Skip to main content

Pioneer Anomaly: What Can We Learn from LISA?

  • Chapter
Lasers, Clocks and Drag-Free Control

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 349))

The Doppler tracking data from two deep-space spacecraft, Pioneer 10 and 11, show an anomalous blueshift, which has been dubbed the “Pioneer anomaly”. The effect is most commonly interpreted as a real deceleration of the spacecraft – an interpretation that faces serious challenges from planetary ephemerides. The Pioneer anomaly could as well indicate an unknown effect on the radio signal itself. Several authors have made suggestions how such a blueshift could be related to cosmology. We consider this interpretation of the Pioneer anomaly and study the impact of an anomalous blueshift on the Laser Interferometer Space Antenna (LISA), a planned joint ESA–NASA mission aiming at the detection of gravitational waves. The relative frequency shift (proportional to the light travel time) for the LISA arm length is estimated to 1016, which is much bigger than the expected amplitude of gravitational waves. The anomalous blueshift enters the LISA signal in two ways, as a small term folded with the gravitational-wave signal, and as larger term at low frequencies. A detailed analysis shows that both contributions remain undetectable and do not impair the gravitational-wave detection. This suggests that the Pioneer anomaly will have to be tested in the outer solar system regardless if the effect is caused by an anomalous blueshift or by a real force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Danzmann et al. [LISA Study Team], Laser Interferometer Space Antenna: A cornerstone mission for the observation of Gravitational waves, System and technology study report, ESA-SCI(2000)11, July 2000.

    Google Scholar 

  2. J.D. Anderson, P.A. Laing, E.L. Lau, A.S. Liu, M.M. Nieto and S.G. Turyshev, “Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration,” Phys. Rev. Lett. 81 (1998) 2858 [arXiv:gr-qc/9808081].

    Article  ADS  Google Scholar 

  3. J.D. Anderson, P.A. Laing, E.L. Lau, A.S. Liu, M.M. Nieto and S.G. Turyshev, “Study of the anomalous acceleration of Pioneer 10 and 11,” Phys. Rev. D 65 (2002) 082004 [arXiv:gr-qc/0104064].

    ADS  Google Scholar 

  4. O. Bertolami and J. Paramos, “The Pioneer anomaly in a bimetric theory of gravity on the brane,” Class. Quant. Grav. 21 (2004) 3309 [arXiv:gr-qc/ 0310101].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. D. Izzo and A. Rathke, “Options for a non-dedicated test of the Pioneer anom-aly,” arXiv:astro-ph/0504634.

    Google Scholar 

  6. R.H. Sanders, “A tensor-vector-scalar framework for modified dynamics and cosmic dark matter,” arXiv:astro-ph/0502222.

    Google Scholar 

  7. H. Dittus et al. [Pioneer Collaboration], “A mission to explore the Pioneer anomaly,” to appear in the proceedings of the 39th ESLAB Symposium: Trends in Space Science and Cosmic Vision 2020, Noordwijk, The Netherlands, 19-21 Apr 2005, arXiv:gr-qc/0506139.

    Google Scholar 

  8. M.M. Nieto and S.G. Turyshev, “Finding the origin of the Pioneer anomaly,” Class. Quant. Grav. 21 (2004) 4005 [arXiv:gr-qc/0308017].

    Article  MATH  ADS  Google Scholar 

  9. L.K. Scheffer, “Conventional forces can explain the anomalous acceleration of Pioneer 10,” Phys. Rev. D 67 (2003) 084021 [arXiv:gr-qc/0107092]. 3 See [55, 56] for an example implementation of a Pioneer anomaly test on a Pluto exploration mission.

    ADS  Google Scholar 

  10. J.L. Rosales, “LISA mission and the Pioneer anomaly”, proposal in response to the Call for Themes for Cosmic Vision 2015-2025 of the European Space Agency (May 2004).

    Google Scholar 

  11. M. Tinto and J.W. Armstrong, “Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation,” Phys. Rev. D 59 (1999) 102003.

    ADS  Google Scholar 

  12. L. Lasher and J. Dyer, “Pioneer Missions,” in: P. Murdin (ed.), Encyclopedia of Astronomy and Astrophysics (Institute of Physics Publishing, Bristol, UK, 2002), http://eaa.iop.org/abstract/0333750888/2187.

  13. G.W. Null, “Gravity field of Jupiter and its satellites from Pioneer 10 and Pioneer 11 tracking data,” AJ 81 (1976) 1153.

    Article  ADS  Google Scholar 

  14. M.M. Nieto and J. D. Anderson, “Using early data to illuminate the Pioneer anomaly,” arXiv:gr-qc/0507052.

    Google Scholar 

  15. C.B. Markwardt, “Independent confirmation of the Pioneer 10 anomalous acceleration,” arXiv:gr-qc/0208046.

    Google Scholar 

  16. J.I. Katz, “Comment on “Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration”,” Phys. Rev. Lett. 83 (1999) 1892 [arXiv:gr-qc/9809070].

