Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhikari TB, Anderson JM, Goodwin SB (2003) Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology 93:1158–1164

    CAS  PubMed  Google Scholar 

  2. Adhikari TB, Cavaletto JR, Dubcovsky J, Gieco J, Schlatter AR, Goodwin SB (2004a) Molecular mapping of the Stb4 gene for resistance to septoria tritici blotch in wheat. Phytopathology 94:1198–1206

    CAS  PubMed  Google Scholar 

  3. Adhikari T, Yang, X, Cavaletto JR, Hu X, Buechley G, Ohm HW, Shaner G, Goodwin SB (2004b) Molecular tmapping of Stb1, a potentially durable gene for resistance to septoria tritici blotch in wheat. Theor Appl Genet 109:944–953

    Article  PubMed  CAS  Google Scholar 

  4. Adhikari TB, Wallwork H, Goodwin SB (2004c) Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop Sci 44:1403–1411

    Article  CAS  Google Scholar 

  5. Ahmad M(2000)Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor Appl Genet 101:892–896

    Google Scholar 

  6. Ahmad M (2002) Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome 45:646–651

    Article  PubMed  CAS  Google Scholar 

  7. Ahmed TA, Tsujimoto H, Sasakuma T (2000) Identification of RFLP markers linked with heading date and its heterosis in hexaploid wheat. Euphytica 116:111–119

    Article  CAS  Google Scholar 

  8. Ahn SN, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    Article  PubMed  CAS  Google Scholar 

  9. Ahn S, Anderson JA, Sorrells ME, Tanksley SD(1993)Homeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483–490

    Article  PubMed  CAS  Google Scholar 

  10. Akhunov ED, David L, Chao S, Lazo G, Anderson OD, Qi LL, Echalier B, Gill BS, Linkiewicz AM, Dubcovsky J et al (2003a) GC composition and codon usage in genes of inbreeding and outcrossing Triticeae species. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 203–206

    Google Scholar 

  11. Akhunov ED, Goodyear AW, Geng S, Qi L-L, Echalier B, Gill BS, Miftahudin Gustafson JP, Lazo G, Chao SM et al (2003b) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  PubMed  CAS  Google Scholar 

  12. Almanza-Pinzon MI, Khairallah M, Fox PN, Warburton ML (2003) Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. Euphytica 130:77–86

    Article  CAS  Google Scholar 

  13. Alpert KB, Tanksley SD (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw22: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA 93:15503–15507

    Article  PubMed  CAS  Google Scholar 

  14. Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Fetch JM, Song QJ, Cregan PB et al (2001) DNA markers for fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168

    Article  CAS  Google Scholar 

  15. Angerer N, Lengauer D, Steiner B, Lafferty J, Loeschenberger F, Buerstmayr H (2003) Validation of molecular markers linked to two Fusarium head blight resistance QTLs in wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1096–1098

    Google Scholar 

  16. Appels R (2003) A consensus molecular genetic map for wheat-a cooperative international effort. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 211–214

    Google Scholar 

  17. Appels R, Francki M, Chibbar R (2003) Advances in cereal functional genomics. Funct Integr Genom 3:1–24

    CAS  Google Scholar 

  18. Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Article  CAS  Google Scholar 

  19. Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM (2001) Chromosomal location of a gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat’ synthetic 6x’. Theor Appl Genet 103:758–764

    Article  CAS  Google Scholar 

  20. Arzani A, Peng JH, Lapitan NLV (2003) Genetic mapping of genes coding for Russian wheat aphid resistance (Dn4) and glume colour (Rg2) using microsatellite markers. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1099–1101

    Google Scholar 

  21. Autrique E, Singh RP, Tanksley SD, Sorrells ME (1995)Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38:75–83

    CAS  PubMed  Google Scholar 

  22. Autrique E, Nachit MM, Monneveux P, Tanksley SD, Sorrells ME (1996) Genetic diversity in durum wheat based on RFLPs, morphophysiological traits, and coefficient of parentage. Crop Sci 36:735–742

    Article  Google Scholar 

  23. Ayala L, Henry M, Gonzalez-de-Leon D, van Ginkel M, Mujeeb-Kazi A, Keller B, Khairallah M (2001) A diagnostic molecular marker allowing the study of Th intermedium-derived resistance to BYDV in bread wheat segregating populations. Theor Appl Genet 102:942–949

    Article  CAS  Google Scholar 

  24. Bai GH, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance inwheat. Phytopathology 89:343–348

    CAS  PubMed  Google Scholar 

  25. Bai GH, Guo PG, Kolb FL (2003) Genetic relationships among head blight resistant cultivars of wheat assessed on the basis of molecular markers. Crop Sci 43:498–507

    Article  CAS  Google Scholar 

  26. Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan HS, Gupta PK(2004)DNA polymorphism among 18 species of Triticum-Aegilops complex using wheat EST-SSRs. Plant Sci 166:349–356

    Article  CAS  Google Scholar 

  27. Barcaccia G, Molinari L, Porfiri O, Veronesi F (2002)Molecular characterization of emmer (Triticum dicoccom Schrank) Italian landraces. Genet Resource Crop Evol 49:415–426

    Google Scholar 

  28. Bariana HS, Hayden MJ, Ahmed NU, Bell JA, Sharp PJ, McIntosh RA (2001) Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust J Agric Res 52:1247–1255

    Article  CAS  Google Scholar 

  29. Bariana HS, Brown GN, Ahmed NU, Khatkar S, Conner RL, Wellings CR, Haley S, Sharp PJ, Laroche A (2002) Characterisation of Triticum vaviloviiderived stripe rust resistance using genetic, cytogenetic and molecular analyses and its markerassisted selection. Theor Appl Genet 104:315–320

    Article  PubMed  CAS  Google Scholar 

  30. Barloy D, Lemoine J, Dredryver F, Jahier J (2000) Molecular markers linked to the Aegilops variabilisderived rootknot nematode resistance gene Rknmn1 in wheat. Plant Breed 119:169–172

    Article  CAS  Google Scholar 

  31. Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261–1271

    Article  CAS  Google Scholar 

  32. Barrett BA, Kidwell KK, Fox PN (1998) Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific Northwest. Crop Sci 38:1271–1278

    Article  CAS  Google Scholar 

  33. Barrett B, Bayram M, Kidwell K (2002) Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breed 121:400–406

    Article  CAS  Google Scholar 

  34. Ben Amer IM, Borner A, Röder MS (2001) Detection of genetic diversity in Libyan wheat genotypes using wheat microsatellite markers. Genet Resource Crop Evol 48:579–585

    Article  Google Scholar 

  35. Benard V, Boyer D, Bastide C, Rouviere C, Duranton N, Praud S, Dufour P, Murigneux A, Sourdille P, Bernard M (2003) Chromosomal location of wheat cDNA clones derived from expressed sequence tags (ESTs). In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 925–927

    Google Scholar 

  36. Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: Microcolinearity and its many exceptions. Plant Cell 12:1021–1029

    Article  PubMed  CAS  Google Scholar 

  37. Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133

    Article  PubMed  CAS  Google Scholar 

  38. Bennetzen JL, Ramakrishna W (2002) Numerous small rearrangements of gene content, order and orientation differentiate grass genomes. Plant Mol Biol 48:821–827

    Article  PubMed  CAS  Google Scholar 

  39. Bernatzky R, Tanksley SD (1986) Toward a saturated linkage map in tomato based on isozyme and random cDNA sequences. Genetics 112:887–898

    CAS  PubMed  Google Scholar 

  40. Blanco A, Bellomo MP, Cenci A, Degiovanni C, Dovidio R, Iacono E, Laddomada, B, Pagnotta MA, Porceddu E, Sciancalepore A et al (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  41. Blazkova V, Bartos P, Park RF, Goyeau H (2002) Verifying the presence of leaf rust resistance gene Lr10 in sixteen wheat cultivars by use of a PCR-based STS marker. Cereal Res Commun 30:9–16

    CAS  Google Scholar 

  42. Boggini G, Vaccino P, Brandolini A, Cattaneo M(2003) Genetic variability of Strampelli bread wheat realisations detected by storage protein composition and by AFLP. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 101–104

    Google Scholar 

  43. Bohn M, Utz HF, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237

    Article  CAS  Google Scholar 

  44. Börner A (1999) Comparative genetic mapping in triticeae. In: van Raamsdonk LWD, den Nijs JCM (eds) Plant evolution in man-made habitats, Proc VIIth Symp IOPB, Amsterdam, pp 197–210

    Google Scholar 

  45. Börner A, Röder M, Korzun V (1997) Comparative molecular mapping of GA insensititive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theor Appl Genet 95:1133–1137

    Article  Google Scholar 

  46. Börner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100:245–248

    Article  Google Scholar 

  47. Börner A, Röder MS, Unger O, Meinel A (2000) The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet 100:1095–1099

    Article  Google Scholar 

  48. Börner A, Simon MR, Röder MS, Ayala FM, Cordo CA (2003) Molecular mapping of QTLs determining resistance/tolerance to biotic and abiotic stress in hexaploid wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 331–333

    Google Scholar 

  49. Botha A-M, Lacock L, van Niekerk C, Matsioloko MT, du Preez FB, Myburg AA, Kunert K, Cullis CA (2003) Gene expression profiling during Diuraphis noxia infestation of Triticum aestivum cv ‘Tugela DN’ using microarrays. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 334–338

    Google Scholar 

  50. Botstein D, White RL, Skolnick M, Davis RW(1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  51. Bougot Y, Lemoine J, Pavoine MT, Barloy D, Doussinault G (2002) Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat. Plant Breed 121:325–329

    Article  CAS  Google Scholar 

  52. Boukhatem N, Baret PV, Mingeot D, Jacquemin JM (2002) Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred populations. Theor Appl Genet 104:111–118

    Article  PubMed  CAS  Google Scholar 

  53. Bourdoncle W, Ohm HW (2003) Quantitative trait loci for resistance to Fusarium head blight in recombinant inbred wheat lines from the cross Huapei 57-2/Patterson. Euphytica 131:131–136

    Article  CAS  Google Scholar 

  54. Boyko EV, Gill KS, Mickelson-Young L, Nasuda S, Raupp WJ, Yiegle JN, Singh S, Hassawi DS, Frity AK, Namuth D et al (1999) A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat. Theor Appl Genet 99:16–26

    Article  CAS  Google Scholar 

  55. Boyko E, Kalendar R, Korzun V, Fellers J, Korol A, Schulman AH, Gill BS (2002) A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol 48:767–790

    Article  PubMed  CAS  Google Scholar 

  56. Brading PA, Verstappen ECP, Kema GHJ, Brown JKM (2002) A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the septoria tritici blotch pathogen. Phytopathology 92:439–445

    PubMed  Google Scholar 

  57. Branlard G, Bancel E, Merlino M, Hamon I, Amiour N (2003) Proteome analysis of the soluble proteins of wheat kernels in ITMI progeny In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int WheatGenet Symp, Paestum, Italy, pp 221–224

    Google Scholar 

  58. Breiman A, Graur D (1995) Wheat evolution. Israel J Plant Sci 43:85–98

    Google Scholar 

  59. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  PubMed  CAS  Google Scholar 

  60. Briney A, Wilson R, Potter RH, Barclay I, Crosbie G, Appels R, Jones MGK (1998) A PCR-based marker for selection of starch and potential noodle quality in wheat. Mol Breed 1998 4:427–433

    Article  CAS  Google Scholar 

  61. Brown-Guedira GL, Singh S, Fritz AK (2003) Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp armeniacum. Phytopathology 93:784–789

    PubMed  CAS  Google Scholar 

  62. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson, B, Kleinhofs A(2002) The barley stem rust-resistance gene Rpg1 is anovel disease-resistance gene with homology to receptor kinases. ProcNatlAcad SciUSA 99:9328–9333

    CAS  Google Scholar 

  63. Buckler ES, Thornsberry J (2002) Plantmoleculer diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  PubMed  CAS  Google Scholar 

  64. Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002)Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat, I: Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

    Article  PubMed  CAS  Google Scholar 

  65. Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508

    Article  PubMed  CAS  Google Scholar 

  66. Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thero-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet 105:585–593

    Article  PubMed  CAS  Google Scholar 

  67. Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L em. Thell and comparison with a map from wide cross. Theor Appl Genet 94:367–377

    Article  CAS  Google Scholar 

  68. Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet 96:933–940

    Article  CAS  Google Scholar 

  69. Cakir M, Appels R, Carter M, Loughman R, Francki M, Li C, Johnson J, Bhave M, Wilson R, McLean R et al (2003) Accelerated wheat breeding using molecular marker. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 117–120

