The KSHV and Other Human Herpesviral G Protein-Coupled Receptors

  • M. Cannon
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 312)


Kaposi sarcoma-associated herpesvirus (KSHV) is a γ2-herpesvirus discovered in 1994 and is the agent responsible for Kaposi sarcoma (KS), an endothelial cell malignancy responsible for significant morbidity and mortality worldwide. Over time, KSHV has pirated many human genes whose products regulate angiogenesis, inflammation, and the cell cycle. One of these encodes for a mutated G protein-coupled receptor (GPCR) that is a homologue of the human IL-8 receptor. GPCRs are the largest family of signaling molecules and respond to a wide array of ligands. Unlike its normal counterpart, the mutations present in KSHV vGPCR result in constitutive, ligand-independent signaling activity. Signaling by the KSHV vGPCR results in the elaboration of many mitogenic and angiogenic cytokines that are vital to the biology of KS and other KSHV-driven malignancies. Several other herpesviruses also encode GPCRs, the functions of which are under ongoing investigation. In addition, several human diseases are associated with mutated mammalian GPCRs in germline or somatic cells.


Primary Effusion Lymphoma Multicentric Castleman Disease Primary Effusion Lymphoma Cell Familial Male Precocious Puberty KSHV vGPCR 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja SK, Murphy PM (1993) Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. J Biol Chem 268:20691–20694PubMedGoogle Scholar
  2. Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS, Tosato G (1999) Angiogenesis and hematopoiesis induced by Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93:4034–4043PubMedGoogle Scholar
  3. Aoki Y, Tosato G (1999) Role of vascular endothelial growth factor/vascular permeability factor in the pathogenesis of Kaposi’s sarcoma-associated herpesvirus-infected primary effusion lymphomas. Blood 94:4247–4254PubMedGoogle Scholar
  4. Aoki Y, Tosato G (2001) Vascular endothelial growth factor/vascular permeability factor in the pathogenesis of primary effusion lymphomas. Leuk Lymphoma 41:229–237PubMedGoogle Scholar
  5. Arvanitakis L, Geras-Raaka E, Gershengorn MC (1998) Constitutively signaling G-protein-coupled receptors and human disease. TEM 9:27–31PubMedGoogle Scholar
  6. Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385:347–350PubMedCrossRefGoogle Scholar
  7. Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, Asch AS, Cesarman E, Gershengorn MC, Mesri EA (1998) G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391:86–89PubMedCrossRefGoogle Scholar
  8. Bais C, Van Geelen A, Eroles P, Mutlu A, Chiozzini C, Dias S, Silverstein RL, Rafii S, Mesri EA (2003) Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell 3:131–143PubMedCrossRefGoogle Scholar
  9. Barillari G, Gendelman R, Gallo RC, Ensoli B (1993) The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci USA 90:7941–7945PubMedCrossRefGoogle Scholar
  10. Beisser PS, Verzijl D, Gruijthuijsen YK, Beuken E, Smit MJ, Leurs R, Bruggeman CA, Vink C (2005) The Epstein-Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J Virol 79:441–449PubMedCrossRefGoogle Scholar
  11. Beisser PS, Vink C, Van Dam JG, Grauls G, Vanherle SJ, Bruggeman CA (1998) The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 72:2352–2363PubMedGoogle Scholar
  12. Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L, Laurent L, Arenzana-Seisdedos F, Virelizier JL, Michelson S (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866PubMedCrossRefGoogle Scholar
  13. Boshoff C, Schulz TF, Kennedy MM, Graham AK, Fisher C, Thomas A, McGee JO, Weiss RA, JJ OL (1995) Kaposi’s sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat Med 1:1274–1278PubMedCrossRefGoogle Scholar
