Skip to main content

Exploring the Pioneer Anomaly: Concept Considerations for a Deep-Space Gravity Probe Based on Laser-Controlled Free-Flying Reference Masses

  • Chapter

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 349))

The analysis of their radiometric tracking data has consistently indicated a small, anomalous, Doppler frequency drift at heliocentric distances of 20–70AU. The drift is a blueshift, uniformly changing with a rate of ~(5.99 ± 0.01) × 109 Hz s1, which can be interpreted as a constant acceleration of each spacecraft of aPioneer = (8.74 ± 1.33) × 1010 ms2 toward the Sun. This signal has become known as the Pioneer anomaly. The inability to explain the anomalous behavior of the Pioneer spacecraft with conventional physics and the search for “new physics” motivated by the search for quantum gravity or local effects of dark matter and/or dark energy emphasizes the need for a new experiment to explore the detected signal. Only a dedicated experiment could ultimately determine the nature of the found signal. We discuss the Pioneer anomaly and present the next steps toward an understanding of its origin. We specifically focus on the development of a mission to explore the Pioneer Anomaly in a dedicated experiment conducted in deep space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Anderson, P.A. Laing, E.L. Lau, A.S. Liu, M.M. Nieto, and S.G. Turyshev. Study of the anomalous acceleration of Pioneer 10 and 11. Phys. Rev., D 65:082004, 2002.

    ADS  Google Scholar 

  2. J.D. Anderson, P.A. Laing, E.L. Lau, A.S. Liu, M.M. Nieto, and S.G. Turyshev. Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration. Phys. Rev. Lett., 81:2858, 1998.

    Article  ADS  Google Scholar 

  3. C.B. Markwardt. Independent confirmation of the Pioneer 10 anomalous acceleration. gr-qc/0208046.

    Google Scholar 

  4. J.D. Anderson, E.L. Lau, S.G. Turyshev, P.A. Laing, and M.M. Nieto. Search for a standard explanation of the Pioneer anomaly. Mod. Phys. Lett., A 17:875, 2002.

    Google Scholar 

  5. J.D. Anderson, M.M. Nieto, and S.G. Turyshev. A mission to test the Pioneer anomaly. Int. J. Mod. Phys. D, 11:1545, 2002.

    ADS  Google Scholar 

  6. M.M. Nieto, and S.G. Turyshev. Finding the origin of the pioneer anomaly. Class. Quantum Grav., 21, 4005 (2004).

    Article  MATH  ADS  Google Scholar 

  7. L.K. Scheffer. Conventional forces can explain the anomalous acceleration of Pioneer 10. Phys. Rev., D 67:084021, 2004.

    ADS  Google Scholar 

  8. D.H. Humes. Results of Pioneer 10 and 11 meteoroid experiments: Interplanetary and Near Saturn. J. Geophys. Res. 85, 5481 (1980).

    Article  ADS  Google Scholar 

  9. D.A. Gurnett, J.A. Ansher, W.S. Kurth, and L.J. Granroth. Micron-sized dust particles detected in the outer solar system by the Voyager 1 and 2 plasma wave instruments. Geophys. Res. Lett. 24, 3125 (1997).

    Article  ADS  Google Scholar 

  10. M. Landgraf, K. Augustsson, E. Grun, and A.S. Gustafson. Deflection of the local interstellar dust flow by solar radiation pressure. Science 286, 2319 (1999).

    Article  ADS  Google Scholar 

  11. G.E. Backman, A. Dasgupta, and R.E. Stencel. Model of a Kuiper belt small-grain population and resulting far-infrared emission. Astrophys. J. 450, L35 (1995).

    Article  ADS  Google Scholar 

  12. S.A. Stern. Signatures of collisions in the Kuiper Disk. Astron. Astrophys. 310, 999 (1996).

    ADS  Google Scholar 

  13. V.L. Teplitz, S.A. Stern, J.D. Anderson, D. Rosenbaum, R.J. Scalise, and P. Wentzler. Infrared Kuiper belt constraints. Astrophys. J. 516, 425 (1999).

    Article  ADS  Google Scholar 

  14. R. Malhotra. The origin of Plutos orbit - implications for the Solar system beyond Neptune. Astron. J. 110, 420 (1995).