    Google Scholar 

  70. Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Girox MJ, Hareland G, Fulcher RG, Sorrells ME Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  71. Cao WG, Scoles G, Hucl P, Chibbar RN (2000) Phylogenetic relationships of five morphological groups of hexaploid wheat (Triticum aestivum L em Thell) based on RAPD analysis. Genome 43:724–727

    Article  PubMed  CAS  Google Scholar 

  72. Cao W, Hughes GR, Ma H, Dong Z (2001) Identification of molecular markers for resistance to Septoria nodorum blotch in durum wheat. Theor Appl Genet 102:551–554

    Article  CAS  Google Scholar 

  73. Cao S, Guo X, Liu D, Zhang X, Zhang A (2003) Preliminary gene-mapping of photoperiod-temperature sensitive genic male sterility in wheat (Triticum aestivum L). In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 928–930

    Google Scholar 

  74. Carollo V, Matthews DE, Lazo GR, Anderson OD (2003) Wheat maps on Grain Genes: Past, present and coming attractions. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 225–228

    Google Scholar 

  75. Carter M, Drake-Brockman F, Cakir M, Jones M, Appels R (2003) Conversion of RFLP markers into PCR based markers in wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 681–683

    Google Scholar 

  76. Cenci A, D’Ovidio R, Tanzarella OA, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to PM13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98:448–454

    Article  CAS  Google Scholar 

  77. Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp durum). Theor Appl Genet 107:931–939

    Article  PubMed  CAS  Google Scholar 

  78. Chagué V, Fahima T, Dahan A, Sun GL, Korol AB, Ronin YI, Grama A, Röder MS, Nevo E (1999) Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome 42:1050–1056

    Article  PubMed  Google Scholar 

  79. Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallota M, Cornish GB, Shariflou MR et al (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Agric Res 52:1089–1119

    Article  CAS  Google Scholar 

  80. Chao SP, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:493–504

    Article  Google Scholar 

  81. Chee PW, Elias EM, Anderson JA, Kianian SF (2001) Evaluation of a high grain protein QTL from Triticum turgidum L var dicoccoides in an adapted durum wheat background. Crop Sci 41:295–301

    Article  CAS  Google Scholar 

  82. Chen HB, Martin JM, Lavin M, Talbert LE (1994) Genetic diversity in hard red spring wheat-based on sequence-tagged-site PCR markers. Crop Sci 34:1628–1632

    Article  CAS  Google Scholar 

  83. Chen XM, Soria MA, Yan GP, Sun J, Dubcovsky J (2003) Development of sequence tagged site and cleaved amplified polymorphic sequence markers for wheat stripe rust resistance gene Yr5. Crop Sci 43:2058–2064

    Article  CAS  Google Scholar 

  84. Cheobtar SV, Röder MS, Börner A, Sivolap YM (2003) Microsatellite analysis of Ukrainian wheat varieties cultivated in 1912–2002. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 57–60

    Google Scholar 

  85. Cherukuri DP, Gupta SK, Charpe A, Koul S, Prabhu KV, Singh RB, Haq QMR, Chauhan SVS (2003) Identification of a molecular marker linked to an Agropyron elongatum-derived gene Lr19 for leaf rust resistance in wheat. Plant Breed 122:204–208

    Article  CAS  Google Scholar 

  86. Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bred wheat germplasm during the 20(th) century. Mol Breed 9:1–11

    Article  Google Scholar 

  87. Coe EH, Neuffer MG (1993) Gene loci and linkage map of corn (maize) (Zea mays L.) (2n=20). In: O’Brian SJ (ed) Genetic maps, locus maps of complex genomes, 6th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 6.157–6.189

    Google Scholar 

  88. Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A, Trudeau-Spanjers M, Chao S, Lazo GR, Hummel DD, Anderson OD, Qi LL et al (2004) A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168:625–637

    Article  PubMed  CAS  Google Scholar 

  89. Corbellini M, Perenzin M, Accerbi M, Vaccino P, Borghi B (2002) Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica 123:273–285

    Article  CAS  Google Scholar 

  90. Cox DR, Burmeister M, Price ER, Kim S, Mayers RM (1990) Radiation hybrid mapping-a somatic-cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250:245–250

    Article  PubMed  CAS  Google Scholar 

  91. Craven M, Prins R, Pretorius ZA (2003) Developement of AFLP markers for a wheat leaf rust resistance gene transferred from Triticum monococcum. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1124–1126

    Google Scholar 

  92. Davis GL, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S et al (1999) A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locusmap. Genetics 152:1137–1172

    PubMed  CAS  Google Scholar 

  93. Dear PH, Cook RR (1989) HAPPY mapping-a proposal for linkage mapping the human genome. Nucleic Acids Res 17:6795–6807

    PubMed  CAS  Google Scholar 

  94. de Bustos A, Rubio P, Soler C, Garcia P, Jouve N (2001) Marker assisted selection to improve HMW-glutenins in wheat. Euphytica 119:69–73

    Article  Google Scholar 

  95. Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995a) Cytologically based physical maps of the group-2 chromosomes of wheat. Theor Appl Genet 91:568–573

    CAS  Google Scholar 

  96. Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995b) Cytologically based physical maps of the group-3 chromosomes of wheat. Theor Appl Genet 91:780–782

    CAS  Google Scholar 

  97. de la Pena RC, Murray TD, Jones SS (1996) Linkage relations among eyespot resistance gene Pch2, endopeptidase Ep-A1b, and RFLP marker Xpsr121 on chromosome 7A of wheat. Plant Breed 115:273–275

    Article  Google Scholar 

  98. de la Pena RC, Murray TD, Jones SS (1997) Identification of an RFLP interval containing Pch2 on chromosome 7AL in wheat. Genome 40:249–252

    PubMed  CAS  Google Scholar 

  99. del Blanco IA, Frohberg RC, Stack RW, Berzonsky WA, Kianian SF (2003) Detection of QTL linked to Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines. Theor Appl Genet 106:1027–1031

    PubMed  Google Scholar 

  100. Demeke T, Morris CF, Campbell KG, King GE, Anderson JA, Chang H-G (2001) Wheat polyphenol oxidase: distribution and genetic mapping in three inbred line populations. Crop Sci 41:1750–1757

    Article  CAS  Google Scholar 

  101. Deng ZY, Zhang XQ, Wang XP, Jing JK, Wang DW (2004) Identification and molecular mapping of a stripe rust resistance gene from a common wheat line Qz180. Acta Bot Sin 46:236–241

    CAS  Google Scholar 

  102. Devos KM, Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84:567–572

    Article  Google Scholar 

  103. Devos KM, Gale MD (1993) Extended genetic maps of the homoeologous group-3 chromosomes of wheat, rye and barley. Theor Appl Genet 85:649–652

    CAS  Google Scholar 

  104. Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    Article  PubMed  CAS  Google Scholar 

  105. Devos KM, Atkinson MD, Chinoy CN, Liu CJ, Gale MD (1992) RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939

    Article  CAS  Google Scholar 

  106. Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojć P, Xie DX, Gale MD (1993a) Chromosomal rearrangement in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    CAS  Google Scholar 

  107. Devos KM, Millan T, Gale MD (1993b) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792

    CAS  Google Scholar 

  108. Devos KM, Chao S, Li Y, Simonetti MC, Gale MD (1994) Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes. Genetics 138:1287–1292

    PubMed  CAS  Google Scholar 

  109. Devos KM, Beales J (2003) Single nucleotide polymorphisms (SNPs) associated with the vernalization response in wheat In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 937–940

    Google Scholar 

  110. Dholakia BB, Ammiraju JSS, Santra DK, Singh H, Katti MV, Lagu MD, Tamhankar SA, Rao VS, Gupta VS, Dhaliwal HS, Ranjekar PK (2001) Molecular marker analysis of protein content using PCR-basedmarkers in wheat. Biochem Genet 39:325–338

    Article  PubMed  CAS  Google Scholar 

  111. Dieguez MJ, Ingala L, Perera E, Sacco F, Naranjo T (2003) Physical mapping of AFLPs on chromosome 6BL of wheat, which includes the Lr3 gene for leaf rust resistance. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 937–940

    Google Scholar 

  112. Dilbirligi M, Gill KS (2003) Identification and characterization of candidate expressed genes of wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 940–942

    Google Scholar 

  113. Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350 kb region on rice chromosome 2. Funct Integr Genom 4:59–66

    Article  CAS  Google Scholar 

  114. Donini P, Elias ML, Bougourd SM, Koebner RMD (1997) AFLP fingerprinting reveals pattern differences between template DNA extracted from different plant organs. Genome 40:521–526

    CAS  PubMed  Google Scholar 

  115. Donini P, Stephenson P, Bryan GJ, Koebner RMD (1998) The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genet Resource Crop Evol 45:415–421

    Article  Google Scholar 

  116. Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917

    Article  Google Scholar 

  117. Dreher K, Khairallah M, Ribaut JM, Morris M (2003) Money matters (I): costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221–234

    Article  Google Scholar 

  118. Dreisigacker S, Zhang P, Warburton ML, Van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2003) SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments. Crop Sci 44:381–388

    Article  Google Scholar 

  119. Driscoll CJ (1966) Gene-centromere distances in wheat by aneuploid F2 observations. Genetics 54:131–135

    PubMed  CAS  Google Scholar 

  120. Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  121. Dunford RP, Kurata N, Laurie DA, Money TA, Minobe Y, Moore G (1995) Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res 23:2724–2728

    PubMed  CAS  Google Scholar 

  122. Dvorák J, Luo M-C, Yang Z-L, Zhang H-B (1998a) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  Google Scholar 

  123. Dvorák J, Luo MC, Yang ZL (1998b) Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and crossfertilizing Aegilops species. Genetics 148:423–434

    PubMed  Google Scholar 

  124. Dvorák J, Akhunov ED, Akhunov AR, Luo M-C, Linkiewicz AM, Dubcovsky J, Hummel D, Lazo G, Chao S, Anderson OD et al (2003) New insights into the organization and evolution of wheat genomes. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 247–253

    Google Scholar 

  125. Dweikat I, Ohm H, Patterson F, Cambron S (1997) Identification of RAPD markers for 11 Hessian fly resistance genes in wheat. Theor Appl Genet 94:419–423

    Article  CAS  Google Scholar 

  126. Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ, Henry RJ, Henschke PH, Carter M (2001) Implementation of markers in Australian wheat breeding. Aust J Agric Res 52:1349–1356

    Article  CAS  Google Scholar 

  127. Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ (2002) Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology 92:527–533

    CAS  PubMed  Google Scholar 

  128. Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the RhtB1b and RhtD1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  PubMed  CAS  Google Scholar 

  129. Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum x Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    Article  PubMed  CAS  Google Scholar 

  130. Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  131. Eriksen L, Afshari F, Christiansen MJ, McIntosh RA, Jahoor A, Wellings CR (2003a) Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V. Theor Appl Genet 108:567–575

    PubMed  Google Scholar 

  132. Eriksen L, Borum F, Jahoor A (2003b) Inheritance and localisation of resistance to Mycosphaerella graminicola causing septoria tritici blotch and plant height in the wheat (Triticum aestivum L) genome with DNA markers. Theor Appl Genet 107:415–527

    Article  CAS  Google Scholar 

  133. Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRS and genomic SSRs. Euphytica 119:39–43

    Article  CAS  Google Scholar 

  134. Fahima T, Röder MS, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 96:187–195

    Article  CAS  Google Scholar 

  135. Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat populations, populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98:434–447

    Article  CAS  Google Scholar 

  136. Fahima T, Röer MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphismin natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29

    Article  PubMed  CAS  Google Scholar 

  137. Fahima T, Ramachandran S, Krugman T, Röer MS, Nevo E, Feldman MW (2003) Estimation of domestication times of wheat and barley based on microsatellite polymorphism. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 481–483

    Google Scholar 

  138. Faris JD, Anderson JA, Francl LJ, Jordahl JG (1997) RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theor Appl Genet 94:98–103

    Article  CAS  PubMed  Google Scholar 

  139. Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed  CAS  Google Scholar 

  140. Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosomecontig spanning themajor domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  141. Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96:8265–8270

    Article  PubMed  CAS  Google Scholar 

  142. Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

    Article  PubMed  CAS  Google Scholar 

  143. Feuillet, C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivumL) genome. Proc Nat Acad Sci USA 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  144. Fischer G, Ibrahim SM, Brockmann GA, Pahnke J, Bartocci E, Thiesen H-J, Serrano-Fernandez P, Möler S (2003) Expressionview: visualization of quantitative trait loci and gene-expression data in Ensembl. Genome Biol 4:R477

    Article  Google Scholar 

  145. Flint-Garcia SA, Thornsberry JM, Buckler IV ES (2003) Structure of linkage disequilbrium in plants. Annu Rev Plant Biol 54:357–374