  14. Cannon M, Cesarman E, Boshoff C (2006) KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood 107:277–284PubMedCrossRefGoogle Scholar
  15. Cannon M, Philpott NJ, Cesarman E (2003) The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol 77:57–67PubMedCrossRefGoogle Scholar
  16. Cannon ML, Cesarman E (2004) The KSHV G protein-coupled receptor signals via multiple pathways to induce transcription factor activation in primary effusion lymphoma cells. Oncogene 23:514–523PubMedCrossRefGoogle Scholar
  17. Cantaluppi V, Biancone L, Boccellino M, Doublier S, Benelli R, Carlone S, Albini A, Camussi G (2001) HIV type 1 Tat protein is a survival factor for Kaposi’s sarcoma and endothelial cells. AIDS Res Hum Retroviruses 17:965–976PubMedCrossRefGoogle Scholar
  18. Casarosa P, Bakker RA, Verzijl D, Navis M, Timmerman H, Leurs R, Smit MJ (2001) Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276:1133–1137PubMedCrossRefGoogle Scholar
  19. Casarosa P, Gruijthuijsen YK, Michel D, Beisser PS, Holl J, Fitzsimons CP, Verzijl D, Bruggeman CA, Mertens T, Leurs R, Vink C, Smit MJ (2003)Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J Biol Chem 278:50010–50023PubMedCrossRefGoogle Scholar
  20. Cesarman E, Nador RG, Aozasa K, Delsol G, Said JW, Knowles DM (1996a) Kaposi’s sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am J Pathol 149:53–57PubMedGoogle Scholar
  21. Cesarman E, Nador RG, Bai F, Bohenzky RA, Russo JJ, Moore PS, Chang Y, Knowles DM (1996b) Kaposi’s sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi’s sarcoma and malignant lymphoma. J Virol 70:8218–8223PubMedGoogle Scholar
  22. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869PubMedCrossRefGoogle Scholar
  23. Chang Y, Moore PS, Talbot SJ, Boshoff CH, Zarkowska T, Godden K, Paterson H, Weiss RA, Mittnacht S (1996a) Cyclin encoded by KS herpesvirus [letter]. Nature 382:410PubMedCrossRefGoogle Scholar
  24. Chang Y, Ziegler J, Wabinga H, Katangole-Mbidde E, Boshoff C, Schulz T, Whitby D, Maddalena D, Jaffe HW, Weiss RA, Moore PS (1996b) Kaposi’s sarcoma-associated herpesvirus and Kaposi’s sarcoma in Africa. Uganda Kaposi’s Sarcoma Study Group. Arch Intern Med 156:202–204PubMedCrossRefGoogle Scholar
  25. Chattopadhyay N, Mithal A, Brown EM(1996) The calcium-sensing receptor: a window into the physiology and pathophysiology of mineral ion metabolism. Endocr Rev 17:289–307PubMedCrossRefGoogle Scholar
  26. Cheng EH, Nicholas J, Bellows DS, Hayward GS, Guo HG, Reitz MS, Hardwick JM (1997) A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci USA 94:690–694PubMedCrossRefGoogle Scholar
  27. Chiou CJ, Poole LJ, Kim PS, Ciufo DM, Cannon JS, ap Rhys CM, Alcendor DJ, Zong JC, Ambinder RF, Hayward GS (2002) Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi’s sarcoma-associated herpesvirus. J Virol 76:3421–3439PubMedCrossRefGoogle Scholar
  28. Clark DA, Emery VC, Griffiths PD (2003) Cytomegalovirus, human herpesvirus-6, and human herpesvirus-7 in hematological patients. Semin Hematol 40:154–162PubMedCrossRefGoogle Scholar
  29. Coughlin SR (1994) Expanding horizons for receptors coupled to G proteins: diversity and disease. Curr Opin Cell Biol 6:191–197PubMedCrossRefGoogle Scholar
  30. Couty JP, Geras-Raaka E, Weksler BB, Gershengorn MC (2001) Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor signals through multiple pathways in endothelial cells. J Biol Chem 276:33805–33811PubMedCrossRefGoogle Scholar
  31. Dezube BJ, Zambela M, Sage DR, Wang JF, Fingeroth JD (2002) Characterization of Kaposi sarcoma-associated herpesvirus/human herpesvirus-8 infection of human vascular endothelial cells: early events. Blood 100:888–896PubMedCrossRefGoogle Scholar
  32. Dupin N, Diss TL, Kellam P, Tulliez M, Du MQ, Sicard D, Weiss RA, Isaacson PG, Boshoff C (2000) HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood 95:1406–1412PubMedGoogle Scholar
