Skip to main content

Pathogen Competition and Coexistence and the Evolution of Virulence

  • Chapter
Mathematics for Life Science and Medicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Summary

Competition between different strains of a micro-parasite which provide complete cross-protection and cross-immunity against each other selects for maximal basic replacement ratio if, in the absence of the disease, the host population is exclusively limited in its growth by a nonlinear population birth rate. For mass action incidence, the principle of R0 maximization can be extended to exponentially growing populations, if the exponential growth rate is small enough that the disease can limit population growth. For standard incidence, though not in full extent, it can be extended to populations which, without the disease, either grow exponentially or are growth-limited by a nonlinear population death rate, provided that disease prevalence is low and there is no immunity to the disease. If disease prevalence is high, strain competition rather selects for low disease fatality. A strain which would go extinct on its own can coexist with a more virulent strain by protecting from it, if it has strong vertical transmission.

partially supported by NSF grant 0314529

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackleh, A.S. and L.J.S. Allen (2003), 153–168. Competitive exlusion and coexistence for pathogens in an epidemic model with variable population size, J. Math. Biol., 47, 153–168.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ackleh, A.S. and L.J.S. Allen, Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality, Discrete and Continuous Dynamical Systems Series B 5(2005), 175–188.

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, R.M. and R.M. May (1982), Population Biology of Infectious Diseases, Springer, Dahlem Konferenzen, Berlin.

    Google Scholar 

  4. Anderson, R.M. and R.M. May (1991), Infectious Diseases of Humans, Oxford University Press, Oxford.

    Google Scholar 

  5. Andreasen, V. (1997), The dynamics of cocirculating influenza strains conferring partial cross-immunity, J. Math. Biol., 35, 825–842.

    Article  MathSciNet  MATH  Google Scholar 

  6. Andreasen, V. and A. Pugliese (1995), Pathogen coexistence induced by density dependent host mortality, J. Theor. Biol., 177, 159–165.

    Google Scholar 

  7. Andreasen, V., J. Lin and S.A. Levin (1997), The dynamics of co-circulating influenza strains conferring partial cross-immunity, J. Math. Biol., 35, 825–842.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bowers, R.G. and J. Turner (1997), Community structure and the interplay between interspecific infection and competition, J. Theor. Biol., 187, 95–109.

    Article  Google Scholar 

  9. Brauer, F. and C. Castillo-Chavez (2001), Mathematical Models in Population Biology and Epidemiology, Springer, New York.

    MATH  Google Scholar 

  10. Brauer, F. and P. van den Driessche (2002), Some directions for mathematical epidemiology, In S. Ruan, G. Wolkowicz and J. Wu, Dynamical Systems and their Applications to Biology, 95 E12, Fields Institute Communications, American Mathematical Society, Providence, RI.

    Google Scholar 

  11. Bremermann, H.J. and H.R. Thieme (1989), A competitive exclusion principle for pathogen virulence, J. Math. Biology, 27, 179–190.

    MathSciNet  MATH  Google Scholar 

  12. Brunner, J. (2004), Ecology of an Amphibian Pathogen: Transmission, Persistence, and Virulence, Dissertation, Arizona State University, Tempe.

    Google Scholar 

  13. Bull, J.J., I.J. Molineux and W.R. Rice (1991), Selection of benevolence in a host-parasite system, Evolution, 45, 875–882.

    Article  Google Scholar 

  14. Busenberg, S., K.L. Cooke and M.A. Pozio (1983), Analysis of a model of a vertically transmitted disease, J. Math. Biol., 17, 305–329.

    Article  MathSciNet  MATH  Google Scholar 

  15. Busenberg, S.N. and K.L. Cooke (1993), Vertically Transmitted Diseases, Springer, Berlin Heidelberg.

    MATH  Google Scholar 

  16. Busenberg, S.N. and K.P. Hadeler (1990), Demography and Epidemics, Math. Biosci., 101, 63–74

    Article  MathSciNet  MATH  Google Scholar 

  17. Busenberg, S.N., K.L. Cooke and H.R. Thieme (1991), Demographic change and persistence of HIV/AIDS in a heterogeneous population, SIAM J. Appl. Math., 51, 1030–1052.

    Article  MathSciNet  MATH  Google Scholar 

  18. Castillo-Chavez, C. and J.X. Velasco-Hernández (1998), On the relationship between evolution of virulence and host demography, J. Theor. Biol., 192, 437–444.

    Article  Google Scholar 

  19. Castillo-Chavez, C., S. Blower, P. van den Driessche, D. Kirschner and A.-A. Yakubu (2002a), Mathematical Approaches for Emerging and Reemerging Infectious Diseases: an Introduction, Springer, New York.