    Article  PubMed  CAS  Google Scholar 

  146. Francki MG, Appels R, Hunter A, Bellgard M (2003) Comparative organization of 3BS and 7AL using wheat-rice synteny. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 254–257

    Google Scholar 

  147. Friebe B, Jiang J, Raupp J, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to disease and pests: current status. Euphytica 91:59–87

    Google Scholar 

  148. Gale MD, Atkinson MD, Chinoy CN, Harcourt R, Jia J, Li QY, Devos KM (1995) Genetic maps of hexaploid wheat. In: Chen S (ed) Proc 8th Int Wheat Genet Symp. China Agricultural Scientech Press, Beijing, pp 29–40

    Google Scholar 

  149. Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  150. Galiba G, Quarrie SA, Sutka J, Morgunov A, Snape JW (1995) RFLP mapping of the vernalisation (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  Google Scholar 

  151. Gallego F, Feuillet C, Messmer M, Penger A, Graner A, Yano M, Sasaki T, Keller B (1998) Comparative mapping of the two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley. Genome 41:328–336

    Article  PubMed  CAS  Google Scholar 

  152. Gandon B, Chiquet V, Guyomarc’h H, Baron C, Sourdille P, Specel S, Foisset N, Murigneux A, Dufour P, Bernard M (2002) Development of microsatellite markers for wheat genetic mapping improvement. In: Plant, Animal & Microbe Genomes X Conf, San Diego, CA. http://www.intlpag. org/pag/10/abstracts/PAGX_P187.html

    Google Scholar 

  153. Gao LF, Tang JF, Li HW, Jia JZ (2003) Analysis ofmicrosatellites in major crops assessed by computational and experimental approaches. Mol Breed 12:245–261

    Article  CAS  Google Scholar 

  154. Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZW, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400

    Article  PubMed  CAS  Google Scholar 

  155. Gardiner J, Schroeder S, Polacco ML, Sanchez-Villeda H, Fang ZW, Morgante M, Landewe T, Fengler K, Useche F, Hanafey M, Tingey S, Chou H, Wing R, Soderlund C, Coe EH (2004) Anchoring 9,371 maize expressed sequence tagged unigenes to the bacterial artificial chromosome contig map by two-dimensional overgo hybridization. Plant Physiol 134:1317–1326

    Article  PubMed  Google Scholar 

  156. Garg M, Singh S, Singh B, Singh K, Dhaliwal HS (2001) Estimates of genetic similarities and DNA fingerprinting of wheats (Tritium species) and triticale cultivars using molecular markers. Indian J Agril Sci 71:438–443

    CAS  Google Scholar 

  157. Gaut BS (2001) Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res 11:55–66

    Article  PubMed  CAS  Google Scholar 

  158. Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytologist 154:15–28

    Article  CAS  Google Scholar 

  159. Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    PubMed  CAS  Google Scholar 

  160. Giese H, Holm-Jensen AG, Mathiassen H, Kjæ B, Rasmussen SK, Bay H, Jensen J (1994) Distribution of RAPD markers on a linkage map of barley. Hereditas 120:267–273

    Article  PubMed  CAS  Google Scholar 

  161. Gill KS (2004) Gene distribution in cereal genomes In: Gupta PK, Varshney RK (eds) Cereal Genomics. Kluwer, Dordrecht, pp 361–38

    Google Scholar 

  162. Gill KS, Gill BS (1994) Mapping in the realm of polyploidy: the wheat model. Bio Essays 16:841–846

    CAS  Google Scholar 

  163. Gill KS, Gill BS, Endo TR (1993) A chromosome regionspecificmapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma 102:374–381

    Article  CAS  Google Scholar 

  164. Gill KS, Gill BS, Endo TR, Taylor T (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891

    PubMed  CAS  Google Scholar 

  165. Gill KS, Gill BS, Boyko EV (1996b) Identification and high density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    PubMed  CAS  Google Scholar 

  166. Gill BS, Qi L, Echalier B, Chao S, Lazo G, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Dubcovsky J et al (2003) A transcriptome map of wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 261–264

    Google Scholar 

  167. Gilpin BJ, McCallum JA, Frew GM, Timmerman-Vaughan GM (1997) A linkage map of the pea (PisumsativumL) genome containing cloned sequences of known functions and expressed sequence tags (ESTs). Theor Appl Genet 95:1289–1299

    Article  CAS  Google Scholar 

  168. Gladysz A, Steiner B, Castro M, Burestmayr H (2003) Transfer of QTLs for resistance to Fusarium head blight from bread wheat into durum wheat by marker-assisted breeding. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 715–717

    Google Scholar 

  169. Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L ssp japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  170. Gold J, Harder D, Townley-Smith F, Aung T, Procunier J (1999) Development of a molecular marker for rust resistance genes Sr39 andLr35 inwheatbreeding lines. Electr J Biotech 2:35–40

    Google Scholar 

  171. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  172. Groenewald JZ, Marais AS, Marais GF (2003) Amplified fragment length polymorphism-derived microsatellite sequence linked to the Pch1 and Ep-D1 loci in commonwheat. Plant Breed 122:83–85

    Article  CAS  Google Scholar 

  173. Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F, Charmet D (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a whitexred grain bread-wheat cross. Theor Appl Genet 104:39–47

    Article  PubMed  CAS  Google Scholar 

  174. Grunberg AM, Costa JM, Kratochvil RJ (2001) Amplified fragment length polymorphismin a selected sample of soft red winter wheat. Cereal Res Commun 29:251–258

    CAS  Google Scholar 

  175. Gudu S, Laurie DA, Kasha KJ, Xia JJ, Snape JW (2002) RFLP mapping of a Hordeum bulbosum gene highly expressed inpistils andits relationship tohomoeologous loci inother Gramineae species. Theor Appl Genet 105:271–276

    Article  PubMed  CAS  Google Scholar 

  176. Guo PG, Bai GH, Shaner GE (2003) AFLP and STS tagging of a major QTL for Fusarium head blight resistance in wheat. Theor Appl Genet 106:1011–1017

    PubMed  CAS  Google Scholar 

  177. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  178. Gupta PK, Varshney RK (2004) Cereal genomics: An overview. In: Gupta PK, Varshney RK (eds) Cereal Genomics. Kluwer, Dordrecht, pp 1–18

    Google Scholar 

  179. Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  180. Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Röder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J et al (2002a) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  181. Gupta PK, Varshney RK, Prasad M (2002b) Molecular markers: principles and methodology. In: Jain SM, Brar DS, Ahloowalia BS (eds) Molecular Techniques in Crop Improvement. Kluwer, Dordrecht, pp 9–54

    Google Scholar 

  182. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genom 270:315–323

    Article  CAS  Google Scholar 

  183. Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    Article  PubMed  CAS  Google Scholar 

  184. Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genom 4:47–58

    Article  CAS  Google Scholar 

  185. Han F, Fedak G, Ouellet T, Somers D (2003) Isolation, characterization and physical mapping of differential clones from SSH library for Fusarium head blight (FHB) resistance In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 952–954

    Google Scholar 

  186. Harker N, Rampling LR, Shariflou MR, Hayden MJ, Holton TA, Morell MK, Sharp PJ, Henry RJ, Edwards KJ (2001) Microsatellites as markers for Australian wheat improvement. Aust J Agric Res 52:1121–1130

    Article  CAS  Google Scholar 

  187. Hartl L, Weiss H, Zeller FJ, Jahoor A (1993) Use of RFLP markers for the identification of alleles of the Pm3 locus conferring powdery mildew resistance in wheat (Triticum aestivum L). Theor Appl Genet 86:959–963

    Article  CAS  Google Scholar 

  188. Hartl L, Weiss H, Stephan U, Zeller FJ, Jahoor A (1995) Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L). Theor Appl Genet 90:601–606

    Article  Google Scholar 

  189. Hartl L, Mohler V, Zeller FJ, Hsam SLK, Schweizer G (1999) Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat (Triticum aestivum L). Genome 42:322–329

    Article  CAS  Google Scholar 

  190. Harushima Y, Yano M, Shomura A, Sato M, Shimono T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A et al (1998) A high density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    PubMed  CAS  Google Scholar 

  191. Hazen SP, Leroy P, Ward RW (2002) AFLP in Triticum aestivum L: patterns of genetic diversity and genome distribution. Euphytica 125:89–102

    Article  CAS  Google Scholar 

  192. Helguera M, Khan IA, Dubcovsky J (2000) Development of PCR markers for wheat leaf rust resistance gene Lr47. Theor Appl Genet 101:625–631

    Article  CAS  Google Scholar 

  193. Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    Article  CAS  Google Scholar 

  194. Hernandez P, Dorado G, Prieto P, Gimenez MJ, Ramirez MC, Laurie DA, Snape JW, Martin A (2001) A core genetic map of Hordeum chilense and comparisons with maps of barley (Hordeum vulgare) and wheat (Triticum aestivum). Theor Appl Genet 102:1259–1264

    Article  CAS  Google Scholar 

  195. Heun M, SchaferPregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  196. Hohmann U, Graner A, Endo TR, Gill BS, Herrmann RG (1995) Comparison of wheat physical maps with barley linkage maps for group 7 chromosomes. Theor Appl Genet 91:618–626

    CAS  Google Scholar 

  197. Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71

    Article  CAS  Google Scholar 

  198. Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ, Kianian PMA, Simons K, Gehlhar S, Rust JL, Syamala RR et al (2004a) A chromosome bin map of 2,148 expressed sequence tag loci of wheat homoeologous group 7. Genetics 168:687–699

    Article  PubMed  CAS  Google Scholar 

  199. Hossain KG, Riera-Lizarazu O, Kalavacharla V, Vales MI, Rust JL, Maan SS, Kianian SF (2004b) Molecular cytogenetic characterization of an alloplasmic durum wheat line with a portion of chromosome 1D of Triticum aestivum carrying the scs ae gene. Genome 47:206–214

    Article  PubMed  CAS  Google Scholar 

  200. Houshmand S, Knox RE, Clarke FR, Clarke JM (2003) Microsatellite markers associated with sawfly cutting in durum wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1151–1153

    Google Scholar 

  201. Hu XY, Ohm HW, Dweikat I (1997) Identification of RAPD markers linked to the gene Pm1 for resistance to powdery mildew in wheat. Theor Appl Genet 94:832–840

    Article  CAS  Google Scholar 

  202. Huang L, Gill BS (2001) An RGA like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet 103:1007–1013

    Article  CAS  Google Scholar 

  203. Huang XQ, Röder MS (2003) High-denisty genetic and physical mapping of the powdery mildew resistance gene Pm24 on chromosome 1D of wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 961–964

    Google Scholar 

  204. Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407–414

    Article  CAS  Google Scholar 

  205. Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    Article  PubMed  CAS  Google Scholar 

  206. Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003a) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  207. Huang XQ, Cöster H, Ganal MW, Röder MS (2003b) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  208. Huang XQ, Wang LX, Xu MX, Röder MS (2003c) Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L). Theor Appl Genet 106:858–865

    PubMed  CAS  Google Scholar 

  209. Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–941

    Article  PubMed  CAS  Google Scholar 

  210. Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255

    Article  PubMed  CAS  Google Scholar 

  211. Incirli A, Akkaya MS (2001) Assessment of genetic relationships in durum wheat cultivars using AFLP markers. Genet Resource Crop Evol 48:233–238

    Article  Google Scholar 

  212. Ishii T, Mori N, Ogihara Y (2001) Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor Appl Genet 103:896–904

    Article  CAS  Google Scholar 

  213. Ivandic V, Malyshev V, Korzun V, Graner A, Börner A (1998) Comparative mapping of a gibberelic acid insensitive dwarfing gene (Dwf2) on chromosome 4HS of barley. Theor Appl Genet 98:728–731

    Article  Google Scholar 

  214. Iwaki K, Nishida J, Yanagisawa T, Yoshida H, Kato K (2002) Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L). Theor Appl Genet 104:571–576

    Article  PubMed  CAS  Google Scholar 

  215. Jahoor A, Eriksen L, Backes G (2004) QTLs and genes for disease resistance in barley and wheat. In: Gupta PK, Varshney RK (eds) Cereal Genomics. Kluwer, Dordrecht, pp 199–252

    Google Scholar 

  216. Jansen RC (2003) Studying complex biological systems using multifactorial perturbation. Nature Rev Genet 4:145–151

    Article  CAS  PubMed  Google Scholar 

  217. Jansen RC, Nap J-P (2001) Genetical genomics: the added value from segregation Trends Genet 17:388–391

    Article  PubMed  CAS  Google Scholar 

  218. Järve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM (2000) Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 43:377–381

    Article  PubMed  Google Scholar 

  219. Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  CAS  Google Scholar 

  220. Jiang JM, Gill BS (1994) Nonisotopic in-situ hybridization and plant genomemapping — the first 10 years. Genome 37:717–725