  33. Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M, Franck N, van Marck E, Salmon D, Gorin I, Escande JP, Weiss RA, Alitalo K, Boshoff C (1999) Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 96:4546–4551PubMedCrossRefGoogle Scholar
  34. Dupin N, Grandadam M, Calvez V, Gorin I, Aubin JT, Havard S, Lamy F, Leibowitch M, Huraux JM, Escande JP, et al. (1995) Herpesvirus-like DNA sequences in patients with Mediterranean Kaposi’s sarcoma. Lancet 345:761–762PubMedCrossRefGoogle Scholar
  35. Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67:277–287PubMedGoogle Scholar
  36. Estep RD, Axthelm MK, Wong SW (2003) A G protein-coupled receptor encoded by rhesus rhadinovirus is similar to ORF74 of Kaposi’s sarcoma-associated herpesvirus. J Virol 77:1738–1746PubMedCrossRefGoogle Scholar
  37. Geras-Raaka E, Arvanitakis L, Bais C, Cesarman E, Mesri EA, Gershengorn MC (1998a) Inhibition of constitutive signaling of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor by protein kinases in mammalian cells in culture. J Exp Med 187:801–806PubMedCrossRefGoogle Scholar
  38. Geras-Raaka E, Varma A, Clark-Lewis I, Gershengorn M (1998b) Kaposi’s sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II and human SDF-1α inhibit signaling by KSHV G protein-coupled receptor. Biochem Biophys Res Commun 253: p725–727PubMedCrossRefGoogle Scholar
  39. Geras-Raaka E, Varma A, Ho H, Clark-Lewis I, Gershengorn MC (1998c) Human interferon-γ-inducible protein 10 (IP-10) inhibits constitutive signaling of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. J Exp Med 188:405–408PubMedCrossRefGoogle Scholar
  40. Gershengorn MC, Geras-Raaka E, Varma A, Clark-Lewis I (1998) Chemokines activate Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture. J Clin Invest 102:1469–1472PubMedCrossRefGoogle Scholar
  41. Gershengorn MC, Osman R (2001) Minireview: Insights into G protein-coupled receptor function using molecular models. Endocrinology 142: p2–10PubMedCrossRefGoogle Scholar
  42. Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin ME, Efstathiou S, Craxton M, Macaulay HA (1995) The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209:29–51PubMedCrossRefGoogle Scholar
  43. Guo HG, Browning P, Nicholas J, Hayward GS, Tschachler E, Jiang YW, Sadowska M, Raffeld M, Colombini S, Gallo RC, Reitz MS, Jr. (1997) Characterization of a chemokine receptor-related gene in human herpesvirus 8 and its expression in Kaposi’s sarcoma. Virology 228:371–378PubMedCrossRefGoogle Scholar
  44. Guo HG, Pati S, Sadowska M, Charurat M, Reitz M (2004) Tumorigenesis by human herpesvirus 8 vGPCR is accelerated by human immunodeficiency virus type 1 Tat. J Virol 78:9336–9342PubMedCrossRefGoogle Scholar
  45. Guo HG, Sadowska M, Reid W, Tschachler E, Hayward G, Reitz M (2003) Kaposi’s sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J Virol 77:2631–2639PubMedCrossRefGoogle Scholar
  46. Ho HH, Du D, Gershengorn MC (1999) The Nterminus of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor is necessary for high affinity chemokine binding but not for constitutive activity. J Biol Chem 274:31327–31332PubMedCrossRefGoogle Scholar
  47. Ho HH, Ganeshalingam N, Rosenhouse-Dantsker A, Osman R, Gershengorn MC (2001) Charged residues at the intracellular boundary of transmembrane helices 2 and 3 independently affect constitutive activity of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. J Biol Chem 276:1376–1382PubMedCrossRefGoogle Scholar
  48. Isegawa Y, Ping Z, Nakano K, Sugimoto N, Yamanishi K (1998) Human herpesvirus 6 open reading frame U12 encodes a functional beta-chemokine receptor. J Virol 72:6104–6112PubMedGoogle Scholar
  49. Jones KD, Aoki Y, Chang Y, Moore PS, Yarchoan R, Tosato G (1999) Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi’s sarcoma herpesvirus-associated infected primary effusion lymphomacells. Blood 94:2871–2879PubMedGoogle Scholar