    MATH  Google Scholar 

  20. Castillo-Chavez, C., S. Blower, P. van den Driessche, D. Kirschner and A.-A. Yakubu (2002b), Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory, Springer, New York.

    Google Scholar 

  21. Castillo-Chavez, C., W. Huang and J. Li (1996), Competitive exclusion in gonorrhea models and other sexually transmitted diseases, SIAM J. Appl. Math., 56, 494–508.

    Article  MathSciNet  MATH  Google Scholar 

  22. Castillo-Chavez, C., W. Huang and J. Li (1999), Competitive exclusion and coexistence of multiple strains in an SIS STD model, SIAM J. Appl. Math., 59, 1790–1811.

    Article  MathSciNet  MATH  Google Scholar 

  23. Castillo-Chavez, C. and H.R. Thieme (1995), Asymptotically autonomous epidemic models, Mathematical Population Dynamics: Analysis of Heterogeneity Vol. One: Theory of Epidemics (O. Arino, D. Axelrod, M. Kimmel, M. Langlais; eds.), 33–50. Wuerz, Winnipeg.

    Google Scholar 

  24. Charles, S., S. Morand, J.L. Chassé and P. Auger (2002), Host patch selection induced by parasitism: basic reproduction ratio R 0 and optimal virulence, Theor. Pop. Biol., 62, 97–109.

    Article  MATH  Google Scholar 

  25. Clayton, D.H.; J. Moore (1997), Host-Parasite Evolution: General Principles and Avian Models, Oxford University Press, Oxford.

    Google Scholar 

  26. Davies, C.M.; J.P. Webster, M.E.J. Woolhouse (2000), Trade-offs in the evolution of virulence in an indirectly transmitted macroparasite, Proc. Royal Soc. London, B, 268, 251–257.

    Article  Google Scholar 

  27. Dawns, J.H.P., J.R. Gog (2002), The onset of oscillatory dynamics of models of multiple disease strains, J. Math. Biol., 45, (2002), 471–510.

    Article  MathSciNet  Google Scholar 

  28. Day, T. (2001), Parasite transmission modes and the evolution of virulence, Evolution, 55, 2389–2400.

    Article  Google Scholar 

  29. Day, T. (2002a), Virulence evolution via host exploitation and toxin production in spore-producing pathogens, Ecology Letters, 5, 471–476.

    Article  Google Scholar 

  30. Day, T. (2002b), On the evolution of virulence and the relationship between various measures of mortality, Proc. Royal Soc. London, B 269, 1317–1323.

    Article  Google Scholar 

  31. Day, T. and S.R. Proulx (2004), A general theory for the evolutionary dynamics of virulence, Amer. Nat., 163, E40–E63.

    Article  Google Scholar 

  32. Dieckmann, U. (2002a), Adaptive dynamics of pathogen-host interactions, In Dieckmann, U., J.A.J. Metz, M.W. Sabelis, K. Sigmund, Adaptive Dynamics of Infectious Diseases: in Pursuit of Virulence Management, International Institute for Applied Systems Analysis, Cambridge University Press, Cambridge. pp. 39–59

    Google Scholar 

  33. Dieckmann, U., J.A.J. Metz, M.W. Sabelis, K. Sigmund (2002b), Adaptive Dynamics of Infectious Diseases: in Pursuit of Virulence Management, International Institute for Applied Systems Analysis, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  34. Diekmann, O. and J.A.P. Heesterbeek (2000), Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, Chichester.

    Google Scholar 

  35. Dietz, K. (1975), Transmission and control of arbovirus diseases, Epidemiology (D. Ludwig, K.L. Cooke, eds.), 104–119, SIAM, Philadelphia.

    Google Scholar 

  36. Esteva, L. and C. Vargas (2003), Coexistence of different serotypes of dengue virus, J. Math. Biol., 46, 31–47.

    Article  MathSciNet  MATH  Google Scholar 

  37. Ewald, P.W. (1984), The Evolution of Infectious Disease, Oxford University Press, Oxford.

    Google Scholar 

  38. Ewald, P.W. (2002), Plague Time: the New Germ Theory of Disease, Anchor Books, New York.

    Google Scholar 

  39. Ewald, P.W. and G. De Leo (2002), Alternative transmission modes and the evolution of virulence, In Dieckmann, U.; J.A.J. Metz, M.W. Sabelis, K. Sigmund, Adaptive Dynamics of Infectious Diseases: in Pursuit of Virulence Management, International Institute for Applied Systems Analysis, Cambridge University Press, Cambridge. pp. 10–25

    Google Scholar 

  40. Faeth, S.H. (2002), Are endophytic fungi defensive plant mutualists?, Oikos, 98, 25–36.

    Article  Google Scholar 

  41. Faeth, S.H. and T.L. Bultman (2002), Endophytic fungi and interactions among host plants, herbivores, and natural enemies, In Tscharntke, T. and B.A. Hawkins, Multitrophic Level Interactions, 89–123, Cambridge University Press, Cambridge.