    CAS  PubMed  Google Scholar 

  221. Joshi CP, Nguyen HT (1993) Application of the random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetraploid wheats. Genome 36:602–609

    PubMed  CAS  Google Scholar 

  222. Jurman I, Castelluccio MD, Wolf M, Olivieri A, DeAmbrogio E, Morgante M (2003) Construction of an SSR-based linkage map of durum wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 968–970

    Google Scholar 

  223. Kantety RV, Rota ML, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  PubMed  CAS  Google Scholar 

  224. Kato K, Miura H, Sawada S (1999) Comparative mapping of the wheat Vrn-A1 region with the rice Hd-6 region. Genome 42:204–209

    Article  CAS  Google Scholar 

  225. Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  226. Kato K, Nakamura W, Tabiki T, Miura H, Sawada S (2001) Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102:980–985

    Article  CAS  Google Scholar 

  227. Kato K, Yamashita M, Ishimoto K, Yoshino H, Fujita M (2003) Genetic analysis of two genes for vernalization response, the former Vrn2 and Vrn4, by using PCR-based molecular markers. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 971–973

    Google Scholar 

  228. Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    Article  PubMed  CAS  Google Scholar 

  229. Keller M, Karutz C, Schmid JE, Stamp P, Winzeler M, Keller B, Messmer MM (1999a) Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor Appl Genet 98:1171–1182

    Article  CAS  Google Scholar 

  230. Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM (1999b) Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet 98:903–912

    Article  CAS  Google Scholar 

  231. Khan AA, Bergstrom GC, Nelson JC, Sorrells ME (2000a) Identification of RFLP markers for resistance to wheat spindle streak mosaic bymovirus (WSSMV) disease. Genome 43:477–482

    Article  PubMed  CAS  Google Scholar 

  232. Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Frohberg R, Dubcovsky J (2000b) Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci 40:518–524

    Article  CAS  Google Scholar 

  233. Khlestkina EK, Than MHM, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 microsatellite loci in rye (Secale cereale L) including 39 expressed sequence tags. Theor Appl Genet 109:725–732

    Article  PubMed  CAS  Google Scholar 

  234. Kianian SF, Hossain KG, Riera-Lizarazu O, Kalavacharla V, Vales MI, Maan SS (2003) Radiation hybrid mapping of a species cytoplasm specific (scs ae)gene in wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 595–597

    Google Scholar 

  235. Kim HS, Ward RW (1997) Genetic diversity in Eastern US soft winter wheat (Triticum aestivum L em Thell) based on RFLPs and coefficients of parentage. Theor Appl Genet 94:472–479

    Article  Google Scholar 

  236. Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishge DT, Schlueter SD, Childs KL, Ale M et al (2000) A high throughput AFLP based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  PubMed  CAS  Google Scholar 

  237. Knox RE, Menzies JG, Howes NK, Clarke JM, Aung T, Penner GA (2002) Genetic analysis of resistance to loose smut and an associated DNA marker in durum wheat doubled haploids. Can J Plant Pathol 24:316–322

    Article  CAS  Google Scholar 

  238. Kobiljski B, Quarrie S, Dencic S, Kirby J, Iveges M (2002) Genetic diversity of the Novi Sad Wheat Core Collection revealed by microsatellites. Cell Mol Biol Lett 7:685–694

    PubMed  CAS  Google Scholar 

  239. Koebner RMD (2004) Marker-assisted selection in the cereals: The dream and the reality. In:Gupta PK, Varshney RK (eds) Cereal Genomics. Kluwer, Dordrecht, pp 317–330

    Google Scholar 

  240. Koebner R, Summers R (2003) 21st century wheat breeding: selection in plots or detection in plates? Trends Biotech 21:59–63

    Article  CAS  Google Scholar 

  241. Koebner RMD, Powell W, Donini P (2001) The contribution of current and forthcoming DNA molecular marker technologies to wheat and barley genetics and breeding In: Janick J (ed) Plant Breed Rev 21, pp 181–220

    Google Scholar 

  242. Koebner RMD, Donini P, Reeves JC, Cooke RJ, Law JR (2003) Temporal flux in the morphological and molecular diversity of UK barley. Theor Appl Genet 106:550–558

    PubMed  CAS  Google Scholar 

  243. Kojima T, Nagaoka T, Noda K, Ogihara Y (1998) Genetic linkage map of ISSR and RAPD markers in einkorn wheat in relation to that of RFLP markers. Theor Appl Genet 96:37–45

    Article  CAS  Google Scholar 

  244. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  PubMed  CAS  Google Scholar 

  245. Kong LR, Dong YC, Jia JZ (1998) Random amplified polymorphism of DNA analysis in Aegilops tauschii. Acta Bot Sin 40:223–227

    CAS  Google Scholar 

  246. Korzun V, Malyshev S, Voylokov A, Börner A (1997a) RFLP based mapping of three mutant loci in rye (Secale cereale L.) and their relation to homoeologous loci within the Gramineae. Theor Appl Genet 95:468–473

    Article  CAS  Google Scholar 

  247. Korzun V, Röder M, Worland AJ, Börner A (1997b) Mapping of the dwarfing (Rht12) and vernalisation response (Vrn1) genes in wheat by using RFLP and microsatellite markers. Plant Breed 116:227–232

    Article  Google Scholar 

  248. Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I: Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  249. Korzun V, Röder MS, Wendehake K, Pasqualone A, Lotti C, Ganal MW, Blanco A (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207

    Article  CAS  Google Scholar 

  250. Kota RS, Gill KS, Gill BS, Endo TR (1993) A cytogenetically based physicalmap of chromosome-1B in common wheat. Genome 36:548–554

    CAS  PubMed  Google Scholar 

  251. Kraic J, Silkova S, Hudcovicova, Gregova E, Bartos P (2003) Leaf rust resistant wheat lines developed by marker-assisted selection. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 742–745

    Google Scholar 

  252. Kuchel H, Wraner P, Fox RL, Chalmers K, Howes N, Langridge P, Jefferies SP (2003) Whole genome based marker assisted selection strategies in wheat breeding. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 144–147

    Google Scholar 

  253. Kulwal P, Singh R, Balyan HS, Gupta PK (2004) Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr Genom 4:94–101

    Article  CAS  Google Scholar 

  254. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin et al (1994) A 300 kolobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372

    Article  PubMed  CAS  Google Scholar 

  255. Lage J, Warburton ML, Crossa J, Skovmand B, Andersen SB (2003) Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphytica 134:305–317

    Article  CAS  Google Scholar 

  256. Lagudah ES, Dubcovsky J, Powell W (2001) Wheat genomics. Plant Physiol Biochem 39:335–344

    Article  CAS  Google Scholar 

  257. Lamoureux D, Boeuf C, Regad F, Garsmeur O, Charmet G, Sourdille P, Lagoda P, Bernard M (2002) Comparative mapping of the wheat 5B short chromosome arm distal region with rice, relative to a crossability locus. Theor Appl Genet 105:759–765

    Article  PubMed  CAS  Google Scholar 

  258. Langridge P, Chalmers K (1998) Techniques for marker development. In: Slinkard AE (ed) Proc 9th Int Wheat Genet Symp, Vol 1. University Extension Press, University of Saskatchewan, Saskatoon, Canada, pp 107–117

    Google Scholar 

  259. Langridge P, Chalmers K (2004) The Principle: Identification and application of molecular markers. In: Lörz H, Wenzel G (eds) Biotechnology in Agriculture and Forestry, Vol 55. Molecular markers systems. Springer, Berlin Heidelberg New York, pp 3–22

    Google Scholar 

  260. Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analyses in wheat: a review. Aust J Agric Res 52:1043–1077

    Article  CAS  Google Scholar 

  261. Laroche A, Demeke T, Gaudet DA, Puchalski B, Frick M, McKenzie R (2000) Development of a PCR marker for rapid identification of the Bt-10 gene for common bunt resistance in wheat. Genome 43:217–223

    Article  PubMed  CAS  Google Scholar 

  262. La Rota CM, Sorrells ME (2004) Comparative DNA sequenze analysis of mapped wheat ESTs reveals complexity of genome relationships between rice and wheat. Funct Integr Genom 4:34–46

    Article  CAS  Google Scholar 

  263. Laubin B, Nicot N, Amiour N, Sourdille P, Branlard G, Leroy P (2003) In silico mapping and colinearity between the homoeologous group 5 of wheat and the rice genome. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 280–283

    Google Scholar 

  264. Law JR, Donini P, Koebner RMD, James CR, Cooke RJ (1998) DNA profiling and plant variety registration. III: The statistical assessment of distinctness in wheat using amplified fragment length polymorphisms. Euphytica 102:335–342

    Article  CAS  Google Scholar 

  265. Lazo GR, Chao S, Hummel D, Edwards H, Crosman CC, Lui N, Matthews DE, Carollo VL, Hane DL, You FM et al (2004) Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum): EST generation, unigene analysis, probe selection and bioinformatics for a 16,000 locus bin-delineated map. Genetics 168:585–593

    Article  PubMed  Google Scholar 

  266. Leader DJ, Cullup T, Ridley P, van Dodeweerd A-M (2003) Microarray analysis of wheat grain development: applications to trait charcterization in the field. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 287–292

    Google Scholar 

  267. Lee M (1995) DNA markers and plant breeding programs. Adv Agron 55:265–344

    CAS  Google Scholar 

  268. Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assessment of EST-and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133:359–366

    Article  CAS  Google Scholar 

  269. Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375

    Article  PubMed  CAS  Google Scholar 

  270. Li YC, Fahima T, Beiles A, Korol AB, Nevo E (1999) Microclimatic stress and adaptive DNA differentiation in wild emmerwheat, Triticum dicoccoides. TheorAppl Genet 98:873–883

    Article  CAS  Google Scholar 

  271. Li W, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002a) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366

    Article  CAS  Google Scholar 

  272. Li YC, Röder MS, Fahima T, Kirzhner VM, Beiles A, Korol AB, Nevo E (2002b) Climatic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel. Heredity 89:127–132

    Article  PubMed  CAS  Google Scholar 

  273. Li C, Ni P, Francki M, Hunter M, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M et al. (2004a) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genom 4:84–93

    Article  CAS  Google Scholar 

  274. Li Z, Huang N, Rampling L, Wang J, Yu J, Morell M, Rahman S (2004b) Detailed comparison between the wheat chromosome group 7 short arms and the rice chromosome arms 6S and 8L with special reference to genes involved in starch biosynthesis. Funct Integr Genom 4:231–240

    CAS  Google Scholar 

  275. Ling H-Q, Zhu Y, Keller B (2003) High-resolution mapping of the leaf rust disease resistance gene Lr1 in wheat and characterisation of BAC clones from the Lr1 locus. Theor Appl Genet 3:875–882

    Google Scholar 

  276. Linkiewicz AM, Qi L, Echalier B, Gill BS, Chao S, Lazo G, Anderson OD, Akhunov ED, Dvorak J, Miftahudin et al. (2003) A two thousand loci physical map of wheat homoeologous group 5. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 986–988

    Google Scholar 

  277. Linkiewicz AM, Qi LL, Gill BS, Ratnasiri A, Echalier B, Chao S, Lazo G, Hummel DD, Anderson OD, Akhunov ED et al (2004) A 2,500-locus bin map of wheat homoeologous group 5 provides insights on gene distribution and colinearity with rice. Genetics 168:665–676

    Article  PubMed  CAS  Google Scholar 

  278. Liu YG, Tsunewaki K (1991) Restriction fragment length polymorphism (RFLP) analysis in wheat II Linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633

    Article  PubMed  CAS  Google Scholar 

  279. Liu SX, Anderson JA (2003a) Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci 43:760–766

    Article  CAS  Google Scholar 

  280. Liu SX, Anderson JA (2003b) Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome 46:817–823

    Article  PubMed  CAS  Google Scholar 

  281. Liu Z, Sun Q, Ni Z, Yang T (1999a) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118:215–219

    Article  CAS  Google Scholar 

  282. Liu ZQ, Pei Y, Pu ZJ (1999b) Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat, Triticum aestivum L. Plant Breed 118:119–123

    Article  Google Scholar 

  283. Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24

    Article  CAS  Google Scholar 

  284. Liu SX, Griffey CA, Maroof MAS (2001a) Identificationof molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Sci 41:1268–1275

    Article  CAS  Google Scholar 

  285. Liu XM, Smith CM, Gill BS, Tolmay V (2001b) Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theor Appl Genet 102:504–510

    Article  CAS  Google Scholar 

  286. Liu XM, Smith CM, Gill BS (2002a) Identification of microsatellite markers linked to Russian, wheat aphid resistance genes Dn4 and Dn6. Theor Appl Genet 104:1042–1048