  50. Kaaya EE, Parravicini C, Ordonez C, Gendelman R, Berti E, Gallo RC, Biberfeld P (1995) Heterogeneity of spindle cells in Kaposi’s sarcoma: comparison of cells in lesions and in culture. J Acquir Immune Defic Syndr Hum Retrovirol 10:295–305PubMedGoogle Scholar
  51. Kirshner JR, Staskus K, Haase A, Lagunoff M, Ganem D (1999) Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi’s sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. J Virol 73:6006–6014PubMedGoogle Scholar
  52. Kledal TN, Rosenkilde MM, Schwartz TW (1998) Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett 441:209–214PubMedCrossRefGoogle Scholar
  53. Kosugi S, Van Dop C, Geffner ME, Rabl W, Carel JC, Chaussain JL, Mori T, Merendino JJ, Jr., Shenker A (1995) Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty. Hum Mol Genet 4:183–188PubMedGoogle Scholar
  54. Lagunoff M, Bechtel J, Venetsanakos E, Roy AM, Abbey N, Herndier B, McMahon M, Ganem D (2002) De novo infection and serial transmission of Kaposi’s sarcoma-associated herpesvirus in cultured endothelial cells. J Virol 76:2440–2448PubMedCrossRefGoogle Scholar
  55. Liang Y, Ganem D (2004) RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi’s sarcoma-associated herpesvirus by the lytic switch protein RTA. J Virol 78:6818–6826PubMedCrossRefGoogle Scholar
  56. Linderoth J, Rambech E, Dictor M (1999) Dominant human herpesvirus type 8 RNA transcripts in classical and AIDS-related Kaposi’s sarcoma. J Pathol 187:582–587PubMedCrossRefGoogle Scholar
  57. Liu C, Okruzhnov Y, Li H, Nicholas J (2001) Human herpesvirus 8 (HHV-8)-encoded cytokines induce expression of and autocrine signaling by vascular endothelial growth factor (VEGF) in HHV-8-infected primary-effusion lymphoma cell lines and mediate VEGF-independent antiapoptotic effects. J Virol 75:10933–10940PubMedCrossRefGoogle Scholar
  58. Macian F, Lopez-Rodriguez C, Rao A (2001) Partners in transcription: NFAT and AP-1. Oncogene 20:2476–2489PubMedCrossRefGoogle Scholar
  59. Margulies BJ, Browne H, Gibson W (1996) Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology 225:111–125PubMedCrossRefGoogle Scholar
  60. Masood R, Cai J, Zheng T, Smith DL, Naidu Y, Gill PS (1997) Vascular endothelial growth factor/vascular permeability factor is an autocrine growth factor for AIDS-Kaposi sarcoma. Proc Natl Acad Sci USA 94:979–984PubMedCrossRefGoogle Scholar
  61. Milne RS, Mattick C, Nicholson L, Devaraj P, Alcami A, Gompels UA (2000) RANTES binding and down-regulation by a novel human herpesvirus-6 beta chemokine receptor. J Immunol 164:2396–2404PubMedGoogle Scholar
  62. Montaner S, Sodhi A, Pece S, Mesri EA, Gutkind JS (2001) The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61:2641–2648PubMedGoogle Scholar
  63. Nador RG, Milligan LL, Flore O, Wang X, Arvanitakis L, Knowles DM, Cesarman E (2001) Expression of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor monocistronic and bicistronic transcripts in primary effusion lymphomas. Virology 287:62–70PubMedCrossRefGoogle Scholar
  64. Nakano K, Tadagaki K, Isegawa Y, Aye MM, Zou P, Yamanishi K (2003) Human herpesvirus 7 open reading frame U12 encodes a functional beta-chemokine receptor. J Virol 77:8108–8115PubMedCrossRefGoogle Scholar
  65. Neipel F, Albrecht JC, Fleckenstein B (1997) Cell-homologous genes in the Kaposi’s sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 71:187–4192Google Scholar
  66. Nicholas J (1996) Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J Virol 70:5975–5989PubMedGoogle Scholar
  67. Nishi J, Maruyama I (2000) Increased expression of vascular endothelial growth factor (VEGF) in Castleman’s disease: proposed pathomechanism of vascular proliferation in the affected lymph node. Leuk Lymphoma 38:387–394PubMedGoogle Scholar
