The Rta/Orf50 Transactivator Proteins of the Gamma-Herpesviridae

  • M. R. Staudt
  • D. P. Dittmer
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 312)


The replication and transcription activator protein, Rta, is encoded by Orf50 in Kaposi’s sarcoma-associated herpesvirus (KSHV) and other known gammaherpesviruses including Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), herpesvirus saimiri(HVS), and murineherpesvirus 68 (MHV-68). Each Rta/Orf50 homologue of each gammaherpesvirus plays a pivotal role in the initiation of viral lytic gene expression and lytic reactivation from latency. Here we discuss the Rta/Orf50 of KSHV in comparison to the Rta/Orf50s of other gammaherpesviruses in an effort to identify structural motifs, mechanisms of action, and modulating host factors.


Viral Reactivation Viral Promoter Lytic Replication Cellular Transcription Factor Lytic Reactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, Asch AS, Cesarman E, Gershengorn MC, Mesri EA, Gerhengorn MC (1998). G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator [see comments] [published erratum appears in Nature 1998 Mar 12;392 (6672):210]. Nature 391(6662):86–9.PubMedGoogle Scholar
  2. Ballestas ME, Chatis PA, Kaye KM (1999). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284(5414):641–4.PubMedGoogle Scholar
  3. Bechtel J, Grundhoff A, Ganem D (2005a). RNAs in the virion of Kaposi’s sarcoma-associated herpesvirus. J Virol 79(16):10138–46.PubMedGoogle Scholar
  4. Bechtel JT, Winant RC, Ganem D (2005b). Host and viral proteins in the virion of Kaposi’s sarcoma-associated herpesvirus. J Virol 79(8):4952–64.PubMedGoogle Scholar
  5. Boname JM, Coleman HM, May JS, Stevenson PG (2004). Protection against wild-type murine gammaherpesvirus-68 latency by a latency-deficient mutant. J Gen Virol 85 (Pt 1):131–5.PubMedGoogle Scholar
  6. Boshoff C, Schulz TF, Kennedy MM, Graham AK, Fisher C, Thomas A, McGee JO, Weiss RA, O’Leary JJ (1995). Kaposi’s sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat Med 1(12):1274–8.PubMedGoogle Scholar
  7. Bowser BS, DeWire SM, Damania B (2002). Transcriptional regulation of the K1 gene product of Kaposi’s sacroma-associated herpesvirus. J Virol 76(24):1257–1283Google Scholar
  8. Byun H, Gwack Y, Hwang S, Choe J (2002). Kaposi’s sarcoma-associated herpesvirus open reading frame (ORF) 50 transactivates K8 and ORF57 promoters via heterogeneous response elements. Mol Cells 14(2):185–91.PubMedGoogle Scholar
  9. Cannon M, Cesarman E, Boshoff C (2006). KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood 107(1):277–84.PubMedGoogle Scholar
  10. Chang H, Gwack Y, Kingston D, Souvlis J, Liang X, Means RE, Cesarman E, Hutt-Fletcher L, Jung JU (2005). Activation of CD21 and CD23 gene expression by Kaposi’s sarcoma-associated herpesvirus RTA J Virol 79(8):4651–63.PubMedGoogle Scholar
  11. Chang J, Renne R, Dittmer D, Ganem D (2000). Inflammatory cytokines and the reactivation of Kaposi’s sarcoma-associated herpesvirus lytic replication. Virology 266(1):17–25.PubMedGoogle Scholar
  12. Chang PJ, Miller G (2004). Autoregulation of DNA binding and protein stability of Kaposi’s sarcoma-associated herpesvirus ORF50 protein. J Virol 78(19):10657–73.PubMedGoogle Scholar
  13. Chang PJ, Shedd D, Gradoville L, Cho MS, Chen LW, Chang J, Miller G (2002). Open reading frame 50 protein of Kaposi’s sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol 76(7):3168–78.PubMedGoogle Scholar
  14. Chen H, Lee JM, Wang Y, Huang DP, Ambinder RF, Hayward SD (1999). The Epstein-Barr virus latency BamHI-Q promoter is positively regulated by STATs and Zta interferencewith JAK/STAT activation leads to loss of BamHI-Q promoter activity. Proc Natl Acad Sci USA 96(16):9339–44.PubMedGoogle Scholar
  15. Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C, Corbellino M, Yamanishi K (2001). Activation of latent Kaposi’s sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci USA 98(7):4119–24.PubMedGoogle Scholar
