Skip to main content

LISA, the Laser Interferometer Space Antenna, Requires the Ultimate in Lasers, Clocks, and Drag-Free Control

  • Chapter
Lasers, Clocks and Drag-Free Control

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 349))

  • 1527 Accesses

The existence of gravitational waves is the most prominent of Einstein’s predictions that has not yet been directly verified. The space project LISA shares its goal and principle of operation with the ground-based interferometers currently being operated, the detection and measurement of gravitational waves by laser interferometry. Ground and space detection differ in their frequency ranges, and thus in the detectable sources. Toward low frequencies, ground-based detection is limited by seismic noise, and yet more fundamentally by “gravity-gradient noise,” thus covering the range from a few Hz on upward to a few kHz. It is only in space that detection of signals below, say, 1 Hz is possible, opening a wide window to a different class of interesting sources of gravitational waves. The project LISA consists of three spacecraft in heliocentric orbits, forming a triangle of 5 million km sides. A technology demonstrator, the LISA Pathfinder, designed to test vital LISA technologies, is to be launched by ESA in 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. (1916) 688.

    Google Scholar 

  2. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. (1918) 154.

    Google Scholar 

  3. K. Thorne: Gravitational Radiation, bf in: S.W. Hawking and W. Israel (eds.) 300 Years of Gravitation (Cambridge University Press, Cambridge 1987), p.330.

    Google Scholar 

  4. K. Thorne: Gravitational Radiation - A New Window Onto the Universe, Rev. Mod. Astron. 10, 1 (1997).

    ADS  Google Scholar 

  5. A. Buonanno and T. Damour: Effective one-body approach to general two-body dynamics, Phys. Rev. D 59, 084006 (1999).

    MathSciNet  ADS  Google Scholar 

  6. B.F. Schutz: Lighthouses of gravitational wave astronomy - Prospects with LIGO and LISA, in: M. Gilfanov, R. Sunyaev, E. Churakov (Eds.) Lighthouses of the Universe, ESO Astrophysics Symposia, (2002), p.207.

    Google Scholar 

  7. D. Sigg: Status of the LIGO detectors, Class. Quantum Grav. 23, S51 (2006).

    Article  ADS  Google Scholar 

  8. F. Acernese, P. Amico, M. Al-Shourbagy, S. Aoudia, et al.: The status of VIRGO, Class. Quantum Grav. 23, S63 (2006).

    Article  ADS  Google Scholar 

  9. H. Lück, M. Hewitson, P. Ajith, B. Allen, et al.: Status of the GEO600 detector, Class. Quantum Grav. 23, S71 (2006).

    Article  Google Scholar 

  10. B.J. Meers: Recycling in laser-interferometric gravitational-wave detectors, Phys. Rev. D 38, 2317 (1988).

    ADS  Google Scholar 

  11. G. Heinzel et al.: Dual recycling for GEO 600, Class. Quantum Grav. 19, 1547 (2002).

    Article  ADS  Google Scholar 

  12. M. Ando: Current status of the TAMA300 gravitational-wave detector, Class. Quantum Grav. 22, S881 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  13. D.E. McClelland, S.M. Scott, M.B. Gray, A.C. Searle, et al.: Status of the Australian consortium for interferometric gravitational astronomy, Class. Quantum Grav. 23, S41 (2006).

    Article  ADS  Google Scholar 

  14. I. Zawischa et al.: The GEO 600 laser system, Class. Quantum Grav. 19, 1775 (2002).

    Article  ADS  Google Scholar 

  15. A. Rüdiger et al.: A mode selector to suppress fluctuations in laser beam geometry, Opt. Acta 28, 641 (1981).

    ADS  Google Scholar 

  16. D. Schnier et al.: Power recycling in the Garching 30-m prototype interferometer for gravitational-wave detection, Phys. Lett. A 225, 210 (1997).

    ADS  Google Scholar 

  17. K. Kuroda: Large-scale cryogenic gravitational wave telescope and R&D, in: S. Kawamura and N. Mio (Eds.) Gravitational Wave Detection II, (Universal Academy Press 2000), p.45.

    Google Scholar 

  18. LISA Pre-Phase A Report, 2nd edition, Max-Planck-Institut für Quantenoptik, Report 233 (July 1998); often referred to as PPA2.

    Google Scholar 

  19. LISA: System and Technology Study Report, ESA document ESA-SCI(2000)11, July 2000, revised as ftp://ftp.rzg.mpg.de/pub/grav/lisa/sts/sts_1.05.pdf

  20. M. Tinto et al.: Time-delay interferometry for LISA, Phys. Rev. D 65, 082003 (2002).

    ADS  Google Scholar 

  21. V. Josselin, M. Rodrigues, and P. Touboul: Inertial sensor concept for the gravity wave missions, Acta Astronautica 49/2, 95 (2001).

    Article  Google Scholar 

  22. A. Cavalleri et al.: Progress in the development of a position sensor for LISA drag-free control, Class. Quantum Grav. 18, 4133 (2001).