    Article  ADS  Google Scholar 

  15. R. Malhotra. The phase space structure near Neptune resonances in the Kuiper Belt. Astron. J. 111, 504 (1996).

    Article  ADS  Google Scholar 

  16. A.P. Boss and S.J. Peale. Icarus 27, 119 (1976).

    Article  ADS  Google Scholar 

  17. A.S. Liu, J.D. Anderson, and E. Lau. Proc. AGU (Fall Meeting, San Francisco, 16-18 December 1996), paper No. SH22B-05.

    Google Scholar 

  18. P. Ingersoll, T.V. Johnson, J. Kargel, R. Kirk, D.I.N. Didon, J. Perchoux, and E. Courtens. Preprint Université de Montpellier (1999).

    Google Scholar 

  19. N. Didon, J. Perchoux, and E. Courtens. Universite de Montpellier preprint (1999).

    Google Scholar 

  20. D.E. Backman, and A. Dasgupta. Model of a Kuiper belt small grain population and resulting far-infrared emission. Astroph. J. 450, L35 (1995).

    Article  ADS  Google Scholar 

  21. M.M. Nieto. Analytic gravitational-force calculations for models of the kuiper belt, with application to the Pioneer anomaly. Phys. Rev., D 72:083004, 2005.

    ADS  Google Scholar 

  22. M.M. Nieto, S. Turyshev, and J.D. Anderson. Directly measured limit on the interplanetary matter density from Pioneer 10 and 11. Phys. Lett., B 613:11, 2005.

    ADS  Google Scholar 

  23. D. Bini, C. Cherubini, and B. Mashhoon. Vacuum c-metric and the gravitational stark effect. Phys. Rev., D 70:044020, 2004.

    MathSciNet  ADS  Google Scholar 

  24. J.D. Anderson and B. Mashhoon. Pioneer anomaly and the helicity-rotation coupling. Phys. Lett., A 315:199, 2003.

    ADS  Google Scholar 

  25. A.F. Ranada. The Pioneer riddle, the quantum vacuum and the acceleration of light. Europhys. Lett., 63:653, 2002.

    Article  ADS  Google Scholar 

  26. J.L. Rosales. The Pioneer’s acceleration anomaly and Hubble’s constant. gr-qc/0212019.

    Google Scholar 

  27. C. Lämmerzahl and H. Dittus. Doppler tracking in the expanding universe, 2005. preprint, ZARM, University of Bremen.

    Google Scholar 

  28. F.I. Cooperstock, V. Faraoni, and D.N. Vollik. The influence of the cosmological expansion on local systems. Astroph. J., 503:61, 1998.

    Article  ADS  Google Scholar 

  29. S. Klioner and M.H. Soffel. Refining the relativistic model for Gaia: cosmological effects in the BCRS. in: C. Turon, K.S. O’Flaherty, M.A.C. Perryman (eds.). Proc. of the Symposium “The three-dimensional Universe with Gaia”, ESA SP-576 (2005), p. 305.

    Google Scholar 

  30. G.C. MacVittie. The mass-particle in an expanding universe. Mon. Not. Roy. Astr. Soc. 93, 325 (1933).

    ADS  Google Scholar 

  31. A. Einstein and E.G. Strauss. The Influence of the Expansion of Space on the Gravitation Fields Surrounding the Individual Stars. Rev. Mod. Phys. 17, 120 (1945).

    Article  MATH  ADS  Google Scholar 

  32. A. Einstein and E.G. Strauss. Corrections and Additional Remarks to our Paper: The Influence of the Expansion of Space on the Gravitation Fields Surrounding the Individual Stars. Rev. Mod. Phys. 18, 148 (1946).

    Article  MATH  ADS  Google Scholar 

  33. E. Schücking. Das Schwarzschildsche Linienelement und die Expansion des Weltalls. Z. Physik, 137:595, 1954.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. R. Balbinot, R. Bergamini, and A. Comastri. Solution of the Einstein-Straus problem with a Λ term. Phys. Rev., 38:2415, 1988.

    MathSciNet  ADS  Google Scholar 

  35. W.B. Bonnor. A generalization of the Einstein-Straus vacuole. Class. Quantum Grav., 17:2739, 2000.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. A. Krasinski. Inhomogenous Cosmological Models. Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  37. J.M.M. Senovilla and R. Vera. Impossibility of the cylindrically symmetric Einstein-Straus model. Phys. Rev. Lett., 78:2284, 1997.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. B.C. Nolan and L.V. Nolan. On isotropic cylindrical symmetric stallar models. Class. Quantum Grav., 21:3693, 2004.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. J. Eisenstadt. Spherical mass emmersed in a cosmologicasl universe: A class of solutions. Phys. Rev. D 11, 2021 (1975).