    Article  ADS  Google Scholar 

  17. E.M. Murphy, “A prosaic explanation for the anomalous accelerations seen in distant spacecraft,” Phys. Rev. Lett. 83 (1999) 1890 [arXiv:gr-qc/9810015].

    Article  ADS  Google Scholar 

  18. J.D. Anderson, P.A. Laing, E.L. Lau, M.M. Nieto and S.G. Turyshev, “The search for a standard explanation of the Pioneer anomaly,” Mod. Phys. Lett. A 17 (2002) 875 [arXiv:gr-qc/0107022].

    Google Scholar 

  19. B. Mashhoon, “Modification of the Doppler effect due to the helicity-rotation coupling,” Phys. Lett. A 306 (2002) 66 [arXiv:gr-qc/0209079].

    MathSciNet  ADS  Google Scholar 

  20. J.D. Anderson and B. Mashhoon, “Pioneer anomaly and the helicity-rotation coupling,” Phys. Lett. A 315 (2003) 199 [arXiv:gr-qc/0306024].

    ADS  Google Scholar 

  21. C. Talmadge, J.P. Berthias, R.W. Hellings and E.M. Standish, “Model inde-pendent constraints on possible modifications of Newtonian gravity,” Phys. Rev. Lett. 61, 1159 (1988).

    Article  ADS  Google Scholar 

  22. J.D. Anderson, E.L. Lau, T.P. Krisher, D.A. Dicus, D. C. Rosenbaum and V. L. Teplitz, “Improved bounds on nonluminous matter in Solar orbit,” Astrophys. J. 448 (1998) 885 [arXiv:hep-ph/9503368].

    Article  ADS  Google Scholar 

  23. S. Reynaud and M.T. Jaekel, “Testing the Newton law at long distances,” Int. J. Mod. Phys. A 20 (2005) 2294 [arXiv:gr-qc/0501038].

    ADS  Google Scholar 

  24. J.L. Rosales and J.L. Sanchez-Gomez, “The ‘Pioneer effect’ as a manifestation of the cosmic expansion in the solar system,” arXiv:gr-qc/9810085.

    Google Scholar 

  25. J.L. Rosales,“The Pioneer effect: a cosmological Foucault’s experiment,” arXiv:gr-qc/0212019.

    Google Scholar 

  26. J.L. Rosales,“The Pioneer’s anomalous Doppler drift as a Berry phase,” arXiv:gr-qc/0401014.

    Google Scholar 

  27. J.L. Rosales, “The Pioneer anomaly: The measure of a topological phase defect of light in cosmology,” arXiv:quant-ph/0501041.

    Google Scholar 

  28. A.F. Ranada, “The Pioneer riddle, the quantum vacuum and the acceleration of light,” Europhys. Lett. 63 (2003) 653 [arXiv:gr-qc/0211052].

    Article  ADS  Google Scholar 

  29. A.F. Ranada, “The light speed and the interplay of the quantum vacuum, the gravitation of all the universe and the fourth Heisenberg relation,” Int. J. Mod. Phys. D 12 (2003) 1755.

    ADS  Google Scholar 

  30. A.F. Ranada, “The Pioneer anomaly as acceleration of the clocks,” Found. Phys. 34 (2005) 1955 [arXiv:gr-qc/0410084].

    Article  ADS  Google Scholar 

  31. A.K. Pati, “Adiabatic Berry phase and Hannay angle for open paths,” Annals Phys. 270 (1998) 178 [arXiv:quant-ph/9804057].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. N. Jafari and A. Shariati, “Comments on the quantum vacuum and the light acceleration,” arXiv:gr-qc/0409113.

    Google Scholar 

  33. F.B. Estabrook and H. Wahlquist, “Response of Doppler spacecraft tracking to gravitational radiation,” Gen. Rel. Grav. 6 (1975) 439.

    Article  ADS  Google Scholar 

  34. R.W. Hellings, “Spacecraft Doppler gravity wave detection. 1. Theory,” Phys. Rev. D 23, 832 (1981).

    ADS  Google Scholar 

  35. C.M. Will, “Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries,” Phys. Rev. D 57 (1998) 2061 [arXiv: gr-qc/9709011].

    ADS  Google Scholar 

  36. C.M. Will and N. Yunes, “Testing alternative theories of gravity using LISA,” Class. Quant. Grav. 21 (2004) 4367 [arXiv:gr-qc/0403100].

    Article  MATH  ADS  Google Scholar 

  37. E. Berti, A. Buonanno and C.M. Will, “Estimating spinning binary parameters and testing alternative theories of gravity with LISA,” Phys. Rev. D 71 (2005) 084025 [arXiv:gr-qc/0411129].

    ADS  Google Scholar 

  38. Giacomo Giampieri, Ronald W. Hellings, Massimo Tinto, James E. Faller, “Algorithms for unequal-arm Michelson interferometers,” Optics Communications 123 (1996) 669.

