer. Natur. 108: 207–228.

    Article  Google Scholar 

  33. Liu, S., L. Chen and R. Agarwal (2002), Recent progress on stage-structured population dynamics, Mathematical and Computer Modelling 36: 1319–1360.

    Article  MathSciNet  Google Scholar 

  34. Lu, Z. and L. Chen (2002), Global attractivity of nonautonomous inshore-offshore fishing model with stage-structure, Appli. Anal. 81: 589–605.

    Article  MathSciNet  Google Scholar 

  35. Lu, Z. and Y. Takeuchi (1993), Global asymptotic behavior in single-species discrete diffusion systems, J. Math. Biol. 32: 67–77.

    Article  MathSciNet  Google Scholar 

  36. Mahbuba, R. and L. Chen (1994), On the nonautonomous Lotka-Volterra competition system with diffusion, Differential Equations and Dynamical systems 2: 243–253.

    MathSciNet  Google Scholar 

  37. Murray, J. D. (1993), Mathematical Biology, (Springer, Berlin).

    Book  MATH  Google Scholar 

  38. Namba, T., A. Umemoto and E. Minami (1999), The effects of habitat fragmentation on persistence of source-sink metapopulation in systems with predators and prey or apparent competitors, Theor. Pop. Biol. 56: 123–137.

    Article  Google Scholar 

  39. Pradhan, T. and K.S. Chandhari (1999), Bioeconomic modelling of selective harvesting in an inshore-offshore fishery. Differential Equations and Dynamical Systems 7: 305–320.

    MathSciNet  Google Scholar 

  40. Skellam, J. D. (1951), Random dispersal in theoretical population, Biometrika, 38: 196–216.

    MathSciNet  Google Scholar 

  41. Smith, H. L. (1986), Cooperative systems of differential equation with concave nonlinearities, Nonlinear Analysis 10: 1037–1052.

    Article  MathSciNet  Google Scholar 

  42. Song, X. and L. Chen (1998a), Persistence and global stability of nonautonomous predator-prey system with diffusion and time delay, Computers Math. Applic. 35: 33–40.

    Article  MathSciNet  Google Scholar 

  43. Song, X. and L. Chen (1998b), Persistence and periodic orbits for two species predator-prey system with diffusion, Canad. Appl. Math. Quart. 6: 233–244.

    MathSciNet  Google Scholar 

  44. Takeuchi, Y. (1986), Global stability in generalized Lotka-Volterra diffusion systems, J. Math. Anal. Appl., 116: 209–221.

    Article  MathSciNet  Google Scholar 

  45. Takeuchi, Y. (1986), Diffusion effect on stability of Lotka-Volterra model, Bull. Math. Biol. 46: 585–601.

    Google Scholar 

  46. Takeuchi, Y. (1989), Cooperative system theory and global stability of diffusion models, Acta Appl. Math. 14: 49–57.

    Article  MathSciNet  Google Scholar 

  47. Takeuchi, Y. (1989), Diffusion-mediated persistence in two-species competition Lotka-Volterra model, Math. Biosci. 95: 65–83.

    Article  MathSciNet  Google Scholar 

  48. Takeuchi, Y. (1990), Conflict between the need to forage and the need to avoid competition: persistence of two-species model, Math. Biosci. 99: 181–194.

    Article  MathSciNet  Google Scholar 

  49. Takeuchi, Y. (1996), Global Dynamical Properties of Lotka-Volterra Systems, (World Scientific, Singapore).

    MATH  Google Scholar 

  50. Takeuchi, Y., J. Cui, R. Miyazaki and Y. Saito (2006), Permanence and periodic solution of dispersal population model with time delays, J.Comp. Appl. Math. 192: 417–430.

    Article  MathSciNet  Google Scholar 

  51. Teng, Z. and L. Chen (2003), Permanence and extinction of periodic predatorprey systems in a patchy environment with delay, Non. Anal. R.W.A. 4: 335–364.

    MathSciNet  Google Scholar 

  52. Teng, Z. and Z. Lu (2001), The effect of dispersal on single-species nonautonomous dispersal models with delays, J. Math. Biol., 42: 439–454.

    Article  MathSciNet  Google Scholar 

  53. Wang, W. and L. Chen (1997), Global stability of a population dispersal in a two-patch environment, Dynamic Systems and Applications, 6: 207–216.

    MathSciNet  Google Scholar 

  54. Wang, S., Y. Qu, Z. Jing and Q. Wu (1997), Research on the suitable living environment of the Rana temporaria chensinensis larva, Chinese Journal of Zoology, 32(1): 38–41.

    Google Scholar 

  55. Xu, R. and L. Chen (2001), Persistence and global stability for a delayed nonautonomous predator-prey system without dominating instantaneous negative feedback, J Math. Anal. Appl. 262: 50–61.

    Article  MathSciNet  Google Scholar 

  56. Xun, Y. (1990), State disturbance and development of Chinese Giant Pandas, Chinese Wildlife: 9–11.

    Google Scholar 

  57. Yange, Y. (1994), Giant panda’s moving habit in Poping, Acta Theridogica Sinica 14(1): 9–14.

    Google Scholar 

  58. Yucun, C. (1994), The urgent problems in reproduction of giant pandas, Chinese Wildlife: 3–5.

    Google Scholar 

  59. Zeng, G., L. Chen and J. Chen (1994), Persistence and periodic orbits for two-species nonautonomous diffusion Lotka-Volterra models, Mathl. Comput. Modelling 20: 69–80.

    Article  MathSciNet  Google Scholar 

  60. Zhang, J. and L. Chen (1996), Periodic solutions of single-species nonautonomous diffusion models with continuous time delays, Mathl. Comput. Modelling 23: 17–27.

    Google Scholar 

  61. Zhou, Y. (1997), Analysis on decline of wild Alligator sinensis population, Sichuan Journal of Zoology 16: 137–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cui, J., Takeuchi, Y. (2007). The Effects of Migration on Persistence and Extinction. In: Takeuchi, Y., Iwasa, Y., Sato, K. (eds) Mathematics for Ecology and Environmental Sciences. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34428-5_4

Download citation

Publish with us

Policies and ethics