    Article  PubMed  CAS  Google Scholar 

  287. Liu Z, Sun Q, Ni Z, Nevo E, Yang T (2002b) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29

    Article  CAS  Google Scholar 

  288. Liu D, Gao M, Guo X, Zhang A (2003) QTL mapping for kernel weight in multiple environments. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 989–993

    Google Scholar 

  289. Lotti C, Salvi S, Pasqualone A, Tuberosa R, Blanco A (2000) Integration of AFLP markers into an RFLP-based map of durum wheat. Plant Breed 119:393–401

    Article  CAS  Google Scholar 

  290. Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Google Scholar 

  291. Luo M-C, Thomas CS, Deal KR, You FM, Anderson OD, Gu Y-Q, Li W, Kuraparthy V, Gill BS, McGuire PE, Dvorak J (2003) Construction of contigs of Aegilops tauschii genomic DNA fragments cloned in BAC and BiBAC vectors. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 293–296

    Google Scholar 

  292. Ma ZQ, Lapitan NLV (1998) A comparison of amplified and restriction fragment length polymorphism in wheat. Cereal Res Commun 26:7–13

    Google Scholar 

  293. Ma ZQ, Sorrells ME, Tanksley SD (1994) RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3 and Pm4 in wheat. Genome 37:871–875

    CAS  PubMed  Google Scholar 

  294. Ma ZQ, Saidi A, Quick JS, Lapitan NLV (1998) Genetic mapping of Russian wheat aphid resistance genes Dn2 and Dn4 in wheat. Genome 41:303–306

    Article  CAS  Google Scholar 

  295. Ma JX, Zhou RH, Dong YS, Wang LF, Wang XM, Jia JZ (2001) Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticumturgidum L using microsatellite markers. Euphytica 120:219–226

    Article  CAS  Google Scholar 

  296. Ma ZQ, Lin F, Kong X, Wu JZ, Zhu HL, Xie SL, Wei JB, Liu DJ (2003) Mapping QTLs associated with FHAB resistance in a Wangshuibai x Nanda2419 population. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 372–375

    Google Scholar 

  297. Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107:783–797

    Article  PubMed  CAS  Google Scholar 

  298. Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat rye translocation lines. Theor Appl Genet 104:1317–1324

    Article  PubMed  CAS  Google Scholar 

  299. Malik R, Brown-Guedira GL, Smith CM, Harvey TL, Gill BS (2003) Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat. Crop Sci 43:644–650

    Article  CAS  Google Scholar 

  300. Manifesto MM, Schlatter AR, Hopp HE, Suarez EY, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41:682–690

    Article  CAS  Google Scholar 

  301. Mares DJ, Mrva K (2001) Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat. Aust J Agric Res 52:1257–1265

    Article  CAS  Google Scholar 

  302. Mares D, Mrva K, Tan MK, Sharp P (2002) Dormancy in white-grained wheat: Progress towards identification of genes and molecular markers. Euphytica 126:47–53

    Article  CAS  Google Scholar 

  303. Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat Triticum aestivum L em Thell). Genome 39:359–366

    CAS  PubMed  Google Scholar 

  304. Masojć P, Myśków B, Milczarski P (2001) Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theor Appl Genet 102:1273–1279

    Article  Google Scholar 

  305. Matthews DE, Lazo GR, Carollo V, Anderson OD (2003) Information resources for the wheat genomics In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 297–300

    Google Scholar 

  306. Matthews DE, Carollo V, Lazo G, Anderson OD (2004) Bioin-formatics and Triticeae genomics: resources and future developments. In: Gupta PK, Varshney RK (eds) Cereal Genomics. Kluwer, Dordrecht, pp 425–446

    Google Scholar 

  307. McCartney CA, Brûle-Babel AL, Lamari L, Somers DJ (2003) Chromosomal location of a race-specific gene to Mycosphaerella graminicola in the spring wheat ST6. Theor Appl Genet 107:1181–1186

    Article  PubMed  CAS  Google Scholar 

  308. McLauchlan A, Ogbonnaya FC, Hollingsworth B, Carter M, Gale KR, Henry RJ, Holton TA, Morell MK, Rampling LR, Sharp PJ et al (2001) Development of robust PCRbased DNA markers for each homoeoallele of granulebound starch synthase and their application, in wheat breeding programs. Aust J Agric Res 52:1409–1416

    Article  CAS  Google Scholar 

  309. Mesfin A, Frohberg RC, Anderson JA (1999) RFLP markers associated with high grain protein fromTriticumturgidum L var dicoccoides introgressed into hard red spring wheat. Crop Sci 39:508–513

    Article  CAS  Google Scholar 

  310. Messmer MM, Keller M, Zanetti S, Keller B (1999) Genetic linkage map of wheat × spelt cross. Theor Appl Genet 98:1163–1170

    Article  CAS  Google Scholar 

  311. Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011

    Article  CAS  Google Scholar 

  312. Miftahudin, Ross K, Ma X-F, Mahmoud AA, Layton J, Rodriguez Milla MA, Chikmawati T, Ramalingam J, Feril O, Pathan MS et al (2004) Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168:651–663

    Article  PubMed  CAS  Google Scholar 

  313. Milla MAR, Gustafson JP (2001) Genetic andphysical characterization of chromosome 4DL in wheat. Genome 44:883–892

    Article  PubMed  CAS  Google Scholar 

  314. Miller CA, Altinkut A, Lapitan NLV (2001) A microsatellite marker for tagging Dn2, a wheat gene conferring resistance to the Russian wheat aphid. Crop Sci 41:1584–1589

    Article  CAS  Google Scholar 

  315. Milligan AS, Lopato S, Langridge P (2004) Functional genomics studies of seed development incereals. In: Gupta PK, Varshney RK (eds) Cereal Genomics. Kluwer, Dordrecht, pp 447–482

    Google Scholar 

  316. Mizumoto K, Hirosawa S, Nakamura C, Takumi S (2002) Nuclear and chloroplast genome genetic diversity in the wild einkornwheat, Triticumurartu, revealed by AFLP and SSLP analyses. Hereditas 137:208–214

    Article  Google Scholar 

  317. Mochida K, Kawaura K, Ogihara Y (2003) SNPs genotyping of hexaploid wheat by the ‘Allele-Specific Pyrosequencing’. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1003–1005

    Google Scholar 

  318. Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants — salient statistical tools and considerations. Crop Sci 43:1235–1248

    Article  Google Scholar 

  319. Mohapatra T, Krishanpal, Singh SS, Swain SC, Sharma RK, Singh NK (2003) STMS-based DNA fingerprints of the new plant type wheat lines. Curr Sci 84:1125–1129

    CAS  Google Scholar 

  320. Mohler V, Schwarz G (2004) Genotyping tools in plant breeding: From restriction fragmnet length polymorphisms to single nucleotided polymorphisms. In: Lörz H, Wenzel G (eds) Biotechnology in Agriculture and Forestry 55: Molecular Markers Systems in Plant Breeding and Crop Improvement. Springer, Berlin Heidelberg New York, pp 23–38

    Google Scholar 

  321. Mohler V, Hsam SLK, Zeller FJ, Wenzel G (2001) An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed 120:448–450

    Article  CAS  Google Scholar 

  322. Moore G (1995) Cereal Genome evolution-pastoral pursuits with lego genomes. Curr Opin Genet Dev 5:717–724

    Article  PubMed  CAS  Google Scholar 

  323. Moore G, Devos KM, Wang Z, Gale MD (1995a) Cereal genome evolution: grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  324. Moore G, Foote T, Helentjaris T, Devos KM, Kurata N, Gale MD (1995b) Was there a single ancestral cereal chromosome? Trends Genet 11:81–82

    Article  PubMed  CAS  Google Scholar 

  325. Mori N, Moriguchi T, Nakamura C (1997) RFLP analysis of nuclear DNA for study of phylogeny and domestication of tetraploid wheat. Genes Genet Syst 72:153–161

    Article  CAS  Google Scholar 

  326. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  327. Munkvold JD, Greene RA, Bermudez-Kandianis CE, La Rota CM, Edwards H, Sorrells SF, Dake T, Benscher D, Kantety R, Linkiewicz AM et al (2004) Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168:639–650

    Article  PubMed  CAS  Google Scholar 

  328. Myburg AA, Cawood M, Wingfield BD, Botha AM (1998) Development of RAPD and SCAR markers linked to the Russian wheat a phid resistance gene Dn2 in wheat Theor Appl Genet 96:1162–1169

    Article  CAS  Google Scholar 

  329. Nachit M, Elouafi I, Pagnotta MA, El Saleh A, Iacono E, Labhili M, Asbati A, Azrak M, Hazzam H, Benscher D et al (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L var durum). Theor Appl Genet 102:177–186

    Article  CAS  Google Scholar 

  330. Naik S, Gill VS, Rao VSP, Gupta VS, Tamhankar SA, Pujar S, Gill BS, Ranjekar PK (1998) Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97:535–540

    Article  CAS  Google Scholar 

  331. Namuth DM, Lapitan NLV, Gill KS, Gill BS (1994) Comparative RFLP mapping of Hordeum vulgare and Triticum tauschii. Theor Appl Genet 89:865–872

    Article  CAS  Google Scholar 

  332. Nelson JC, Singh RP, Autrique JE, Sorrells ME (1997) Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci 37:1928–1935

    Article  CAS  Google Scholar 

  333. Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995a) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  334. Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu Y H, Merlino M, Atinkson M, Leroy P (1995b) Molecular mapping of wheat homoeologous group 2. Genome 38:516–524

    CAS  PubMed  Google Scholar 

  335. Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre M, Atinkson M, Leroy P (1995c) Molecular mapping of wheat homoeologous group 3. Genome 38:525–533

    CAS  PubMed  Google Scholar 

  336. Nevo E (2001) Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement in the third millennium. Israel J Plant Sci 49:S77–S91

    CAS  Google Scholar 

  337. Nicot N, Chiquet V, Gandon B, Specel S, Amilhat L, Leroy P, Burr B, Blewitt M, Murigneux A, Chalhoub B et al. (2003a) Genetic mapping of SSR sequences isolated from wheat genomic DNA libraries. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1014–1016

    Google Scholar 

  338. Nicot N, Chiquet V, Gandon B, Specel S, Amilhat L, Leroy P, Legeai F, Foisset N, Dufour P, Bernard M et al. (2003b) SSR marker development from low copy wheat sequences. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1017–1019

    Google Scholar 

  339. Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805

    Article  PubMed  CAS  Google Scholar 

  340. Ogbonnaya FC, Subrahmanyam NC, Moullet O, de Majnik J, Eagles HA, Brown JS, Eastwood RF, Kollmorgen J, Appels R, Lagudah ES (2001) Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat. Aust J Agric Res 52:1367–1374

    Article  CAS  Google Scholar 

  341. Ogihara Y (2003) SNPs analysis of homoeologous genes by computing a large scale of expressed sequence tags in the hexaploid wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 301–306

    Google Scholar 

  342. Ogihara Y, Hasegawa K, Tsujimoto H (1994) High-resolution cytological mapping of the long arm of chromosome 5A in common wheat using a series of deletion lines induced by gametocidal (gc) genes of Aegilops speltoides. Mol Gen Genet 244:253–259

    Article  PubMed  CAS  Google Scholar 

  343. Ogihara Y, Mochida K, Nemoto Y, Murai K, Yamazaki Y, Shin-I T, Kohara Y (2003) Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by largescale statistical analyses of expressed sequence tags. Plant J 33:1001–1011

    Article  PubMed  Google Scholar 

  344. Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR (2002) Genetic dissection of a major fusarium head blight QTL in tetraploid wheat. Plant Mol Biol 48:625–632

    Article  PubMed  CAS  Google Scholar 

  345. Ovesna J, Leisova L, Kucera (2003) Evaluation of Czech wheats by DNA markers: possible applet for genetic resources preservation. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 503–505

    Google Scholar 

  346. Özkan H, Brandolini A, Schäfer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in south-east Turkey. Mol Biol Evol 19:1797–1801

    PubMed  Google Scholar 

  347. Pagnotta MA, Laghetti G, Mondini L, Codianni P, Volpe N, Riefolo C, Savo Sordaro ML, Perrino P, Fares C (2003) Assessment of genetic diversity and characterization of Italian emmer wheat (Triticum dicoccum Schübler) populations. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th IntWheat Genet Symp, Paestum, Italy, pp 506–508

    Google Scholar 

  348. Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L). Theor Appl Genet 107:1235–1242

    Article  PubMed  CAS  Google Scholar 

  349. Pallottta MA, Warner P, Fox RL, Kuchel H, Jefferies SJ, Langridge P (2003) Marker-assisted wheat breeding in southern region of Australia. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 789–791