  16. Chen J, Ueda K, Sakakibara S, Okuno T, Yamanishi K (2000). Transcriptional regulation of the Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor gene. J Virol 74(18):8623–8634.PubMedGoogle Scholar
  17. Ciufo DM, Cannon JS, Poole LJ, Wu FY, Murray P, Ambinder RF, Hayward GS (2001). Spindle cell conversion by Kaposi’s sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J Virol 75(12):5614–26.PubMedGoogle Scholar
  18. Coleman HM, Brierley I, Stevenson PG (2003). An internal ribosome entry site directs translation of the murine gammaherpesvirus 68MK3 open reading frame. J Virol 77(24):13093–105.PubMedGoogle Scholar
  19. Cox MA, Leahy J, Hardwick JM (1990). An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J Virol 64(1):313–21.PubMedGoogle Scholar
  20. Curreli F, Cerimele F, Muralidhar S, Rosenthal LJ, Cesarman E, Friedman-Kien AE, Flore O (2002). Transcriptional downregulation of ORF50/Rta by methotrexate inhibits the switch of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 from latency to lytic replication. J Virol 76(10):5208–19.PubMedGoogle Scholar
  21. Damania B, Jeong JH, Bowser BS, DeWire SM, Staudt MR, Dittmer DP (2004). Comparison of the Rta/Orf50 transactivator proteins of gamma-2-herpesviruses. J Virol 78(10):5491–9.PubMedGoogle Scholar
  22. Damania B, Jung JU (2001). Comparative analysis of the transforming mechanisms of Epstein-Barr virus Kaposi’s sarcoma-associated herpesvirus, herpesvirus saimiri. Adv Cancer Res 80, 51–82.PubMedGoogle Scholar
  23. Deng H, Chu JT, Rettig MB, Martinez-Maza O, Sun R (2002a). Rta of the human herpesvirus 8/Kaposi sarcoma-associated herpesvirus up-regulates human interleukin-6 gene expression. Blood 100(5):1919–21.PubMedGoogle Scholar
  24. Deng H, Song MJ, Chu JT, Sun R (2002b). Transcriptional regulation of the interleukin-6 gene of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus). J Virol 76(16):8252–64.PubMedGoogle Scholar
  25. Deng H, Young A, Sun R (2000). Auto-activation of the rta gene of human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus. J Gen Virol 81 (Pt 12):3043–8.PubMedGoogle Scholar
  26. DeWire SM, Damania B (2005). The latency-associated nuclear antigen of rhesus monkey rhadinovirus inhibits viral replication through repression of Orf50/Rta transcriptional activation. J Virol 79(5):3127–38.PubMedGoogle Scholar
  27. DeWire SM, McVoy MA, Damania B (2002). Kinetics of expression of rhesus monkey rhadinovirus (RRV) and identification and characterization of a polycistronic transcript encoding the RRV Orf50/Rta RRV R8, and R8.1 genes. J Virol 76(19):9819–31.PubMedGoogle Scholar
  28. Dittmer DP, Gonzalez CM, Vahrson W, DeWire SM, Hines-Boykin R, Damania B (2005). Whole-genome transcription profiling of rhesus monkey rhadinovirus (RRV). J Virol 79(13):8637–50.PubMedGoogle Scholar
  29. Doetzlhofer A, Rotheneder H, Lagger G, Koranda M, Kurtev V, Brosch G, Wintersberger E, Seiser C (1999). Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol 19(8):5504–11.PubMedGoogle Scholar
  30. Duan W, Wang S, Liu S, Wood C (2001). Characterization of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8 ORF57 promoter. Arch Virol 146(2):403–13.PubMedGoogle Scholar
  31. Ellwood KB, Yen YM, Johnson RC, Carey M (2000). Mechanism for specificity by HMG-1 in enhanceosome assembly. Mol Cell Biol 20(12):4359–70.PubMedGoogle Scholar
  32. Ensser A, Thurau M, Wittmann S, Fickenscher H (2003). The genome of herpesvirus saimiri C488 which is capable of transforminghuman T cells. Virology 314(2):471–87.PubMedGoogle Scholar
  33. Fakhari FD, Dittmer DP (2002). Charting latency transcripts in Kaposi’s sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR J Virol 76(12):6213–23.PubMedGoogle Scholar
  34. Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W, Delecluse HJ (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19(12):3080–9.PubMedGoogle Scholar
  35. Feng WH, Cohen JI, Fischer S, Li L, Sneller M, Goldbach-Mansky R, Raab-Traub N, Delecluse HJ, Kenney SC (2004). Reactivation of latent Epstein-Barr virus by methotrexate: a potential contributor to methotrexate-associated lymphomas. J Natl Cancer Inst 96(22):1691–702.PubMedGoogle Scholar