    ADS  Google Scholar 

  40. J. Eisenstadt. Spherical mass emmersed in a cosmologicasl universe: A class of solutions II. Phys. Rev. D 12, 1573 (1976).

    ADS  Google Scholar 

  41. R. Gautreau. Curvature coordinates in cosmology. Phys. Rev. D 29, 186 (1984).

    MathSciNet  ADS  Google Scholar 

  42. R. Gautreau. Imbedding a Schwarzschild mass solution into cosmology. Phys. Rev. D 29, 198 (1984).

    MathSciNet  ADS  Google Scholar 

  43. C. Bona and J. Stela. “Swiss cheese” models with pressure. Phys. Rev. 36, 2915 (1987).

    ADS  Google Scholar 

  44. W. Rindler. Relativity. Oxford University Press, Oxford, 2001.

    MATH  Google Scholar 

  45. B. Carter. In C. DeWitt and B.D. DeWitt (eds.). Black Holes. (Gordon and Breach, New York 1973).

    Google Scholar 

  46. Z. Stuchlik and S. Hledik. Some properties of the Schwarzschildde Sitter and Schwarzschildanti-de Sitter spacetimes. Phys. Rev., D 60:044006, 1999.

    MathSciNet  ADS  Google Scholar 

  47. Z. Stuchlik and P. Slany. Equatorial circular orbits in the Kerr-de Sitter space-times. Phys. Rev., D 69:064001, 2004.

    MathSciNet  ADS  Google Scholar 

  48. C. Klein. Rotational perturbations and frame dragging in a Friedmann universe. Class. Quantum Grav. 10, 1619 (1993).

    Article  ADS  Google Scholar 

  49. C. Klein. Second-order effects of rotational perturbations of a Friedmann universe. Class. Quantum Grav. 11, 1539 (1994).

    Article  ADS  Google Scholar 

  50. T. Doležel, J. Bičák and N. Deruelle. Slowly rotating voids in cosmology. Class. Quantum Grav. 17, 2719 (2000).

    Article  MATH  ADS  Google Scholar 

  51. R.H. Dicke and J.E. Peebles. Evolution of the solar system and the expansion of the universe. Phys. Rev. Lett., 12:435, 1964.

    Article  MATH  ADS  Google Scholar 

  52. J.L. Anderson. Multiparticle dynamics in an expanding universe. Phys. Rev. Lett., 75:3602, 1995.

    Article  ADS  Google Scholar 

  53. W.B. Bonnor. The cosmic expansion and local dynamics. Mon. Not. Roy. Astron. Soc. 282, 1467 (1996).

    ADS  Google Scholar 

  54. W.B. Bonnor. The hydrogen atom in an expanding universe. Class. Quantum Grav., 16:1313, 1999.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. W.B. Bonnor. A generalization of the Einstein-Straus vacuole. Class. Quantum Grav., 17:2739, 2000.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. L. Nottale. The Pioneer anomalous acceleration: a measurement of the cosmological constant at the scale of the solar system. gr-qc/0307042.

    Google Scholar 

  57. J.P. Mbelek. General relativity and quintessence explain the Pioneer anomaly. gr-qc/0402088.

    Google Scholar 

  58. B.G. Sidharth. Effects of varying G. Il Nuovo Cim. B 115, 151 (2000).

    ADS  Google Scholar 

  59. G. Modanese. Effect of a scale-dependent cosmological term on the motion of small test particles in a Schwarzschild background. Nucl. Phys. B, 556:397, 1999.

    Article  MathSciNet  ADS  Google Scholar 

  60. J.L. Rosales and J.L. Sanchez-Gomez. The “Pioneer effect” as a manifestation of the cosmic expansion in the solar system. arXiv:gr-qc/9810085.

    Google Scholar 

  61. D. østvang. An explanation of the ‘Pioneer effect’ based on quasi-metric relativity. Class. Quantum Grav., 19:4132, 2002.

    Google Scholar 

  62. M.A. Ivanov. Possible Manifestations of the Graviton Background. Gen. Rel. Grav. 33, 479 (2001).

    Article  MATH  ADS  Google Scholar 

  63. W.B. Belayev. Cosmological model in 5D, stationarity, yes or no. gr-qc/9903016.

    Google Scholar 

  64. J.W. Moffat. Modified gravitational theory and the Pioneer 10 and 11 spacecraft anomalous accelerartion. gr-qc:0405076.