    Google Scholar 

  350. Parker GD, Langridge P (2000) Development of a STS marker linked to a major locus controlling flour colour in wheat (Triticum aestivum L). Mol Breed 6:169–174

    Article  CAS  Google Scholar 

  351. Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L). Theor Appl Genet 97:238–245

    Article  CAS  Google Scholar 

  352. Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1999) Mapping loci associated with milling yield in wheat (Triticum aestivum L). Mol Breed 5:561–568

    Article  CAS  Google Scholar 

  353. Parker GD, Fox PN, Langridge P, Chalmers K, Whan B, Ganter PF (2002) Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data. Euphytica 124(3):293–306

    Article  CAS  Google Scholar 

  354. Pasquer F, Stein N, Isidore E, Keller B (2003) Microarray analysis of gene expression in wheat (Triticum aestivum) after fungicide application. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1029–1031

    Google Scholar 

  355. Paterson AH (2004) Comparative genomics in cereals. In:Gupta PK, Varshney RK (eds) Cereal Genomics. Kluwer, Dordrecht, pp 119–134

    Google Scholar 

  356. Paterson AH, Tanksley SD, Sorrells ME (1994) DNA markers in plant breeding. Adv Agron 46:39–90

    Article  Google Scholar 

  357. Paull JG, Pallotta MA, Langridge P (1994) The TTRFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. Theor Appl Genet 89:1039–1045

    Article  CAS  Google Scholar 

  358. Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S, Langridge P (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96:435–446

    Article  CAS  Google Scholar 

  359. Payne PI, Holt LM, Thompson RD, Bartels D, Harberd NP, Harris PA, Law CN (1983) The high molecular weight subunits of glutenin: classical genetics, molecular genetics and the relationship of bread making quality. In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp, Kyoto, Japan, pp 827–834

    Google Scholar 

  360. Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the breadmaking quality of British-grown wheat varieties. J Sci Food Agric 40:51–65

    CAS  Google Scholar 

  361. Peng JH, Fahima T, Röder MS, Huang QY, Dahan A, Li YC, Grama A, Nevo E (2000a) Highdensity molecular map of chromosome region harboring striperust resistance genes YrH52 and Yr15 derived fromwild emmer wheat, Triticum dicoccoides. Genetica 109:199–210

    Article  PubMed  CAS  Google Scholar 

  362. Peng J, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000b) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: Genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    Article  PubMed  CAS  Google Scholar 

  363. Peng JH, Zadeh H, Lazo GR, Qi LL, Echalier B, Gill BS, Chao S, Anderson OD, Sandhu D, Gill KS et al (2003) A physical map of expressed sequence tags and functional genomics in the group 1 chromosomes of wheat (Triticum aestivum). In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1035–1037

    Google Scholar 

  364. Peng J, Tahir M, Wang H, Lapitan NLV (2004a) Frequency and genomic distribution of functional microsatellites in wheat, Triticum aestivum L. In: Plant Animal Genome XII, Jan 10–14, 2004, San Diego, P424

    Google Scholar 

  365. PAG12_424.html

    Google Scholar 

  366. Peng JH, Zadeh H, Lazo GR, Gustafson JP, Chao S, Anderson OD, Qi LL, Echalier B, Gill BS, Dilbirgi M et al (2004b) Chromosome bin map of expressed sequence tags in honoeologous group 1 of hexaploid wheat and homoloeolgy with rice and Arabidopsis. Genetics 168:609–623

    Article  PubMed  CAS  Google Scholar 

  367. Penner GA, Zirino M, Kruger S, Townley-Smith F (1998) Accelerated recurrent parent selection in wheat with microsatellite markers. In: Slinkard AE (ed) Proc 9th Int Wheat Genet Symp Vol 1, University of Saskatchewan, Saskatoon, Canada, pp 131–134

    Google Scholar 

  368. Perenzin M, Corbellini M, Accerbi M, Vaccino P, Borghi B (1998) Bread wheat: F-1 hybrid performance and parental diversity estimates using molecular markers. Euphytica 100:273–279

    Article  Google Scholar 

  369. Pester TA, Ward SM, Fenwick AL, Westra P, Nissen SJ (2003) Genetic diversity of jointed goatgrass (Aegilops cylindrica)determined with RAPD and AFLP markers. Weed Sci 51:287–293

    Article  CAS  Google Scholar 

  370. Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the Dgenome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  371. Phillips RL, Vasil IK (eds) (2001)DNA-BasedMarkers in Plants, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  372. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity inclosely-related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  373. Potokina E, Caspers M, Prasad M, Kota R, Zhang H, Sreenivasulu N, Wang M, Graner A (2004) Functional association between malting quality trait components and cDNA array based expression patterns in barley (Hordeum vulgare L.). Mol Breed 14:153–170

    Article  CAS  Google Scholar 

  374. Powell W, Langridge P (2004) Unfashionable crop species flourish in the 21st century. Genome Biol 5: Art. 233

    Google Scholar 

  375. Prasad M, Varshney RK, Kumar A, Balyan HS, Sharma PC, Edwards KJ, Singh H, Dhaliwal HS, Roy JK, Gupta PK (1999) A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet 99:341–345

    Article  Google Scholar 

  376. Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  377. Prasad M, Kumar N, Kulwal PL, Röder MS, Balyan HS, Dhaliwal HS, Gupta PK (2003)QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106:659–667

    PubMed  CAS  Google Scholar 

  378. Prins R, Groenewald JZ, Marais GF, Snape JW, Koebner RMD (2001) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624

    Article  CAS  Google Scholar 

  379. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  PubMed  CAS  Google Scholar 

  380. Procunier JD, Townley-Smith TF, Fox S, Prashar S, Gray M, Kim WK, Czarnecki E, Dyck PL (1995) PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L). J Genet Breed 49:87–92

    CAS  Google Scholar 

  381. Pumphrey MO, Anderson JA (2003) QTL validation via systematic development of near-isogenic wheat lines from existing breeding populations. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1227–1229

    Google Scholar 

  382. Qi L-L, Gill BS (2001) High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning. Theor Appl Genet 103:998–1006

    Article  CAS  Google Scholar 

  383. Qi L, Cao M, Chen P, Li W, Liu D (1996) Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39:191–197

    CAS  PubMed  Google Scholar 

  384. Qi L-L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genom 3:39–55

    CAS  Google Scholar 

  385. Qi L-L, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed  CAS  Google Scholar 

  386. Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genom 271:91–97

    Article  CAS  Google Scholar 

  387. Radovanovic N, Cloutier S (2003) Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding program. Mol Breed 12:51–59

    Article  CAS  Google Scholar 

  388. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  389. Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111

    Article  PubMed  CAS  Google Scholar 

  390. Rampino P, Malatrasi M, Gulli M, Marmiroli N, Perrotta C (2003) Drought stress related sequences in durum wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1233–1235

    Google Scholar 

  391. Randhawa HS, Dilbriligi M, Sidgu D, Erayman M, Sandhu D, Bondareva S, Chao S, Lazo GR, Anderson OD, Miftahudin, Gustafson JP et al (2004) Deletion mapping of homoeologous group 6-specific wheat expressed sequence tags. Genetics 168:677–686

    Article  PubMed  CAS  Google Scholar 

  392. Raupp WJ, Sukhwinder-Singh, Brown-Guedira GL, Gill BS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet 102:347–352

    Article  CAS  Google Scholar 

  393. Rebetzke GJ, Appels R, Morrison AD, Richards RA, McDonald G, Ellis MH, Spielmeyer W, Bonnett DG (2001) Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agric Res 52:1221–1234

    Article  CAS  Google Scholar 

  394. Reffo G, Corbellini M, Bruschi G, Brandolini A (2003) Marker-assisted introgression of the Pm13 powdery mildew resistance gene in Italian bread wheat cultivars. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 801–803

    Google Scholar 

  395. Reiter RS, Williams JKG, Feldmann KA, Rafalski JA, Tingey SV, Scolnik PA (1992) Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad Sci USA 89:1477–1481

    Article  PubMed  CAS  Google Scholar 

  396. Riley R (1965) Cytogenetics and the evolution of wheat In: Hutchinson JB (ed) Essays on Crop Plant Evolution. Cambridge University Press, Cambridge, pp 103–118

    Google Scholar 

  397. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  398. Robert O, Abelard C, Dedryver F (1999) Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Mol Breed 5:167–175

    Article  CAS  Google Scholar 

  399. Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  400. Röder MS, Korzun V, Gill BS, Ganal MW (1998a) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  Google Scholar 

  401. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M, Leroy P, Ganal MW (1998b) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  402. Röder MS, Huang X-Q, Börner A, Ganal MW (2003) Wheat microsatellite diversity of a genebank collection in comparison to registered varities. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 625–627

    Google Scholar 

  403. Röder MS, Huang X-Q, Ganal MW (2004) Wheat microsatellites: Potential and implications. In: Lörz H, Wenzel G (eds) Biotechnology in agriculture and forestry, Vol 55. Molecular marker systems. Springer, Berlin Heidelberg New York, pp 255–266

    Google Scholar 

  404. Rogers WJ, Payne PI, Harinder K (1989) The HMW glutenin subunit and gliadin composition of German-grown wheat varieties and their relationship with breadmaking quality. Plant Breed 103:89–100

    Article  CAS  Google Scholar 

  405. Rousset M, Gouis JL, Heumez E (2003) A QTL analysis for spike characteristics and fertility under field conditions in a bread wheat doubled-haploid population. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 167–170

    Google Scholar 

  406. Roy JK, Prasad M, Varshney RK, Balyan HS, Blake TK, Dhaliwal HS, Singh H, Edwards KJ, Gupta PK (1999) Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor Appl Genet 99:336–340

    Article  Google Scholar 

  407. Roy JK, Balyan HS, Prasad M, Gupta PK (2002) Use of SAMPL for a study of DNA polymorphism, genetic diversity and possible gene tagging in bread wheat. Theor Appl Genet 104:465–472

    Article  PubMed  CAS  Google Scholar 

  408. Roy JK, Lakshmikumaran MS, Balyan HS, Gupta PK (2004) AFLP-based genetic diversity and its comparison with diversity based on SSR, SAMPL, and phenotypic traits in bread wheat. Biochem Genet 42:43–59

    Article  PubMed  CAS  Google Scholar 

  409. Safar J, Bartos J, Janda J, Jaroslav J, Bellec A, Kubalakova M, Valarik M, Pateyron S, Weiserova J, Tuskova R et al (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968

    Article  PubMed  CAS  Google Scholar 

  410. Salina E, Dobrovolskaya O, Efremova T, Leonova I, Röder MS (2003) Microsatellite monitoring of recombination around the Vrn-B1 locus of wheat during early backcross breeding. Plant Breed 122:116–119

    Article  CAS  Google Scholar 

  411. Salvo-Garrido H, Laurie DA, Jaffe B, Snape JW (2001) An RFLP map of diploid Hordeum bulbosum L and comparison with maps of barley (H. vulgare L) and wheat (Triticum aestivum L). Theor Appl Genet 103:869–880

    Article  CAS  Google Scholar 

  412. Sandhu D, Gill KS (2002a) Gene-containing regions of wheat and the other grass genomes. Plant Physiol 128:803–811

    Article  PubMed  CAS  Google Scholar 

  413. Sandhu D, Gill KS (2002b) Structural and functional organization of the ‘1S08 gene-rich region’ in the Triticeae. Plant Mol Biol 48:791–804

    Article  PubMed  CAS  Google Scholar 

  414. Sandhu D, Sidhu D, Gill KS (2002) Identification of expressed sequence markers for a major gene-rich region of wheat chromosome group 1 using RNA fingerprinting-differential display. Crop Sci 42:1285–1290

    Article  CAS  Google Scholar 

  415. Sandhu D, Erayman M, Dilbirligi M, Sidhu D, Gill KS (2003) The gene rich regions of the wheat genome. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 308–312

    Google Scholar 

  416. Sarma RN, Gill BS, Sasaki T, Galiba G, Sutka J, Laurie DA, Snape JW (1998) Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet 97:103–109

    Article  CAS  Google Scholar 

  417. Sarma RN, Fish L, Gill BS, Snape JW (2000) Physical characterization of the homoeologous Group 5 chromosomes of wheat in terms of rice linkage blocks, and physical mapping of some important genes. Genome 43:191–198

    Article  PubMed  CAS  Google Scholar 

  418. Sasaki T, Burr B (2000) International rice genome sequencing project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3:138–141

    Article  PubMed  CAS  Google Scholar 

  419. Sasakuma T, Shindo C (2003) QTLs of heading traits in diploid and hexaploid wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1047–1049

    Google Scholar 

  420. Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    PubMed  CAS  Google Scholar 