  68. Pati S, Cavrois M, Guo HG, Foulke JS, Jr., Kim J, Feldman RA, Reitz M (2001) Activation of NF-κB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis. J Virol 75:8660–8673PubMedCrossRefGoogle Scholar
  69. Pati S, Foulke JS, Jr., Barabitskaya O, Kim J, Nair BC, Hone D, Smart J, Feldman RA, Reitz M (2003) Human herpesvirus 8-encoded vGPCR activates nuclear factor of activated T cells and collaborates with human immunodeficiency virus type 1 Tat. J Virol 77:5759–5773PubMedCrossRefGoogle Scholar
  70. Paulsen SJ, Rosenkilde MM, Eugen-Olsen J, Kledal TN (2005) Epstein-Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol 79:536–546PubMedCrossRefGoogle Scholar
  71. Premont RT, Inglese J, Lefkowitz RJ (1995) Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 9:175–182PubMedGoogle Scholar
  72. Rabkin CS, Janz S, Lash A, Coleman AE, Musaba E, Liotta L, Biggar RJ, Zhuang Z (1997) Monoclonal origin of multicentric Kaposi’s sarcoma lesions. N Engl J Med 336:988–993PubMedCrossRefGoogle Scholar
  73. Rao VR, Cohen GB, Oprian DD (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367:639–642PubMedCrossRefGoogle Scholar
  74. Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD (1992) Constitutively active mutants of rhodopsin. Neuron 9:719–725PubMedCrossRefGoogle Scholar
  75. Rosenkilde MM, Schwartz TW (2000) Potency of ligands correlates with affinity measured against agonist and inverse agonists but not against neutral ligand in constitutively active chemokine receptor. Mol Pharmacol 57:602–609PubMedGoogle Scholar
  76. Russo J, Bohenzky R, Chien M, Chen J, Yan M, Maddalena D, Parry J, Peruzzi D, Edelman I, Chang Y, Moore P (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93: p14862–14867PubMedCrossRefGoogle Scholar
  77. Salahuddin SZ, Nakamura S, Biberfeld P, Kaplan MH, Markham PD, Larsson L, Gallo RC (1988) Angiogenic properties of Kaposi’s sarcoma-derived cells after long-term culture in vitro. Science 242:430–433PubMedCrossRefGoogle Scholar
  78. Samaniego F, Markham PD, Gendelman R, Watanabe Y, Kao V, Kowalski K, Sonnabend JA, Pintus A, Gallo RC, Ensoli B (1998) Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi’s sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development. Am J Pathol 152:1433–1443PubMedGoogle Scholar
  79. Schwarz M, Murphy PM (2001) Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-κB and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol 167:505–513PubMedGoogle Scholar
  80. Shenker A, Laue L, Kosugi S, Merendino JJ, Jr., Minegishi T, Cutler GB, Jr. (1993) A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 365:652–654PubMedCrossRefGoogle Scholar
  81. Shepard LW, Yang M, Xie P, Browning DD, Voyno-Yasenetskaya T, Kozasa T, Ye RD (2001) Constitutive activation of NF-κB and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus involve G α13 and RhoA. J Biol Chem 276:45979–45987PubMedCrossRefGoogle Scholar
  82. Smit MJ, Verzijl D, Casarosa P, Navis M, Timmerman H, Leurs R (2002) Kaposi’s sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates p44/p42 MAPK and Akt via Gi and phospholipase C-dependent signaling pathways. J Virol 76:1744–1752PubMedCrossRefGoogle Scholar
  83. Sodhi A, Montaner S, Gutkind JS (2004) Does dysregulated expression of a deregulated viral GPCR trigger Kaposi’s sarcomagenesis? FASEB J 18:422–427PubMedCrossRefGoogle Scholar
  84. Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, Gutkind JS (2000) The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogenactivated protein kinase and p38 pathways acting on hypoxia-inducible factor 1α. Cancer Res 60:4873–4880PubMedGoogle Scholar
  85. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L, et al. (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86:1276–1280PubMedGoogle Scholar
  86. Spiegel AM (1996) Mutations in G proteins and G protein-coupled receptors in endocrine disease. J Clin Endocrinol Metab 81:2434–2442PubMedCrossRefGoogle Scholar