    Google Scholar 

  65. M. Milgrom. MOND - A pedagogical review. Acta Phys. Pol. B 32, 3613 (2001).

    ADS  Google Scholar 

  66. M. Milgrom. MOND - theoretical aspects. New Astr. Rev., 46:741, 2002.

    Article  ADS  Google Scholar 

  67. J.D. Bekenstein. Relativistic gravitation theory for the MOND paradigm. astroph/0403694.

    Google Scholar 

  68. J.W. Moffat. Scalar-tensor-vector gravity theory. gr-qc/0506021.

    Google Scholar 

  69. M.-T. Jaekel and S. Reynaud. Gravity tests in the Solar system and the Pioneer anomaly. gr-qc/0410148.

    Google Scholar 

  70. M. Munyaneza and R.D. Viollier. Heavy neutrino dark matter in the solar system. astro-ph/9910566

    Google Scholar 

  71. R. Foot and R.R. Volkas. A Mirror World Explanation for the Pioneer Spacecraft Anomalies?’ Phys. Lett. B 517, 13 (2001).

    ADS  Google Scholar 

  72. O. Bertolami and J. Paramos. The Pioneer anomaly in a bimetric theory of gravity on the brane. Class. Quant. Grav. 21, 3309 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  73. A. Aguirre. Alternatives to Dark Matter (?). astro-ph/0310572.

    Google Scholar 

  74. S. Calchi Novati, S. Capozziello, and G. Lambiase. Grav. Cosmol. 6, 173 (2000).

    MATH  MathSciNet  ADS  Google Scholar 

  75. M. Consoli and F. Siringo. Newtonian gravity from Higgs condensates. hep-ph/9910372.

    Google Scholar 

  76. J.P. Mbelek and M. Lachieze-Rey. Long-range acceleration induced by a scalar field external to gravity and the indication from Pioneer 10/11, Galileo and Ulysses Data. gr-qc/9910105.

    Google Scholar 

  77. S. Capozziello, S. De Martino, S. De Siena, and F. Illuminati. Mod. Phys. Lett. A 16, 693 (2001).

    ADS  Google Scholar 

  78. J. Wood and W. Moreau. Solutions of Conformal Gravity with Dynamical Mass Generation in the Solar System. gr-qc/0102056.

    Google Scholar 

  79. U. Johann and R. Förstner. Enigma’,2003. Unsolicited Proposal to ESA/ESTEC, Fund. Physics and Advanced Concepts.

    Google Scholar 

  80. U. Johann and R. Förstner. Enigma, http://www.Zarm.uni-bremen.de/Pioneer. Presentation on the first international Pioneer Anomaly Workshop, ZARM, Bremen, May 2004.

  81. H. Dittus and the Pioneer Explorer Collaboration. A mission to explore the Pioneer anomaly. In Á. Giménez et al, editor, Trends in Space Science and Cosmic Vision 2020, page 3. ESA, Noordwijk, 2005; gr-qc/0506139.

    Google Scholar 

  82. M.M. Nieto, S.G. Turyshev, and J.D. Anderson. The Pioneer Anomaly: The Data, its Meaning, and a Future Test, in: AIP Conf. Proc. 758, 113 (2005) [gr-qc/0411077].

    Google Scholar 

  83. M.M. Nieto and S.G. Turyshev. Finding the origin of the Pioneer anomaly. Class. Quantum Grav. 21, 4005 (2004).

    Article  MATH  ADS  Google Scholar 

  84. S.G. Turyshev, M.M. Nieto, and J.D. Anderson. A Route to Understanding of the Pioneer Anomaly. in: The XXII Texas Symposium on Relativistic Astro-physics, Stanford University, Dec. 13-17, 2004, edited by P. Chen, E. Bloom, G. Madejski, and V. Petrosian. (2005), [gr-qc/0503021].

    Google Scholar 

  85. DSN 810-005, Rev. E, 203.

    Google Scholar 

  86. http://oersted.dtu.dk

  87. http://www.jena-optronik.de (April 2004).

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johann, U., Lammerzahl, C., Dittus, H. (2008). Exploring the Pioneer Anomaly: Concept Considerations for a Deep-Space Gravity Probe Based on Laser-Controlled Free-Flying Reference Masses. In: Dittus, H., Lammerzahl, C., Turyshev, S.G. (eds) Lasers, Clocks and Drag-Free Control. Astrophysics and Space Science Library, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34377-6_26

Download citation

Publish with us

Policies and ethics