  36. Foreman KE, Friborg J, Jr., Kong WP, Woffendin C, Polverini PJ, Nickoloff BJ, Nabel GJ (1997). Propagation of a human herpesvirus from AIDS-associated Kaposi’s sarcoma [see comments]. N Engl J Med 336(3):163–71.PubMedGoogle Scholar
  37. Gao SJ, Deng JH, Zhou FC (2003). Productive lytic replicationof a recombinant Kaposi’s sarcoma-associated herpesvirus in efficient primary infection of primary human endothelial cells. J Virol 77(18):9738–49.PubMedGoogle Scholar
  38. Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C (2005). Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA Blood 105(6):2510–8.PubMedGoogle Scholar
  39. Goodwin DJ, Walters MS, Smith PG, Thurau M, Fickenscher H, Whitehouse A (2001). Herpesvirus saimiri open reading frame 50 (Rta) protein reactivates the lytic replication cycle in a persistently infected A549 cell line. J Virol 75(8):4008–4013.PubMedGoogle Scholar
  40. Gradoville L, Gerlach J, Grogan E, Shedd D, Nikiforow S, Metroka C, Miller G (2000). Kaposi’s sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol 74(13):6207–6212.PubMedGoogle Scholar
  41. Grundhoff A, Ganem D (2004). Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 113(1):124–36.PubMedGoogle Scholar
  42. Gwack Y, Baek HJ, Nakamura H, Lee SH, Meisterernst M, Roeder RG, Jung JU (2003a). Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi’s sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol Cell Biol 23(6):2055–67.PubMedGoogle Scholar
  43. Gwack Y, Byun H, Hwang S, Lim C, Choe J (2001a). CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi’s sarcoma-associated herpesvirus open reading frame 50. J Virol 75(4):1909–17.PubMedGoogle Scholar
  44. Gwack Y, Hwang S, Byun H, Lim C, Kim JW, Choi EJ, Choe J (2001b). Kaposi’s sarcoma-associated herpesvirus open reading frame 50 represses p53-induced transcriptional activity and apoptosis. J Virol 75(13):6245–8.PubMedGoogle Scholar
  45. Gwack Y, Hwang S, Lim C, Won YS, Lee CH, Choe J (2002). Kaposi’s Sarcoma-associated herpesvirus open reading frame 50 stimulates the transcriptional activity of STAT3. J Biol Chem277(8):6438–42.PubMedGoogle Scholar
  46. Gwack Y, Nakamura H, Lee SH, Souvlis J, Yustein JT, Gygi S, Kung HJ, Jung JU (2003b). Poly(ADP-ribose) polymerase 1 and Ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol Cell Biol 23(22):8282–94.PubMedGoogle Scholar
  47. Hall KT, Stevenson AJ, Goodwin DJ, Gibson PC, Markham AF, Whitehouse A (1999). The activation domain of herpesvirus saimiri R protein interacts with the TATA-binding protein. J Virol 73(12):9756–7337.PubMedGoogle Scholar
  48. Hong GK, Delecluse HJ, Gruffat H, Morrison TE, Feng WH, Sergeant A, Kenney SC (2004). The BRRF1 early gene of Epstein-Barr virus encodes a transcription factor that enhances induction of lytic infection by BRLF1. J Virol 78(10):4983–92.PubMedGoogle Scholar
  49. Jenner RG, Alba MM, Boshoff C, Kellam P (2001). Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75(2):891–902.PubMedGoogle Scholar
  50. Jeong J, Papin J, Dittmer D (2001). Differential regulation of the overlapping Kaposi’s sarcoma-associated herpesvirus vGCR (Orf74) and LANA (ORF73) promoters. J Virol 75(4):1798–807PubMedGoogle Scholar
  51. Jia Q, Wu TT, Liao HI, Chernishof V, Sun R (2004). Murine gammaherpesvirus 68 open reading frame 31 is required for viral replication. J Virol 78(12):6610–20.PubMedGoogle Scholar
  52. Klass CM, Krug LT, Pozharskaya VP, Offermann MK (2005). The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood 105(10):4028–34.PubMedGoogle Scholar
  53. Krishnan HH, Naranatt PP, Smith MS, Zeng L, Bloomer C, Chandran B (2004). Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi’s sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 78(7):3601–20.PubMedGoogle Scholar
  54. Lagunoff M, Bechtel J, Venetsanakos E, Roy A-M, Abbey N, Herndier B, McMahon M, Ganem D (2002). De novo infection and serial transmission of Kaposi’s sarcoma-associated herpesvirus in cultured endothelial cells. J Virol 76(5):2440–2448.PubMedGoogle Scholar