  87. Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H, Renne R, Beneke J, Pudney J, Anderson DJ, Ganem D, Haase AT (1997) Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 71:715–719PubMedGoogle Scholar
  88. Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y, Nelson JA (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520PubMedCrossRefGoogle Scholar
  89. Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L, Pancheva D, Smit M, Casarosa P, Schlaepfer DD, Nelson JA (2003) Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 278:50456–50465PubMedCrossRefGoogle Scholar
  90. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D, et al. (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357PubMedCrossRefGoogle Scholar
  91. Swanton C, Mann DJ, Fleckenstein B, Neipel F, Peters G, Jones N (1997) Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390:184–187PubMedCrossRefGoogle Scholar
  92. Tadagaki K, Nakano K, Yamanishi K (2005) Human herpesvirus 7 open reading frames U12 and U51 encode functional beta-chemokine receptors. J Virol 79:7068–7076PubMedCrossRefGoogle Scholar
  93. Teruya-Feldstein J, Zauber P, Setsuda JE, Berman EL, Sorbara L, Raffeld M, Tosato G, Jaffe ES (1998) Expression of human herpesvirus-8 oncogene and cytokine homologues in an HIV-seronegative patient with multicentric Castleman’s disease and primary effusion lymphoma. Lab Invest 78:1637–1642PubMedGoogle Scholar
  94. Van Sande J, Parma J, Tonacchera M, Swillens S, Dumont J, Vassart G (1995) Somatic and germline mutations of the TSH receptor gene in thyroid diseases. J Clin Endocrinol Metab 80:2577–2585PubMedCrossRefGoogle Scholar
  95. Wakeling MN, Roy DJ, Nash AA, Stewart JP (2001) Characterization of the murine gammaherpesvirus 68 ORF74 product: a novel oncogenic G protein-coupled receptor. J Gen Virol 82:1187–1197PubMedGoogle Scholar
  96. Waldhoer M, Casarosa P, Rosenkilde MM, Smit MJ, Leurs R, Whistler JL, Schwartz TW (2003) The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis. J Biol Chem 278:19473–19482PubMedCrossRefGoogle Scholar
  97. Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, Elliman S, Flanagan AM, Alitalo K, Boshoff C (2004) Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36:687–693PubMedCrossRefGoogle Scholar
  98. Whitby D, Howard MR, Tenant-Flowers M, Brink NS, Copas A, Boshoff C, Hatzioannou T, Suggett FE, Aldam DM, Denton AS (1995) Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi’s sarcoma. Lancet 346:799–802PubMedCrossRefGoogle Scholar
  99. Williams BR (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18:6112–6120PubMedCrossRefGoogle Scholar
  100. Wong WW (1998) ICE family proteases in inflammation and apoptosis. Agents Actions Suppl 49:5–13PubMedGoogle Scholar
  101. Yang T, Chen S, Leach M, Manfra D, Homey B, Wiekowski M, Sullivan L, Jenh C, Narula S, Chensue S, Lira S (2000) Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma [see comments]. J Exp Med 191: p445–454PubMedCrossRefGoogle Scholar
  102. Yen-Moore A, Hudnall SD, Rady PL, Wagner RF, Jr., Moore TO, Memar O, Hughes TK, Tyring SK (2000) Differential expression of the HHV-8 vGCR cellular homolog gene in AIDS-associated and classic Kaposi’s sarcoma: potential role of HIV-1 Tat. Virology 267:247–251PubMedCrossRefGoogle Scholar
  103. Zoeteweij JP, Moses AV, Rinderknecht AS, Davis DA, Overwijk WW, Yarchoan R, Orenstein JM, Blauvelt A (2001) Targeted inhibition of calcineurin signaling blocks calcium-dependent reactivation of Kaposi sarcoma-associated herpesvirus. Blood 97:2374–2380PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Cannon
    • 1
  1. 1.Cancer Research UK Viral Oncology GroupWolfson Institute for Biomedical Research University College LondonLondonUK

Personalised recommendations