Skip to main content

Physiologically Structured Population Models: Towards a General Mathematical Theory

  • Chapter
Mathematics for Ecology and Environmental Sciences

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Summary

We review the state-of-the-art concerning a mathematical framework for general physiologically structured population models. When individual development is affected by the population density, such models lead to quasilinear equations. We show how to associate a dynamical system (defined on an infinite dimensional state space) to the model and how to determine the steady states. Concerning the principle of linearized stability, we offer a conjecture as well as some preliminary steps towards a proof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackleh, A. S. and Ito, K. (to appear). Measure-valued solutions for a hierarchically size-structured population SIAM J. Appl. Math.

    Google Scholar 

  2. Calsina, À. and Saldaña, J. (1997). Asymptotic behaviour of a model of hierarchically structured population dynamics, J. Math. Biol. 35:967–987.

    Article  MathSciNet  Google Scholar 

  3. Clément, P., Diekmann, O., Gyllenberg, M., Heijmans, H.J.A.M., Thieme, H.R. (1989). Perturbation theory for dual semigroups III. Nonlinear Lipschitz continuous perturbations in the sun reflexive case. In Volterra integro-differential equations in Banach spaces and applications, Trento 1987, G. Da Prato and M. Iannelli (Eds.), Pitman research Notes in Mathematics Series, 190, pp. 67–89.

    Google Scholar 

  4. Cushing, J.M. (1998). An introduction to structured population dynamics, CBMS-NSF Regional conference series in applied mathematics 71, SIAM, Philadelphia.

    MATH  Google Scholar 

  5. Desch and Schappacher (1986). Linearized stability for nonlinear semigroups. In Differential Equations in Banach Spaces (A. Favini and E. Obrecht, Eds.) Spinger Lecture Notes in Mathematics 1223, pp. 61–73.

    Google Scholar 

  6. Diekmann, O. and Getto, Ph. (to appear). Boundedness, global existence and continuous dependence for nonlinear dynamical systems describing physiologically structured populations, Journal of Differential Equations.

    Google Scholar 

  7. Diekmann, O., Gyllenberg, M., Metz, J.A.J., and Thieme, H.R. (1998). On the formulation and analysis of general deterministic structured population models: I Linear theory. Journal of Mathematical Biology 36: 349–388.

    Article  MathSciNet  Google Scholar 

  8. Diekmann, O., Gyllenberg, M., Huang, H., Kirkilionis, M., Metz, J.A.J. and Thieme, H.R. (2001). On the Formulation and Analysis of General Deterministic Structured Population Models. II. Nonlinear Theory. Journal of Mathematical Biology 43: 157–189.

    Article  MathSciNet  Google Scholar 

  9. Diekmann, O., Gyllenberg, M. and Metz, J.A.J. (2003). Steady-state analysis of structured population models, Theoretical Population Biology 63: 309–338.

    Article  Google Scholar 

  10. Getto, Ph., Diekmann, O. and de Roos A.M. (submitted). On the (dis)advantages of cannibalism, submitted to Journal of Mathematical Biology.

    Google Scholar 

  11. Kooijman, S.A.L.M. (2000). Dynamic Energy and Mass Budgets in Biological Systems, Cambridge University Press, Cambridge.

    Google Scholar 

  12. Kirkilionis, M. and Saldaña, J. (in preparation). A height-structured forest model. http://www.iwr.uni-heidelberg.de/sfb/Preprints2001.html

    Google Scholar 

  13. Kirkilionis, M., Diekmann, O., Lisser, B., Nool, M., de Roos, A.M., and Sommeijer, B. (2001). Numerical continuation of equilibria of physiologically structured population models. I. Theory. Mathematical Models and Methods in Applied Sciences 11: 1101–1127.

    Article  MathSciNet  Google Scholar 

  14. Kirkilionis et al. (2001).

    Google Scholar 

  15. Metz, J.A.J. and Diekmann, O. (1986). The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics 68. Springer, Berlin.

    MATH  Google Scholar 

  16. Persson, L., Byström, P., and Wahlström, E. (2000). Cannibalism and competition in Eurasian perch: Population dynamics of an ontogenetic omnivore, Ecology 81: 1058–1071.

    Article  Google Scholar 

  17. Persson, L., De Roos, A.M., Claessen, D., Byström, P., LÖvgren, J., Sjögren, S., Svanbäck, R., Wahlström, E., and Westman, E. (2003). Gigantic cannibals driving a whole-lake trophic cascade, PNAS 100: 4035–4039

    Article  Google Scholar 

  18. Prüß, J. (1983). Stability analysis for equilibria in age-specific population dynamics, Nonl. Anal. TMA 7: 1291–1313.

    Article  Google Scholar 

  19. de Roos, A.M., Person, L. and Thieme, H.R. (2003). Emergent Allee effects in top predators feeding on structured prey populations, Proc. R. Soc. Lond. B 270: 611–618.

    Article  Google Scholar 

  20. de Roos, A.M. and Persson, L. (2001). Physiologically structured models — from versatile technique to ecological theory, Oikos 94: 51–71.

    Article  Google Scholar 

  21. de Roos, A.M. and Persson, L. (2002). Size-dependent life-history traits promote catastrophic collapses of top predators, Proc. Natl. Acad. Sci. USA 99: 12907–12912

    Article  Google Scholar 

  22. de Roos, A.M., Persson, L. and McCauley, E. (2003). The influence of sizedependent life history traits on the structure and dynamics of populations and communities. Ecol. Lett. 6: 473–487.

    Article  Google Scholar 

  23. Scheffer, M., Carpenter, S.R., Foley, J.A., Folke, C. and Walker, B. (2001). Catastrophic shifts in ecosystems, Nature 413: 591–596.

    Article  Google Scholar 

  24. Tucker and Zimmermann (1988). A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math. 48: 549–591.

    Article  MathSciNet  Google Scholar 

  25. Webb, G.F. (1985) Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diekmann, O., Gyllenberg, M., Metz, J. (2007). Physiologically Structured Population Models: Towards a General Mathematical Theory. In: Takeuchi, Y., Iwasa, Y., Sato, K. (eds) Mathematics for Ecology and Environmental Sciences. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34428-5_2

Download citation

Publish with us

Policies and ethics