Skip to main content

Solar Sail Propulsion: An Enabling Technology for Fundamental Physics Missions

  • Chapter
Lasers, Clocks and Drag-Free Control

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 349))

  • 1480 Accesses

Solar sails enable a wide range of high-energy missions, many of which are difficult or even impossible to accomplish with any other type of conventional propulsion system. They are also an enabling propulsion technology for two types of deep-space missions that are very favorable for testing current gravitational theories and the large-scale gravitational field of the solar system: the first type comprises missions that go very close to the Sun (<8 solar radii) and the second one comprises missions that go fast very far away from the Sun (~200AU). Being propelled solely by the freely available solar radiation pressure, solar sails do not consume any propellant. Therefore, their capability to gain (or reduce) orbital energy is theoretically unlimited and practically only limited by their lifetime in the space environment and their distance from the Sun (because the solar radiation pressure decreases with the square of solar distance). Nevertheless, solar sails make also missions that go far away from the Sun feasible because they can gain a large amount of orbital energy by first making one or more close solar approaches that turn the trajectory hyperbolic. For both mission types, the temperature limit of the sail film is a critical issue. In this chapter, we briefly review the physics and the current technological status of solar sails, and then present mission outlines and trade-offs for both mission types. Thereby, we will show that even near- or medium-term solar sails with a relatively moderate performance enable these kinds of missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.G. Sauer. Optimum solar-sail interplanetary trajectories. San Diego, USA, August 1976. AIAA/AAS Astrodynamics Conference. AIAA Paper 76-792.

    Google Scholar 

  2. M. Leipold and O. Wagner. ‘Solar photonic assist’ trajectory design fo solar sail missions to the outer solar system and beyond. In T. H. Stengle, editor, Spaceflight Dynamics 1998, volume 100 Part 2 of Advances in the Astronautical Sciences, pages 1035-1045. Univelt, Inc., 1998.

    Google Scholar 

  3. M. Leipold. To the sun and Pluto with solar sails and micro-sciencecraft. Acta Astronautica, 45(4-9):549, 1999.

    Article  ADS  Google Scholar 

  4. J. L. Wright. Space Sailing. Gordon and Breach Science Publishers, Philadelphia, 1992.

    Google Scholar 

  5. C. R. McInnes. Solar Sailing. Technology, Dynamics and Mission Applica-tions. Springer-Praxis Series in Space Science and Technology. Springer-Praxis, Berlin, Heidelberg, New York, Chicester, 1999.

    Google Scholar 

  6. M. Leipold, M. Eiden, C.E. Garner, L. Herbeck, D. Kassing, T. Niederstadt, T. Krüger, G. Pagel, M. Rezazad, H. Rozemeijer, W. Seboldt, C. Schöppinger, C. Sickinger, and W. Unkenbold. Solar sail technology development and demonstration. Laurel, USA, 2000. 4th IAA International Conference on Low-Cost Planetary Missions. IAA-L-0707.

    Google Scholar 

  7. W. Seboldt, M. Leipold, M. Rezazad, L. Herbeck, W. Unkenbold, D. Kassing, and M. Eiden. Ground-based demonstration of solar sail technology. Rio de Janeiro, Brazil, 2000. 51st International Astronautical Congress. IAF-00-S.6.11.

    Google Scholar 

  8. M. Leipold, C.E. Garner, R. Freeland, A. Herrmann, M. Noca, G. Pagel, W. Seboldt, G. Sprague, and W. Unckenbold. ODISSEE - A proposal for demonstration of a solar sail in Earth orbit. Acta Astronautica, 45(4-9):557, 1999.

    Article  ADS  Google Scholar 

  9. T. Damour. Equivalence principle and clocks. In J. Trân Tanh Vân, J. Dumarchez, J. Reynaud, C. Salomon, S. Thorsett, and J.Y. Vinet, editors, Gravitational Waves and Experimental Gravity, page 357. World Publishers, Hanoi, 2000.

    Google Scholar 

  10. T. Damour, F. Piazza, and G. Veneziano. Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev., D 66:046007, 2002.

    MathSciNet  ADS  Google Scholar 

  11. C. Wetterich. Probing quintessence with time variation of couplings. Astropart. Phys., 10:2, 2003.

    Google Scholar 

  12. R. H. Battin. An Introduction to the Mathematics and Methods of Astrodynam-ics. AIAA Education Series. American Institute of Aeronautics and Astronau-tics, Reston, revised edition, 1999.

    Google Scholar 

  13. M. Leipold. Solar Sail Mission Design. Doctoral thesis, Lehrstuhl für Flugmechanik und Flugregelung; Technische Universität München, 1999. DLR-FB-2000-22.

    Google Scholar 

  14. R.H. Sanders. Anti-gravity and galaxy rotation curves. Astron. Astroph., 136:L21, 1984.

    ADS  Google Scholar 

  15. M. Milgrom. MOND - theoretical aspects. New Astr. Rev., 46:741, 2002.

    Article  ADS  Google Scholar 

  16. J.D. Anderson and J.G. Williams. Long-range tests of the equivalence principle. Class. Quantum Grav., 18:2447, 2001.

    Article  MATH  ADS  Google Scholar 

  17. C. Lämmerzahl. The Einstein Equivalence Principle and the search for new physics. In D. Giulini, C. Kiefer, and C. Lämmerzahl, editors, Quantum Gravity - From Theory to Experimental Search, page 367. Springer Verlag, Berlin, 2003.

    Google Scholar 

  18. M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, and R.H. Baughman. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 309:1215, 2005.

    Article  ADS  Google Scholar 

  19. B. Dachwald. Low-Thrust Trajectory Optimization and Interplanetary Mission Analysis Using Evolutionary Neurocontrol. Doctoral thesis, Universität der Bundeswehr München; Fakultät für Luft- und Raumfahrttechnik, 2004.

    Google Scholar 

  20. B. Dachwald. Optimization of interplanetary solar sailcraft trajectories using evolutionary neurocontrol. Journal of Guidance, Control, and Dynamics, 27 (1):66, 2004.

    Article  Google Scholar 

  21. B. Dachwald. Optimization of very-low-thrust trajectories using evolutionary neurocontrol. Acta Astronautica, 57(2-8):175, 2005.

    Article  ADS  Google Scholar 

  22. B. Dachwald. Optimal solar sail trajectories for missions to the outer solar system. Journal of Guidance, Control, and Dynamics, 28(6):1187, 2005.

    Article  Google Scholar 

  23. B. Dachwald, G. Mengali, A.A. Quarta, and M. Macdonald. Parametric model and optimal control of solar sails with optical degradation. Journal of Guidance, Control, and Dynamics, 29(5):1170, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dachwald, B., Seboldt, W., Lammerzahl, C. (2008). Solar Sail Propulsion: An Enabling Technology for Fundamental Physics Missions. In: Dittus, H., Lammerzahl, C., Turyshev, S.G. (eds) Lasers, Clocks and Drag-Free Control. Astrophysics and Space Science Library, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34377-6_18

Download citation

Publish with us

Policies and ethics