  421. Sayed-Tabatabaei BE, Shahnejat-Bushehri AA (2003) Assesment of genetic similarity among wheat cultivars using RAPD and AFLP techniques. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 631–633

    Google Scholar 

  422. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–301

    Article  PubMed  CAS  Google Scholar 

  423. Schachermayr G, Feuillet C, Keller B (1997)Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Mol Breed 3:65–74

    Article  CAS  Google Scholar 

  424. Schmolke M, Zimmermann G, Ebmeyer E, Miedaner T, Schweizer G, Hart L (2003) Molecular mapping of Fusarium head blight resistance QTLs in winter wheat population using AFLP markers. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int WheatGenet Symp, Paestum, Italy, pp 1245–1247

    Google Scholar 

  425. Schnurbusch Th, Paillard S, Fossati D, Mesmer M, Schachermayr G, Winzeler M, Keller B (2003a) Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1248–1250

    Google Scholar 

  426. Schnurbusch Th, Paillard S, Schori A, Mesmer M, Schachermayr G, Winzeler M, Keller B (2003b)Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1254–1256

    Google Scholar 

  427. Schuler GD, Boguski MS, Stewart EA, Stein LD, Gyapay G, Rice K, White RE, Rodriguez-Tome P, Aggarwal A, Bajorek E et al (1996) A gene map of the human genome. Science 274:540–546

    Article  PubMed  CAS  Google Scholar 

  428. Schulman AH, Gupta PK, Varshney RK (2004) Organization of microsatellites and retrotransposons in cereal genomes. In:Gupta PK, Varshney RK (eds) CerealGenomics. Kluwer, Dordrecht, pp 83–118

    Google Scholar 

  429. Schwarz G, Herz M, Huang XQ, Michalek W, Jahoor A, Wenzel G, Mohler V(2000)Application of fluorescence based semi-automated AFLP analysis in barley and wheat. Theor Appl Genet 100:545–551

    Article  CAS  Google Scholar 

  430. Schwarzacher T (2003) Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants. J Exp Bot 54:11–23

    Article  PubMed  CAS  Google Scholar 

  431. Seah S, Bariana H, Jahier J, Sivasithamparam K, Lagudah ES (2001) The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance genelike sequence. Theor Appl Genet 102:600–605

    Article  CAS  Google Scholar 

  432. Sears ER (1954) The aneuploids of common wheat. Missouri Agr Expt Sta Res Bull 572:59

    Google Scholar 

  433. Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99:554–560

    Article  CAS  Google Scholar 

  434. Shah MM, Gill KS, Baeniziger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    Article  CAS  Google Scholar 

  435. Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078

    Article  CAS  Google Scholar 

  436. Shao YT, Niu YC, Zhu LH, Zhai WX, Xu SC, Wu LR (2001) Identification of an AFLP marker linked to the stripe rust resistance gene Yr10 in wheat. Chinese Sci Bull 46:1466–1469

    Article  CAS  Google Scholar 

  437. Shariflou MR, Ghannadha MR, Sharp PJ (2003) Multiplex PCR of microsatellite markers in wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1050–1052

    Google Scholar 

  438. Shen X, Ittu M, Ohm HW (2003a) Quantitative trait loci conditioning resistance to fusarium head blight in wheat line F201R. Crop Sci 43:850–857

    Article  CAS  Google Scholar 

  439. Shen X, Zhou M, Lu W, Ohm H (2003b) Detection of fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor Appl Genet 106:1041–1047

    PubMed  CAS  Google Scholar 

  440. Shi AN, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144–147

    CAS  PubMed  Google Scholar 

  441. Shi ZX, Chen XM, Line RF, Leung H, Wellings CR (2001) Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome 44:509–516

    Article  PubMed  CAS  Google Scholar 

  442. Shinbata T, Vrinten P, Iida J, Sato M, Yonemaru J, Saito M, Mitsuse S, Nakamura T (2003) Microarray analysis of gene expression in developing endosperm from different wheat varities. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1053–1055

    Google Scholar 

  443. Sidhu D, Sandhu D, Gill KS (2003) Genes mapping in the functional centromere of the wheat chromosomes In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Intern Wheat Genet Symp, Paestum, Italy, pp 1056–1058

    Google Scholar 

  444. Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Winzeler M, Keller B (1994) Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor Appl Genet 88:994–1003

    Article  Google Scholar 

  445. Simons KJ, Gehlhar SB, Maan SS, Kianian SF (2003) Detailed mapping of the species cytoplasm-specific (scs) gene in durum wheat. Genetics 165:2129–2136

    PubMed  CAS  Google Scholar 

  446. Singh S, Grewal TS, Singh H, Sodhi M, Dhaliwal HS (1999) Identification of amplified fragment length polymorphism markers associated with Karnal bunt (Neovossia indica) resistance in bread wheat. Indian J Agric Sci 69:497–501

    CAS  Google Scholar 

  447. Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    Article  CAS  Google Scholar 

  448. Singh H, Prasad M, Varshney RK, Roy JK, Balyan HS, Dhaliwal HS, Gupta PK (2001) STMS markers for grain protein content and their validation using near isogenic lines in bread wheat. Plant Breed 120:273–278

    Article  Google Scholar 

  449. Singh S, Brown-Guedira GL, Grewal TS, Dhaliwal HS, Nelson JC, Singh H, Gill BS (2003) Mapping of a resistance gene effective against Karnal bunt pathogen of wheat. Theor Appl Genet 106:287–292

    PubMed  Google Scholar 

  450. Singh NK, Raghuvanshi S, Srivastava SK, Gaur A, Pal K, Dalal V, Singh A, Ghazi1 IA, Bhargav A, Yadav M et al (2004a) Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny. Funct Integ Genom 4:102–117

    Article  CAS  Google Scholar 

  451. Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A(2004b) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS.Theor Appl Genet 108:586–591

    Article  PubMed  CAS  Google Scholar 

  452. Singrün Ch, Hsam SLK, Hartl L, Zeller FJ, Mohler V (2003) Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L em Thell). Theor Appl Genet 106:1420–1424

    PubMed  Google Scholar 

  453. Smilde DW, Haluskova J, Sasaki T, Graner A (2001) New evidence for the synteny of rice chromosome 1 and barley chromosome 3H from rice expressed sequence tags. Genome 44:361–367

    Article  PubMed  CAS  Google Scholar 

  454. Smith PH, Koebner RMD, Boyd LA (2002) The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro. Theor Appl Genet 104:1278–1282

    Article  PubMed  CAS  Google Scholar 

  455. Soleimani VD, Baum BR, Johnson DA (2002a) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L subsp durum (Desf) Husn]. Theor Appl Genet 104:350–357

    Article  PubMed  CAS  Google Scholar 

  456. Soleimani VD, Baum BR, Johnson DA (2002b) Identification of Canadian durum wheat [TriticumturgidumL subspdurum (Desf) Husn] cultivars using AFLP and their STS markers. Can J Plant Sci 82:35–41

    CAS  Google Scholar 

  457. Somers DJ, Fedak G, Savard M (2003a) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564

    Article  PubMed  CAS  Google Scholar 

  458. Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003b) Mining single nucleotide polymorphisms from hexaploid wheat ESTs. Genome 49:431–437

    Article  Google Scholar 

  459. Somers D, Edwards KJ, Issac P (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  460. Song QJ, Fickus EW, Cregan PB (2002a) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Article  PubMed  CAS  Google Scholar 

  461. Song QJ, Shi JR, Singh S, Fickus EW, Fernalld R, Gill BS, Cregan PB, Ward R (2002b) Development and mapping of wheat microsatellite markers. In: Plant, Animal and Microbe Genomes X Conf, 12–16 Jan 2002, San Diego. http://www.intl-pag.org/pag/10/abstracts/PAGX_P371.html

    Google Scholar 

  462. Sorrells ME (2004) Cereal genomics research in post-genomic era. In: Gupta PK, Varshney RK (eds) Cereal Genomics. Kluwer, Dordrecht, pp 559–584

    Google Scholar 

  463. Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  464. Sourdille P, Robe P, Tixier M-H, Doussinault G, Pavoine M-T, Bernard M (1999) Location of Pm3g, a powdery mildew resistance allele in wheat, by using a monosomic analysis and by identifying associated molecular markers. Euphytica 110:193–198

    Article  CAS  Google Scholar 

  465. Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000a) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494

    Article  PubMed  CAS  Google Scholar 

  466. Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M (2000b) Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247–255

    Article  CAS  Google Scholar 

  467. Sourdille P, Cadalen T, Gay G, Gill B, Bernard M (2002) Molecular and physical mapping of genes affecting awning in wheat. Plant Breed 121:320–324

    Article  CAS  Google Scholar 

  468. Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  469. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based delition bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L). Funct Integr Genom 4:12–25

    Article  CAS  Google Scholar 

  470. Souza E, Fox PN, Byerlee D, Skovmand B (1994) Spring wheat diversity in irrigated area of 2 developing-countries. Crop Sci 34:774–783

    Article  Google Scholar 

  471. Spielmeyer W, Lagudah ES (2003) Rice genome sequence expedites fine mapping of durable broad spectrum stem rust resistance gene Sr2 inwheat (Triticum aestivum). In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 414–416

    Google Scholar 

  472. Spielmeyer W, Sharp PJ, Lagudah ES (2003) Identification and validation of markers linked to broad spectrum stem rust resistance gene Sr2 in wheat. Crop Sci 43:333–336

    Article  CAS  Google Scholar 

  473. Sreenivasulu N, Kavikishor PB, Varshney RK, Altschmied L (2002) Mining functional information from cereal genomes — the utility of expressed sequence tags (ESTs). Curr Sci 83:965–973

    CAS  Google Scholar 

  474. Stachel M, Lelley T, Grausgruber H, Vollmann J (2000) Application of microsatellites in wheat (Triticum aestivum L) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248

    Article  Google Scholar 

  475. Stam P, Ooijen JW (1995) JoinMap version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen, The Netherlands

    Google Scholar 

  476. Stein N, Graner A (2004) Map-based gene isolation in cereal genomes In: Gupta PK, Varshney RK (eds) Cereal Genomics. Kluwer, Dordrecht, pp 331–360

    Google Scholar 

  477. Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B (2000) Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L). Proc Natl Acad Sci USA 97:13436–13441

    Article  PubMed  CAS  Google Scholar 

  478. Steiner B, Griesser M, Lemmens M, Scholz U, Buerstmayr H (2003) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1260–1262

    Google Scholar 

  479. Stephenson P, Bryan G, Kirby J, Collins A, Devos KM, Busso C, Gale MD (1998) Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97:946–949

    Article  CAS  Google Scholar 

  480. Stoutjesdijk P, Kammholz SJ, Kleven S, Matsay S, Banks PM, Larkin PJ (2001) PCRbased molecular marker for the Bdv2 Thinopyrum intermedium source of barley yellow dwarf virus resistance in wheat. Aust J Agric Res 52:1383–1388

    Article  CAS  Google Scholar 

  481. Suenaga K, Singh RP, Huerta-Espino J, William HM(2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    CAS  PubMed  Google Scholar 

  482. Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI, Nevo E (1997) Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95:622–628

    Article  CAS  Google Scholar 

  483. Sun QX, Ni ZF, Liu ZY, Gao JW, Huang TC (1998) Genetic relationships and diversity among Tibetan wheat, common wheat and European spelt wheat revealed by RAPD markers. Euphytica 99:205–211

    Article  CAS  Google Scholar 

  484. Sun Q, Wei Y, Ni Z, Xie C, Yang T (2002) Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat. Plant Breed 121:539–541

    Article  CAS  Google Scholar 

  485. Sun G, Bond M, Nass H, Martin R, Dong Z (2003) RAPD polymorphisms in spring wheat cultivars and lines with different level of Fusarium resistance. Theor Appl Genet 106:1059–1067

    PubMed  CAS  Google Scholar 

  486. Sutton T, Whitford R, Baumann U, Dong CM, Able JA, Langridge P (2003) The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J 36:443–456

    Article  PubMed  CAS  Google Scholar 

  487. Swanepoel E, Lacock L, Myburg AA, Botha AM(2003) A leucine-rich homolog to Aegilops tauschii from bread wheat line PI 137739 obtained by subtractive suppression hybridization show linkage to Russian wheat aphid resistance gene Dn1. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1263–1265

    Google Scholar 

  488. TAGI, The Arabidopsis Genome Initiative (2000) The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  489. Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Nat Acad Sci USA 98:7922–7927

    Article  PubMed  CAS  Google Scholar 

  490. Talame V, Ballardini M, Antuono FD, Maccaferri M, Tuberosa R (2003) Evaluation of genetic diversity among Italian ‘Farro’ (T dicoccum) populations using AFLP markers. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 527–529