    Google Scholar 

  42. Faeth, S.H. and T.J. Sullivan (2003), Mutualistic asexual endophytes in a native grass are usually parasitic, The American Naturalist, 161, 310–325.

    Article  Google Scholar 

  43. Feath, S.H., K.P. Hadeler, H.R. Thieme, An apparent paradox of horizontal and vertical desease transmission, J. Biol. Dyn. (to appear)

    Google Scholar 

  44. Feng, Z. and J.X. Velasco-Hernández (1997), Competitive exclusion in a vector-host model for dengue fever, J. Math. Biol., 35, 523–544

    Article  MathSciNet  MATH  Google Scholar 

  45. Ganusov, V.V., C.T. Bergstrom and R. Antia (2002), Within-host population dynamics and the evolution of microparasites in a heterogeneous host population, Evolution, 56, 213–223.

    Article  Google Scholar 

  46. Gao, L.Q., J. Mena-Lorca and H.W. Hethcote (1995), Four SEI endemic models with periodicity and separatices, Math. Biosci., 128, 157–184.

    Article  MathSciNet  MATH  Google Scholar 

  47. Garrett, L. (1995), The Coming Plague, Penguin Books, New York.

    Google Scholar 

  48. Gog, J.R. and J. Swinton (2002), A status-based approach to multiple strain dynamics, J. Math. Biol., 44, 169–184.

    Article  MathSciNet  MATH  Google Scholar 

  49. Grenfell, B.T. and A.P. Dobson (1995), Ecology of Infectious Diseases in Natural Populations, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  50. Hadeler, K.P. (1991), Homogeneous models in mathematical biology, Mitt. Math. Ges. Hamburg, 12, 549–557.

    MathSciNet  MATH  Google Scholar 

  51. Hadeler, K.P. (1992), Periodic solutions of homogeneous equations, J. Differential Equations, 95, 183–202.

    Article  MathSciNet  MATH  Google Scholar 

  52. Haraguchi, Y. and A. Sasaki (2000), The evolution of parasite virulence and transmission rate in a spatially structured population, J. Theor. Biol., 203, 85–96.

    Article  Google Scholar 

  53. Hatcher, M.J., D.E. Taneyhill and A.M. Dunn (1999), Population dynamics under parasitic sex ratio distortion, Theor. Pop. Biol., 56, 11–28.

    Article  MATH  Google Scholar 

  54. Hethcote, H.W. (2000), The mathematics of infectious diseases, SIAM Review 42, 599–653.

    Article  MathSciNet  MATH  Google Scholar 

  55. Hethcote, H.W., L.Q. Gao and J. Mena-Lorca (1996), Variations on a theme of SEI endemic models, In Martelli, M., K.L. Cooke, E. Cumberbatch, B. Tang and H.R. Thieme, Differential Equations and Applications to Biology and Industry, 191–207, World Scientific, Singapore.

    Google Scholar 

  56. Hudson, P.J., A. Rizzoli, B.T. Grenfell, J.A.P. Heesterbeek and A.P. Dobson (2002), The Ecology of Wildlife Diseases, Oxford University Press, Oxford.

    Google Scholar 

  57. Hutchinson, E. (1978), An Introduction to Population Ecology, Yale University Press, New Haven.

    MATH  Google Scholar 

  58. Iannelli, M., M. Marcheva and X.-Z. Li (2005), Strain replacement in an epidemic model with perfect vaccination, Math. Biosci. 195, 23–46.

    Article  MathSciNet  MATH  Google Scholar 

  59. Lenski, R.E. and B.R. Levin (1995), Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities, The American Naturalist 125, 585–602.

    Article  Google Scholar 

  60. Levin, B.R. (1996), The evolution and maintenance of virulence in microparasites, Emerging Infectious Diseases, 2, 93–102.

    Article  Google Scholar 

  61. Levin, B.R. and R.E. Lenski (1985), Bacteria and phage: a model system for the study of the ecology and co-evolution of hosts and parasites, In D. Rollinson and R.M. Anderson Ecology and Genetics of Host-Parasite Interactions, 227–224, The Linnean Society of London, Academic Press.

    Google Scholar 

  62. Levin, B.R., F.M. Stewart and L. Chao (1977), Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage, Amer. Nat., 111, 3–24.

    Article  Google Scholar 

  63. Levin, S.A. (1970), Community equilibria and stability, and an extension of the competitive exclusion principle, Amer. Nat., 117, 413–423.