  55. Lan K, Kuppers DA, Robertson ES (2005). Kaposi’s sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jκ, the major downstream effector of the Notch signaling pathway. J Virol 79(6):3468–78.PubMedGoogle Scholar
  56. Lan K, Kuppers DA, Verma SC, Robertson ES (2004). Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 78(12):6585–94.PubMedGoogle Scholar
  57. Lan K, Kuppers DA, Verma SC, Sharma N, Murakami M, Robertson ES (2005). Induction of Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen by the lytic transactivator RTA: a novel mechanism for establishment of latency. J Virol 79(12):7453–65.PubMedGoogle Scholar
  58. Lau LF, Nathans D (1985). Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J 4(12):3145–51.PubMedGoogle Scholar
  59. Lau LF, Nathans D (1987). Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci USA 84(5):1182–6.PubMedGoogle Scholar
  60. Lembo D, Cavallo R, Cornaglia M, Mondo A, Hertel L, Angeretti A, Landolfo S (1999). Overexpression of cellular dihydrofolate reductase abolishes the anticytomegaloviral activity of methotrexate. Arch Virol 144(7):1397–403.PubMedGoogle Scholar
  61. Liang Y, Chang J, Lynch SJ, Lukac DM, Ganem D (2002). The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jκ (CSL), the target of the Notch signaling pathway. Genes Dev 16(15):1977–89.PubMedGoogle Scholar
  62. Liang Y, Ganem D (2003). Lytic but not latent infection by Kaposi’s sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci USA 100(14):8490–5.PubMedGoogle Scholar
  63. Liang Y, Ganem D (2004). RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi’s sarcoma-associated herpesvirus by the lytic switch protein RTA J Virol 78(13):6818–26.PubMedGoogle Scholar
  64. Liao W, Tang Y, Kuo YL, Liu BY, Xu CJ, Giam CZ (2003a). Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA-binding protein that interacts with tandem arrays of phased A/T-tri-nucleotide motifs. J Virol 77(17):9399–411.PubMedGoogle Scholar
  65. Liao W, Tang Y, Lin SF, Kung HJ, Giam CZ (2003b). K-bZIP of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) binds KSHV/HHV-8 Rta and represses Rta-mediated transactivation. J Virol 77(6):3809–15.PubMedGoogle Scholar
  66. Lin SF, Robinson DR, Oh J, Jung JU, Luciw PA, Kung HJ (2002). Identification of the bZIP and Rta homologues in the genome of rhesusmonkey rhadinovirus. Virology 298(2):181–8.PubMedGoogle Scholar
  67. Liu S, Pavlova IV, Virgin HWt., and Speck SH (2000). Characterization of gamma-herpesvirus 68 gene 50 transcription. J Virol 74(4):2029–37.PubMedGoogle Scholar
  68. Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM (2003). Chromatin remodeling of the Kaposi’s sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol 77(21):11425–35.PubMedGoogle Scholar
  69. Lukac DM, Garibyan L, Kirshner JR, Palmeri D, Ganem D (2001). DNA binding by Kaposi’s sarcoma-associated herpesvirus lytic switch protein is necessary for transcriptional activation of two viral delayed early promoters. JVirol 75(15):6786–99.Google Scholar
  70. Lukac DM, Kirshner JR, Ganem D (1999). Transcriptional activation by the product of open reading frame 50 of Kaposi’s sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73(11):9348–61.PubMedGoogle Scholar
  71. Lukac DM, Renne R, Kirshner JR, Ganem D (1998). Reactivation of Kaposi’s sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252(2):304–12.PubMedGoogle Scholar
  72. Martinez-Guzman D, Rickabaugh T, Wu TT, Brown H, Cole S, Song MJ, Tong L, Sun R (2003). Transcription program of murine gammaherpesvirus 68. J Virol 77(19):10488–503.PubMedGoogle Scholar
  73. Matsumura S, Fujita Y, Gomez E, Tanese N, Wilson AC (2005). Activation of the Kaposi’s sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol 79(13):8493–505.PubMedGoogle Scholar
  74. May JS, Coleman HM, Smillie B, Efstathiou S, Stevenson PG (2004). Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. J GenVirol 85 (Pt 1):137–46.Google Scholar
  75. McAllister SC, Hansen SG, Messaoudi I, Nikolich-Zugich J, Moses AV (2005). Increased efficiency of phorbol ester-induced lytic reactivation of Kaposi’s sarcoma-associated herpesvirus during S phase. J Virol 79(4):2626–30.PubMedGoogle Scholar
