Skip to main content

Lunar Laser Ranging Contributions to Relativity and Geodesy

  • Chapter
Lasers, Clocks and Drag-Free Control

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 349))

Lunar laser ranging (LLR) is used to conduct high-precision measurements of ranges between an observatory on Earth and a laser retroreflector on the lunar surface. Over the years, LLR has benefited from a number of improvements both in observing technology and data modeling, which led to the current accuracy of postfit residuals of ~2 cm. Today LLR is a primary technique to study the dynamics of the Earth–Moon system and is especially important for gravitational physics, geodesy, and studies of the lunar interior. When the gravitational physics is concerned, LLR is used to perform high-accuracy tests of the equivalence principle, to search for a time variation in the gravitational constant, and to test predictions of various alternative theories of gravity. The gravitational physics parameters cause both secular and periodic effects on the lunar orbit that are detectable with the present day LLR; in addition, the accuracy of their determination benefits from the 35 years of the LLR data span. On the geodesy front, LLR contributes to the determination of Earth orientation parameters, such as nutation, precession (including relativistic precession), polar motion, and UT1, i.e., especially to the long-term variation of these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertotti B., Iess L., Tortora, P.: A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374 (2003).

    Article  ADS  Google Scholar 

  2. IAU Resolutions2000: http://syrte.obspm.fr/IAUresolutions/Resol-UAI.htm.

  3. IERS Conventions 2003. IERS Technical Note No. 32, D.D. McCarthy and G. Petit (eds.), Frankfurt, BKG, 2004. Electronic version http://www.tai.bipm.org/iers/conv2003/conv2003.html.

  4. Koch C.: Implementierung eines neuen Integrators in die LLR-Auswertesoftware und Erzeugung von Standardlösungen für die zu bestim-menden Zielparameter, unpublished diploma thesis, University of Hannover 2005.

    Google Scholar 

  5. Mansouri, R.M. and Sexl, R.U.: A test theory of Special Relativity. Gen. Rel. Grav. 8, 497 (1977); ibid. 8, 515 (1977); ibid. 8, 809 (1977).

    Article  ADS  Google Scholar 

  6. Müller, J.: FESG/TUM, Report about the LLR Activities. ILRS Annual Report 1999, M. Pearlman, L. Taggart (eds.), 204-208, 2000.

    Google Scholar 

  7. Müller, J.: FESG/TUM, Report about the LLR Activities. ILRS Annual Report 2000, M. Pearlman, M. Torrence, L. Taggart (eds.), 7-35/36, 2001.

    Google Scholar 

  8. Müller J. and Nordtvedt K.: Lunar laser ranging and the equivalence principle signal. Physical Review D, 58, 062001, 1998.

    Article  ADS  Google Scholar 

  9. Müller, J., Nordtvedt, K., Schneider, M., Vokrouhlický, D.: Improved Deter-mination of Relativistic Quantities from LLR. In: Proceedings of the 11th International Workshop on Laser Ranging Instrumentation, held in Deggen-dorf, Germany, Sept. 21-25, 1998, BKG v.10, 216-222, 1999.

    Google Scholar 

  10. Müller J., Nordtvedt K. and Vokrouhlický D.: Improved constraint on the α1 PPN parameter from lunar motion. Physical Review D, 54, R5927-R5930, 1996.

    Article  ADS  Google Scholar 

  11. Müller J. and Tesmer V.: Investigation of Tidal Effects in Lunar Laser Ranging. Journal of Geodesy, 76, 232-237, 2002.

    Article  ADS  Google Scholar 

  12. Müller J. J.G. Williams, S.G. Turyshev, and P. Shelus.: Potential Capabilities of Lunar Laser Ranging for Geodesy and Relativity. Proceedings of the IAG General Assembly, held in Cairns, Australia, 22-26 August 2005, in print 2005, gr-qc/0509019.

    Google Scholar 

  13. Murphy, T.M., Jr., Strasburg, J.D., Stubbs, C.W., Adelberger, E.G., Angle, J., Nordtvedt, K., Williams, J.G., Dickey, J.O., and Gillespie, B.: “The Apache Point Observatory Lunar Laser-Ranging Operation (APOLLO),” Proceedings of 12th International Workshop on Laser, Ranging, Matera, Italy (November 2000), http://www.astro.washington.edu/tmurphy/apollo/matera.pdf

  14. Williams J.G., Newhall X.X. and Dickey, J.O.: Relativity parameters deter-mined from lunar laser ranging. Physical Review D, 53, 6730, 1996.

    Article  ADS  Google Scholar 

  15. Williams, J.G., S.G. Turyshev, and D.H. Boggs.: Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004) [gr-qc/0411113].

    Article  ADS  Google Scholar 

  16. Williams, J.G., S.G. Turyshev, and T.W. Murphy, Jr.: Improving LLR Tests of Gravitational Theory. (Fundamental Physics meeting, Oxnard, CA, April 2003), International Journal of Modern Physics D 13, 567 (2004) [gr-qc/0311021].

    Google Scholar 

  17. Williams, J.G., D.H. Boggs, and J.T. Ratcliff: Lunar Fluid Core and Solid-Body Tides. Abstract No. 1503 of the Lunar and Planetary Science Conference XXXVI, March 14-18, 2005a.

    Google Scholar 

  18. Williams, J.G., S.G. Turyshev, and D.H. Boggs.: Lunar Laser Ranging Tests of the Equivalence Principle with the Earth and Moon. In proceedings of ‘Testing the Equivalence Principle on Ground and in Space’, Pescara, Italy, September 20-23, 2004, C. Lämmerzahl, C.W.F. Everitt and R. Ruffini (eds.), to be published by Springer Verlag, Lect. Notes Phys., 2005, gr-qc/0507083.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, J., Williams, J.G., Turyshev, S.G. (2008). Lunar Laser Ranging Contributions to Relativity and Geodesy. In: Dittus, H., Lammerzahl, C., Turyshev, S.G. (eds) Lasers, Clocks and Drag-Free Control. Astrophysics and Space Science Library, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34377-6_21

Download citation

Publish with us

Policies and ethics