    Article  Google Scholar 

  64. Levin, S.A. (1999), Fragile Domininion: Complexity and the Commons, Perseus Books, Reading, MA.

    Google Scholar 

  65. Levin, S.A. and D. Pimentel (1981), Selection of intermediate rates of increase in parasite-host systems, Amer. Nat., 117, 308–315.

    Article  MathSciNet  Google Scholar 

  66. Li, J., Z. Ma, S.P. Blythe and C. Castillo-Chavez (2003), Coexistence of pathogens in sexually-transmitted disease models, J. Math. Biol., 47, 547–568.

    Article  MathSciNet  MATH  Google Scholar 

  67. Lin, J., V. Andreasen and S.A. Levin (1999), Dynamics of influenza A drift: the linear strain model, Math. Biosci., 162, 33–51.

    Article  MathSciNet  MATH  Google Scholar 

  68. Lipsitch, M. and M.A. Nowak (1995a), The evolution of virulence in sexually transmitted HIV/AIDS, J. Theor. Biol., 174, 427–440.

    Article  Google Scholar 

  69. Lipsitch, M., M.A. Nowak, D. Ebert and R.M. May (1995b), The population dynamics of vertically and horizontally transmitted parasites, Proc. R. Soc. London, B 260, 321–327.

    Article  Google Scholar 

  70. Lipsitch, M., S. Siller and M.A. Nowak (1996), The evolution of virulence in pathogens with vertical and horizontal transmission, Evolution, 50, 1729–1741.

    Article  Google Scholar 

  71. Martcheva, M., M. Iannelli and X.-Z. Li, Competition and coexistence of strains: the impact of vaccination (preprint)

    Google Scholar 

  72. May, R.M. (2001), Stability and Complexity in Model Ecosystems, 8th printing, Princeton University Press, Princeton.

    MATH  Google Scholar 

  73. Metz, J.A.J., S.D. Mylius and O. Diekmann (1996), When Does Evolution Optimise? On the Relation between Types of Density Dependence and Evolutionarily Stable Life History Parameters, Working Paper WP-96-04, IIASA, Laxenburg.

    Google Scholar 

  74. Mylius, S.D. and O. Diekmann (2001), The resident strikes back: invader-induced switching of resident attractor, J. Theor. Biol., 211, 297–311.

    Article  Google Scholar 

  75. Nuño, M., Z. Feng, M. Martcheva and C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM J. Appl. Math., 65 (2005), 964–982.

    Article  MathSciNet  MATH  Google Scholar 

  76. O’Neill, S.L., J.H. Werren and A.A. Hoffmann (1997), Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, Oxford Univ. Press, Oxford.

    Google Scholar 

  77. Pugliese, A. (2002a), Virulence evolution in macro-parasites In Castillo-Chavez, C., S. Blower, P. van den Driessche, D. Kirschner and A.-A. Yakubu, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: an Introduction, Springer, New York, pp. 193–213

    Google Scholar 

  78. Pugliese, A. (2002b), On the evolutionary coexistence of parasite strains, Math. Biosci., 177&178, 355–375.

    Article  MathSciNet  Google Scholar 

  79. Rass, L. and J. Radcliffe (2003), Spatial Deterministic Epidemics, AMS, Providence.

    MATH  Google Scholar 

  80. Regoes, R.R., M.A. Nowak and S. Bonhoeffer (2000), Evolution of virulence in a heterogeneous host population, Evolution, 54, 64–71.

    Article  Google Scholar 

  81. Saunders, I.W. (1981), Epidemics in competition, J. Math. Biol. 11, 311–318.

    Article  MathSciNet  MATH  Google Scholar 

  82. Schulthess, F.M. and S.H. Faeth (1998), Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festucca arizonica), Mycologia, 90, 569–578.

    Google Scholar 

  83. Stearns, S.C. (1999), Evolution in Health and Disease, Oxford Univ. Press, Oxford, New York.

    Google Scholar 

  84. Tanaka, M.M. and M.W. Feldman (1999), Theoretical considerations of cross-immunity, recombination and the evolution of new parasitic strains, J. Theor. Biol., 198, 145–163.

    Article  Google Scholar 

  85. Thieme, H.R. (1992), Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci., 111, 99–130.

    Article  MathSciNet  MATH  Google Scholar 

  86. Thieme, H.R. (1993), Persistence under relaxed point-dissipativity (with applications to an endemic model), SIAM J. Math. Anal., 24, 407–435.

    Article  MathSciNet  MATH  Google Scholar 

  87. Thieme, H.R. (2003), Mathematics in Population Biology, Princeton University Press, Princeton.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thieme, H.R. (2007). Pathogen Competition and Coexistence and the Evolution of Virulence. In: Takeuchi, Y., Iwasa, Y., Sato, K. (eds) Mathematics for Life Science and Medicine. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34426-1_6

Download citation

Publish with us

Policies and ethics