    Google Scholar 

  491. Talbert LE, Bruckner PL, Smith LY, Sears R, Martin TJ (1996) Development of PCR markers linked to resistance to wheat streak mosaic virus in wheat. Theor Appl Genet 93:463–467

    Article  CAS  Google Scholar 

  492. Talbert LE, Smith LY, Blake NK (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41:402–407

    Article  CAS  Google Scholar 

  493. Tanksley SD, McChouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  494. Tanksley SD, Young ND, Patterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding — new tools for an old science. Bio/Technology 7:257–264

    Article  CAS  Google Scholar 

  495. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  496. Tanyolac B, Linton E, Ozkan H (2003) Low genetic diversity in wild emmer (T. turgidum L subsp dicoccoides (Korn ex Asch etGraebn) Thell) from South-eastern Turkey revealed by restriction fragment length polymorphism. Genet Resource Crop Evol 50:829–833

    Article  CAS  Google Scholar 

  497. Tao W, Liu D, Liu J, Feng Y, Chen P (2000) Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theor Appl Genet 100:564–568

    Article  CAS  Google Scholar 

  498. Thangavelu M, James AB, Bankier A, Bryan GJ, Dear PH, Waugh R (2003) HAPPY mapping in plant genome: reconstruction and analysis of a high-resolution physical map of 19 Mpp region of Arabidopsis thaliana chromosome 4. Plant Biotechnol J 1:23–31

    Article  CAS  PubMed  Google Scholar 

  499. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the developement and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  500. Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Article  Google Scholar 

  501. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf 8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  502. Tixier MH, Sourdille P, Charmet G, Gay G, Jaby C, Cadalen T, Bernard S, Nicolas P, Bernard M (1998) Detection of QTLs for crossability in wheat using a doubled haploid population. Theor Appl Genet 97:1076–1082

    Article  CAS  Google Scholar 

  503. Toubia-Rahme H, Steiner B, Buerstmayr H (2003) Mapping of quantitative trait loci (QTLs) for Stagonospora glume blotch resistance in wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1278–1280

    Google Scholar 

  504. Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995a) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    PubMed  CAS  Google Scholar 

  505. Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995b) Comparative mapping in gasses — wheat relationships. Mol Gen Genet 248:744–754

    Article  PubMed  Google Scholar 

  506. Varshney RK, Kumar A, Balyan HS, Roy JK, Prasad M, Gupta PK (2000a) Characterization of microsatellites and development of chromosome specific STMS markers in bread wheat. Plant Mol Biol Rep 18:5–16

    CAS  Google Scholar 

  507. Varshney RK, Prasad M, Roy JK, Harjit-Singh NK, Dhaliwal HS, Balyan HS, Gupta PK (2000b) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet 100:1290–1294

    Article  CAS  Google Scholar 

  508. Varshney RK, Prasad M, Roy JK, Röder MS, Balyan HS, Gupta PK ((2001) Integrated physical maps of 2DL, 6BS and 7DL carrying loci for grain protein content and pre-harvest sprouting tolerance in bread wheat. Cereal Res Comm 29:33–40

    CAS  Google Scholar 

  509. Varshney RK, Korzun V, Börner A (2004a) Molecular maps in cereals: methodology and progress. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer, Dordrecht, pp 35–82

    Google Scholar 

  510. Varshney RK, Prasad M, Graner A (2004b) Molecular marker maps of barley: a resource for intra-and interspecific genomics. In: Lörz H, Wenzel G (eds) Biotechnology in agriculture and forestry, Vol 55. Molecular markers systems. Springer, Berlin Heidelberg New York, pp 229–245

    Google Scholar 

  511. Varshney RK, Prasad M, Zhang H, Kota R, Sigmund R, Scholz U, Stein N, Graner A (2004c) EST-derived markers and transcript map of barley: a resource for interspecific transferability and comparative mapping in cereals. In: Spunar J, Janikova J (eds) Proc 9th Int Barley Genet Symp, Brnno, Czech Republic, pp 332–338

    Google Scholar 

  512. Varshney RK, Graner A, Sorrells ME (2005a) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  PubMed  CAS  Google Scholar 

  513. Varshney RK, Sigmund R, Korzun V, Boerner A, Stein N, Sorrells M, Langridge P, Graner A (2005b) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202

    Article  CAS  Google Scholar 

  514. Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546

    PubMed  CAS  Google Scholar 

  515. Velculescu Ve, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  516. Venter E, Botha AM (2000) Development of markers linked to Diuraphisnoxia resistance in wheat using a novel PCRRFLP approach. Theor Appl Genet 100:965–970

    Article  CAS  Google Scholar 

  517. Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  518. Vierling RA, Nguyen HT (1992) Use of RAPD markers to determine the genetic diversity of diploid, wheat genotypes. Theor Appl Genet 84:835–838

    Article  CAS  Google Scholar 

  519. Vikal Y, Chhuneja P, Singh R, Dhaliwal HS (2004) Tagging of an Aegilops speltoides derived leaf rust resistance gene Lr 28 with a microsatellite marker in wheat. J Plant Biochem Biotechnol 13:47–49

    CAS  Google Scholar 

  520. Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39:805–811

    Article  CAS  Google Scholar 

  521. Wang LF, Ma JX, Zhou RH, Wang XM, Jia JZ (2002) Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, PI178383 (Triticum aestivum L). Euphytica 124:71–73

    Article  CAS  Google Scholar 

  522. Wang X-E, Zhang Q-P, Wang Y-N, Chen P-D, Chu C-G, Qi Z-J, Zhuang L-F, Liu D-J (2003) Identification and genetic analysis of new germplasms with wheat spindle streak mosaic bymovius (WSMMV) resistance. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1284–1286

    Google Scholar 

  523. Ward RW, Yang ZL, Kim HS, Yen C (1998) Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T-tauschii from China and southwest Asia. Theor Appl Genet 96:312–318

    Article  CAS  Google Scholar 

  524. Wardrop J, Snape JW, Powell W, Machray GC (2002) Constructing plant radiation hybrid panels. Plant J 31:223–228

    Article  PubMed  CAS  Google Scholar 

  525. Wardrop J, Fuller J, Powell W, Machray GC (2004) Exploiting plant somatic radiation hybrids for physical mapping of expressed sequence tags. Theor Appl Genet 108:343–348

    Article  PubMed  CAS  Google Scholar 

  526. Waugh R, Dear PH, Powell W, Machray GC (2002) Physical education-new technologies for mapping plant genomes. Trends Plant Sci 7:521–523

    Article  PubMed  CAS  Google Scholar 

  527. Weber D, Helentjaris T (1989) Mapping RFLP loci in maize using B — A translocations. Genetics 121:583–590

    PubMed  CAS  Google Scholar 

  528. Weng Y, Lazar MD (2002a) Amplified fragment length polymorphism and simple sequence, repeatbased molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breed 121:218–223

    Article  CAS  Google Scholar 

  529. Weng Y, Lazar MD (2002b) Comparison of homoeologous group-6 short arm physical maps of wheat and barley reveals a similar distribution of recombinogenic and generich regions. Theor Appl Genet 104:1078–1085

    Article  PubMed  CAS  Google Scholar 

  530. Weng Y, Tuleen NA, Hart GE (2000) Extended physhical map of the homoeologous group-6 chromosomes of wheat (Triticum aestivum L). Theor Appl Genet 100:519–527

    CAS  Google Scholar 

  531. Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311

    Article  PubMed  CAS  Google Scholar 

  532. Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L) reveals multiple mechanisms of genome evolution. Plant J 26:307–316

    Article  PubMed  CAS  Google Scholar 

  533. William HM, Crosby M, Trethovan R, van Ginkel M, Mujeeb-Kazi A, Pfeiffer W, Khairallah M, Hoisington D (2003a) Molecular markers service laboratory at CIMMYT: an interface between the laboratory and the field. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 852–854

    Google Scholar 

  534. William HM, Garcia V, Ortiz-Islas S, van Beem J, Worland AJ (2003b) Progress in molecular markers characterization for phasic development genes inwheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 855–857

    Google Scholar 

  535. William M, Singh RP, Huerta-Espino J, Islas SO, Hoisington D (2003c) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159

    CAS  PubMed  Google Scholar 

  536. Williams KJ, Taylor SP, Bogacki P, Pallotta M, Bariana HS, Wallwork H (2002) Mapping of the root lesion nematode (Pratylenchus neglectus) resistance gene Rlnn1 in wheat. Theor Appl Genet 104:874–879

    Article  PubMed  CAS  Google Scholar 

  537. Williams CE, Collier CC, Sardesai N, Ohm HW, Cambron SE (2003) Phenotypic assessment and mapped markers for H31, a new wheat gene conferring resistance to Hessian fly (Diptera: Cecidomyiidae). Theor Appl Genet 107:1516–1523

    Article  PubMed  CAS  Google Scholar 

  538. Xie DX, Devos KM, Moore G, Gale MD (1993) RFLP-based genetic maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L). Theor Appl Genet 87:70–74

    Article  CAS  Google Scholar 

  539. Xing QH, Ru ZG, Zhou CJ, Xue X, Liang CY, Yang DE, Jin DM, Wang B (2003) Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtms1) in wheat. Theor Appl Genet 107:1500–1504

    Article  PubMed  CAS  Google Scholar 

  540. Yahiaoui N, Srichumpa P, Dudler R, Keller B (2003) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat Plant J 37:528–538

    Google Scholar 

  541. Yan GP, Chen XM, Line RF, Wellings CR (2003a) Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet 106:636–643

    PubMed  CAS  Google Scholar 

  542. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003b) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  543. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y et al (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  PubMed  CAS  Google Scholar 

  544. Yu J, Hu S, Wang J, Wang G, Li SG, Wong KSG, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  545. Yu M-Q, Yan NH, Ma XR, Deng GB, Yang XJ, Chen J (2003) Development of SCAR marker for root-knot nematode resistance gene Rkn-mn1 in wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1292–1294

    Google Scholar 

  546. Yu J-K, La Rota M, Kantety RV, Sorrells ME (2004a) EST-derived SSR markers for comparative mapping in wheat and rice. Mol Gen Genom 271:742–751

    Article  CAS  Google Scholar 

  547. Yu J-K, Dake TM, Singh S, Benscher D, Li W, GillB S, Sorrells ME (2004b) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818

    Article  PubMed  CAS  Google Scholar 

  548. Zaharieva M, Santoni S, David J (2001) Use of RFLP markers to study genetic diversity and to build a core-collection of the wild wheat relative Ae-geniculata Roth (= Ae-ovata L). Genet Selec Evol 33:S269–S288

    CAS  Google Scholar 

  549. Zanetti S, Winzeler M, Keller M, Keller B, Messmer M (2000) Genetic analysis of pre-harvest sprouting resistance in awheat × spelt cross. Crop Sci 40:1406–1417

    Article  CAS  Google Scholar 

  550. Zeller FJ, Kong L, Hartl L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L emThell) 7. Gene Pm29 in line Pova. Euphytica 123:187–194

    Article  CAS  Google Scholar 

  551. Zhang HN, Nasuda S, Endo TR (2000) Identification of AFLP markers on the satellite region of chromosome 1BS in wheat. Genome 43:729–735

    Article  PubMed  CAS  Google Scholar 

  552. Zhang XY, Li CW, Wang LF, Wang HM, You GX, Dong YS (2002) An estimation of the minimum number of SSR alleles needed to reveal genetic relationships inwheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production. Theor Appl Genet 106:112–117

    PubMed  CAS  Google Scholar 

  553. Zhang L, Sourdille P, Bernard M, Madeore A, Bernard S (2003a) QTL mapping for anther culturability in wheat using a doubled-haploid mapping population. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 1078–1080

    Google Scholar 

  554. Zhang XY, You GX, Wang LF (2003b) An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties: information from 96 random accessions with maximized genetic diversity. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp 545–548

    Google Scholar 

  555. Zhang D, Choi DW, Wanamaker S, Fenton RD, Chin A, Malatrasi M, Turuspekov Y, Walia H, Akhunov ED, Kianain P et al (2004) Construction and evaluation of cDNA libraries for large-scale expressed sequence tag sequencing in wheat (Triticum aestivum L.). Genetics 168:595–608

    Article  PubMed  CAS  Google Scholar 

  556. Zhou WC, Kolb FL, Bai GH, Shaner G, Domier LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45:719–727

    Article  PubMed  CAS  Google Scholar 

  557. Zhou WC, Kolb FL, Bai GH, Domier LL, Boze LK, Smith NJ (2003) Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed 122:40–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varshney, R.K., Balyan, H.S., Langridge, P. (2006). Wheat. In: Kole, C. (eds) Cereals and Millets. Genome Mapping and Molecular Breeding in Plants, vol 1. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34389-9_2

Download citation

Publish with us

Policies and ethics