    Article  ADS  Google Scholar 

  39. Sanjeev V. Dhurandhar and Massimo Tinto, “Time-delay interferometry,” Living Rev. Relativity 8, (2005), 4. URL (cited on 15 August 2005): http://www.livingreviews.org/lrr-2005-4[arXiv:gr-qc/0409034].

  40. G. Giampieri, R.W. Hellings, L. Maleki, M. Tinto, K. Danzmann, J. Hough, D. Robertson, “Heterodyne laser tracking at high Doppler rates”, Optics Communications 124 (1996) 313.

    Article  ADS  Google Scholar 

  41. W.M. Folkner, T.H. Sweetser, M.A. Vincent, F. Hechler and P.L. Bender, “LISA orbit selection and stability,” Class. Quant. Grav. 14 (1997) 1405.

    Article  ADS  Google Scholar 

  42. K.R. Nayak, S. Koshti, S. V. Dhurandhar and J. Y. Vinet, “Reducing the flexing of the arms of LISA,” arXiv:gr-qc/0507105.

    Google Scholar 

  43. S.V. Dhurandhar, K. Rajesh Nayak, S. Koshti and J. Y. Vinet, “Fundamen-tals of the LISA stable flight formation,” Class. Quant. Grav. 22 (2005) 481 [arXiv:gr-qc/0410093].

    Article  MATH  ADS  Google Scholar 

  44. A. Hammesfahr et al., LISA, Study of the Laser Interferometer Space Antenna, final technical report, ESA Industrial Study at Phase A, ESTEC Contract no. 13631/99/NL/MS, DSS Report No. LI-RP-DS-009 (Dornier Satellitensysteme GmbH, Friedrichshafen, Germany).

    Google Scholar 

  45. P.L. Bender, “LISA sensitivity below 0.1 mHz,” Class. Quant. Grav. 20 (2003) S301.

    Article  MATH  ADS  Google Scholar 

  46. F.B. Estabrook, M. Tinto and J.W. Armstrong, “Time delay analysis of LISA gravitational wave data: Elimination of spacecraft motion effects,” Phys. Rev. D 62 (2000) 042002.

    ADS  Google Scholar 

  47. M. Tinto, F. B. Estabrook and J. W. Armstrong, “Time-delay interferometry for LISA,” Phys. Rev. D 65 (2002) 082003.

    ADS  Google Scholar 

  48. M. Vallisneri, “Geometric time delay interferometry,” arXiv:gr-qc/0504145.

    Google Scholar 

  49. N.J. Cornish and R.W. Hellings, “The effects of orbital motion on LISA time de-lay interferometry,” Class. Quant. Grav. 20 (2003) 4851 [arXiv:gr-qc/0306096].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. D.A. Shaddock, M. Tinto, F.B. Estabrook and J.W. Armstrong, “Data combi-nations accounting for LISA spacecraft motion,” Phys. Rev. D 68 (2003) 061303 [arXiv:gr-qc/0307080].

    ADS  Google Scholar 

  51. M. Tinto, F.B. Estabrook and J. W. Armstrong, “Time delay interferometry with moving spacecraft arrays,” Phys. Rev. D 69 (2004) 082001 [arXiv:gr-qc/0310017].

    ADS  Google Scholar 

  52. M.T. Jaekel and S. Reynaud, “Post-Einsteinian tests of linearized gravitation,” Class. Quant. Grav. 22 (2005) 2135 [arXiv:gr-qc/0502007].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. S.G. Turyshev et al. [LATOR Collaboration], “Fundamental physics with the laser astrometric test of relativity,” to appear in the proceedings of the 39th ESLAB Symposium: Trends in Space Science and Cosmic Vision 2020, Noord-wijk, The Netherlands, 19-21 Apr 2005, arXiv:gr-qc/0506104.

    Google Scholar 

  54. W.T. Ni, “ASTROD: An overview,” Int. J. Mod. Phys. D 11 (2002) 947.

    ADS  Google Scholar 

  55. A. Rathke, “Testing for the Pioneer anomaly on a Pluto exploration mission,” in: A. Morseli, P. Picozza and M. Ricci (eds.), Proceedings of the third international workshop on Frontier Science 2004. Physics and Astrophysics in Space (INFN, Frascati, Italy 2004) [arXiv:astro-ph/0409373].

    Google Scholar 

  56. T. Bondo, R. Walker, A. Willig, A. Rathke, D. Izzo and M. Ayre, “Preli-minary Design of an Advanced Mission to Pluto”. to appear in the procee-dings of the 24th International Symposium on Space Technology and Science, Miyazaki, Japan, June 2004, http://www.esa.int/gsp/ACT/doc/ACT-RPR-4200-ISTS2004.pdf.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Defrère, D., Rathke, A. (2008). Pioneer Anomaly: What Can We Learn from LISA?. In: Dittus, H., Lammerzahl, C., Turyshev, S.G. (eds) Lasers, Clocks and Drag-Free Control. Astrophysics and Space Science Library, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34377-6_27

Download citation

Publish with us

Policies and ethics