    Article  MATH  ADS  Google Scholar 

  23. T.J. Kane and R.L. Byer: Monolithic, unidirectional single-mode Nd:YAG ring laser, Opt. Lett. 10, 65 (1985).

    Google Scholar 

  24. A.C. Nilsson, E.K. Gustafson, and R.L. Byer: Eigenpolarization Theory of Monolithic Nonplanar Ring Oscillators, IEEE J. Quantum Electron. 25, 767 (1989).

    Article  ADS  Google Scholar 

  25. I. Freitag, A. Tünnermann, and H. Welling: Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts, Opt. Commun. 115, 511 (1995).

    Article  ADS  Google Scholar 

  26. M. Tröbs, P. Weßels, and C. Fallnich: Power- and frequency-noise characteristics of an Yb-doped fiber amplifier and actuators for stabilization, Opt. Express. 13, 2224 (2005).

    Article  ADS  Google Scholar 

  27. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, and H. Ward: Laser Phase and Frequency Stabilization Using an Optical Resonator, Appl. Phys. B 31, 97 (1983).

    ADS  Google Scholar 

  28. B.S. Sheard, M.B. Gray, D.E. McClelland, and D.A. Shaddock: Laser frequency stabilization by locking to a LISA arm, Phys. Lett. A 320, 9 (2003).

    ADS  Google Scholar 

  29. J. Sylvestre: Simulations of laser locking to a LISA arm, Phys. Rev. D. 70, 102002 (2004).

    Article  ADS  Google Scholar 

  30. A.F.G. Marin, G. Heinzel, R. Schilling, A. Rüdiger, et al.: Phase locking to a LISA arm: first results on a hardware model, Class. Quantum Grav. 22, S235 (2005),

    Article  Google Scholar 

  31. M. Tröbs: Laser development and stabilization for the spaceborne interferometric gravitational wave detector LISA, PhD thesis, (University of Hannover, 2005).

    Google Scholar 

  32. V. Corbin and N.J. Cornish: Detecting the cosmic gravitational wave back-ground with the Big Bang Observer, Class. Quantum Grav. 23, 2435 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  33. S. Kawamura, T. Nakamura, M. Ando, N. Seto, et al.: The Japanese space gravitational wave antenna - DECIGO, Class. Quantum Grav. 23, S125 (2006).

    Article  ADS  Google Scholar 

  34. W.-T. Ni: ASTROD - an overview, Int. J. Mod. Phys. D 11, 947 (2002).

    ADS  Google Scholar 

  35. Ni, W.: This volume.

    Google Scholar 

  36. G. Heinzel, C. Braxmaier, K. Danzmann, P. Gath, et al.: LISA interferometry: recent developments, Class. Quantum Grav. 23, S119 (2006).

    Article  ADS  Google Scholar 

  37. LASER INTERFEROMETER SPACE ANTENNA: 6th International LISA Symposium, Greenbelt, Maryland (USA), June 2006, AIP conference proceedings 873, 3-706 (2007).

    Google Scholar 

  38. G. Heinzel, C. Braxmaier, R. Schilling, A. Rüdiger, et al.: Interferometry for the LISA technology package (LTP) aboard SMART-2, Class. Quantum Grav. 20, S153 (2003).

    Article  MATH  ADS  Google Scholar 

  39. G. Heinzel, V. Wand, A. Garcia, O.P. Jennrich, et al.: The LTP interferometer and phasemeter, Class. Quantum Grav. 21, S581 (2004).

    Article  ADS  Google Scholar 

  40. G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, et al.: Successful testing of the LISA Technology Package (LTP) interferometer engineering model, Class. Quant. Grav. 22, S149 (2005).

    Article  ADS  Google Scholar 

  41. R. Schilling: Angular and frequency response of LISA, Class. Quantum Grav. 14, 1513 (1997).

    Article  ADS  Google Scholar 

  42. G. Giampieri, R. Hellings, M. Tinto, and J. Faller: Algorithms for unequal-arm Michelson interferometers, Opt. Comm. 123, 669 (1996).

    Article  ADS  Google Scholar 

  43. M. Tinto and J.W. Armstrong: Cancellation of laser phase noise in an unequal-arm interferometer detector of gravitational radiation, Phys. Rev. D 59, 102003 (1999).

    ADS  Google Scholar 

  44. F.B. Estabrook, M. Tinto, and J.W. Armstrong: Time-delay analysis of LISA gravitational wave data: Elimination of Spacecraft motion effects, Phys. Rev. D 62, 042002 (2000).

    ADS  Google Scholar 

  45. B. Allen: The stochastic gravity-wave background: sources and detection, in: Relativistic gravitation and gravitational radiation, (Cambridge University Press, Cambridge 1997), p.373 (p. 381/382).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rüdiger, A., Heinzel, G., Tröbs, M. (2008). LISA, the Laser Interferometer Space Antenna, Requires the Ultimate in Lasers, Clocks, and Drag-Free Control. In: Dittus, H., Lammerzahl, C., Turyshev, S.G. (eds) Lasers, Clocks and Drag-Free Control. Astrophysics and Space Science Library, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34377-6_20

Download citation

Publish with us

Policies and ethics