Skip to main content

Technology for Precision Gravity Measurements

  • Chapter
Lasers, Clocks and Drag-Free Control

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 349))

  • 1464 Accesses

We discuss four technologies applicable to precision measurements in space and on the ground. The first is our tracking frequency laser distance gauge (TFG), which we developed ca. 1990 for a spaceborne astrometric optical interferometer, POINTS, and which we are using today for our principle of equivalence measurement (POEM), a laboratory test of the equivalence principle. The second is an extension of the TFG to use a semiconductor laser (SL-TFG) with the intention to make the instrument more robust and applicable to space-based experiments. In particular, we wish to apply the SL-TFG to a version of POEM that could operate in space at substantially higher accuracy. Further, some versions of the SL-TFG have reduced complexity and thus have enhanced reliability and reduced cost. The third technology is an approach to using the TFG as part of an extended spacebased optical instrument. We discuss the launching of multiple beams from a single device as a means of achieving a “strong optical truss” without excess complexity or endpoint connection error. The fourth and final technology is for creating a brief period of free fall in the laboratory, and being able to repeat the free-fall rapidly. This technology is a key part of POEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.G. Carpenter, C.J. Schrijver, R.G. Lyon, L.G. Mundy, R.J. Allen, J.T. Armstrong, W.C. Danchi, M. Karovska, J. Marzouk, L.M. Mazzuca, D. Mozurkewich, S.G. Neff, T.A. Pauls, J. Rajagopal, G. Solyar, and X. Zhang: “The Stellar Imager (SI) Mission Concept,” in Proceedings of the SPIE Confer-ence #4854 on Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation, J. Chris Blades and Oswald H. W. Siegmund, eds., 293 (2003). See also http://hires.gsfc.nasa.gov/∼si.

  2. C.K.G. Carpenter, C.J. Schrijver, R.J. Allen, A. Brown, D. Chenette, W.C. Danchi, M. Karovska, S. Kilston, R.G. Lyon, J. Marzouk, L.M. Mazzuca, R.V. Moe, F. Walter, and N. Murphy: “The Stellar Imager (SI): a revolutionary large-baseline imaging interferometer at the Sun-Earth L2 point,” in Proceedings of the SPIE Conference #5491 on New Frontiers in Stellar Interferometry, Wesley Traub, ed., 243 (2004).

    Google Scholar 

  3. W. Cash and K.C. Gendreau: “MAXIM Science and Technology,” in Proceed-ings of the SPIE Conference #5491 on New Frontiers in Stellar Interferometry, Wesley Traub, ed., 199 (2004).

    Google Scholar 

  4. T. Damour: “Testing the equivalency principle: why and how?,” Class. Quantum Grav. 13, A33-A41 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Y. Gursel: “Metrology for spatial interferometry,” in Proceedings of the SPIE Conference #2200 on Amplitude and Intensity Spatial Interferometry II, James B. Breckinridge, ed., 2200, 27-34 (1994).

    Google Scholar 

  6. Y. Gursel: “Metrology for spatial interferometry V,” in The Proceedings of the SPIE Conference #3350 on Astronomical Interferometry, Robert D. Reasenberg, ed., 3350, 571-587 (1998), and references therein.

    Google Scholar 

  7. P.G. Halverson and R.E. Spero: “Signal processing and testing of displacement metrology gauges with picometre-scale cyclic nonlinearity,” Journal of Optics A: Pure and Applied Optics 4(6): S304-S310 (2002).

    Article  ADS  Google Scholar 

  8. J. Lawall and E. Kessler: “Michelson interferometry with 10 pm accuracy,” Review of Scientific Instruments 71, 2669-2676 (2000).

    Article  ADS  Google Scholar 

  9. E.C. Lorenzini, I.I. Shapiro, et al.: Nuovo Cimento 109B, 1195 (1994).

    ADS  Google Scholar 

  10. M. Ohtsu: “Realization of ultrahigh coherence in semiconductor lasers by negative electrical feedback,” Journal of Lightwave Technology 6, 245 (1988).

    Article  ADS  Google Scholar 

  11. J.D. Phillips, M. Karovska, and R.D. Reasenberg: “Approaches to Metrology and Pointing for a Long Baseline UV/Optical Imaging Interferometer in Space,” BAAS 36(2), #8.11 (2004a).

    Google Scholar 

  12. J.D. Phillips, K.G. Carpenter, K.C. Gendreau, P. Kaaret, M. Karovska, and R.D. Reasenberg: “Metrology and Pointing for Astronomical Interferometers,” in the Proceedings of the SPIE Conference #5491 on New Frontiers in Stellar Interferometry, Wesley Traub, ed., 319-329 (2004b).

    Google Scholar 

  13. J.D. Phillips and R.D. Reasenberg: “Toward a spaceworthy picometer laser gauge,” in the Proceedings of the SPIE Conference #5495 on Astronomical Telescopes and Instrumentation, 320-327 (2004).

    Google Scholar 

  14. J.D. Phillips and R.D. Reasenberg, “Tracking Frequency Laser Distance Gauge,” Review of Scientific Instruments, 76, 064501 (2005).

    Article  ADS  Google Scholar 

  15. R.D. Reasenberg, R.W. Babcock, J.F. Chandler, M.V. Gorenstein, J.P. Huchra, M.R. Pearlman, I.I. Shapiro, R.S. Taylor, P. Bender, A. Buffington, B. Carney, J.A. Hughes, K.J. Johnston, B.F. Jones, and L.E. Matson: “Microarcsecond Optical Astrometry: An Instrument and Its Astrophysical Applications,” Astron. J., 32, 1731-1745 (1988).

    Article  ADS  Google Scholar 

  16. C.E. Wieman and L. Hollberg: “Using diode lasers for atomic physics,” Rev. Sci. Instr., 62, 1-20 (1991).

    Article  ADS  Google Scholar 

  17. C.-M. Wu, J. Lawall, and R.D. Deslattes: “Heterodyne Interferometer with Sub-atomic Periodic Nonlinearity,” Applied Optics 38, 4089-4094 (1999).

    Article  ADS  Google Scholar 

  18. F. Zhao, R. Diaz, G.M. Kuan, N. Sigrist, Y. Beregovski, L.L. Ames, and K. Dutta: “SIM Internal Metrology Beam Launcher Development,” in The Proceedings of the SPIE Conference #4852 on “Interferometry in Space,” M. Shao, ed., 4852, 370-379 (2003), and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reasenberg, R.D., Phillips, J.D. (2008). Technology for Precision Gravity Measurements. In: Dittus, H., Lammerzahl, C., Turyshev, S.G. (eds) Lasers, Clocks and Drag-Free Control. Astrophysics and Space Science Library, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34377-6_13

Download citation

Publish with us

Policies and ethics