  76. McKnight JL, Pellett PE, Jenkins FJ, Roizman B (1987). Characterization and nucleotide sequence of two herpes simplex virus 1 genes whose products modulate alpha-trans-inducing factor-dependent activation of alpha genes. JVirol 61(4):992–1001.Google Scholar
  77. Mitsouras K, Wong B, Arayata C, Johnson RC, Carey M (2002). The DNA architectural protein HMGB1 displays two distinct modes of action that promote enhanceosome assembly. Mol Cell Biol 22(12):4390–401.PubMedGoogle Scholar
  78. Moses AV, Fish KN, Ruhl R, Smith PP, Strussenberg JG, Zhu L, Chandran B, Nelson JA (1999). Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol 73(8):6892–902.PubMedGoogle Scholar
  79. Mumm JS, Kopan R (2000). Notch signaling: from the outside in. Dev Biol 228(2):151–65.PubMedGoogle Scholar
  80. Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU (2003). Global changes in Kaposi’s sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 77(7):4205–20.PubMedGoogle Scholar
  81. O’Connor C, M, Kedes DH (2006). Mass spectrometric analyses of purified rhesus monkey rhadinovirus reveal 33 virion-associated proteins. J Virol 80(3):1574–83.PubMedGoogle Scholar
  82. Paulose-Murphy M, Ha N-K, Xiang C, Chen Y, Gillim L, Yarchoan R, Meltzer P, Bittner M, Trent J, Zeichner S (2001). Transcription program of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus). J Virol 75(10):4843–4853.PubMedGoogle Scholar
  83. Pavlova I, Lin CY, Speck SH (2005). Murine gammaherpesvirus 68 Rta-dependent activation of the gene 57 promoter. Virology 333(1):169–79.PubMedGoogle Scholar
  84. Pavlova IV, Virgin HWt., and Speck SH (2003). Disruption of gammaherpesvirus 68 gene 50 demonstrates that Rta is essential for virus replication. J Virol 77(10):5731–9.PubMedGoogle Scholar
  85. Polson AG, Wang D, DeRisi J, Ganem D (2002). Modulation of host gene expression by the constitutively active G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus. Cancer Res 62(15):4525–30.PubMedGoogle Scholar
  86. Pozharskaya VP, Weakland LL, Offermann MK (2004). Inhibition of infectious human herpesvirus 8 production by gamma interferon and alpha interferon in BCBL-1 cells. J Gen Virol 85 (Pt 10):2779–87.PubMedGoogle Scholar
  87. Quinlivan EB, Holley-Guthrie EA, Norris M, Gutsch D, Bachenheimer SL, Kenney SC (1993). Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter BMRF1. Nucleic Acids Res 21(14):1999–2007.PubMedGoogle Scholar
  88. Ragoczy T, Heston L, Miller G (1998). The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72(10):7978–84.PubMedGoogle Scholar
  89. Ragoczy T, Miller G (1999). Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol 73(12):9858–66.PubMedGoogle Scholar
  90. Ragoczy T, Miller G (2001). Autostimulation of the Epstein-Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. J Virol 75(11):5240–51.PubMedGoogle Scholar
  91. Renne R, Blackbourn D, Whitby D, Levy J, Ganem D (1998). Limited transmission of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J Virol 72(6):5182–8.PubMedGoogle Scholar
  92. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996). Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2(3):342–6.PubMedGoogle Scholar
  93. Rickabaugh TM, Brown HJ, Wu TT, Song MJ, Hwang S, Deng H, Mitsouras K, Sun R (2005). Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 RTA reactivates murine gammaherpesvirus 68 from latency. J Virol 79(5):3217–22.PubMedGoogle Scholar
  94. Rochford R, Lutzke ML, Alfinito RS, Clavo A, Cardin RD (2001). Kinetics of murine gammaherpesvirus 68 gene expression following infection of murine cells in culture and in mice. J Virol 75(11):4955–63.PubMedGoogle Scholar
  95. Roizman B (1996). Herpesviridae. In “Virology” (BN Fields DM Knipe, and PM Howley Eds.), Vol. 2, pp. 2221–2230. 2 vols. Lippincott-Raven Philadelphia.Google Scholar
  96. Russo James J, Bohenzky Roy A, Chien M-C, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman Isidore S, Chang Y, Moore Patrick S (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93(25):14862–14867.PubMedGoogle Scholar
  97. Sakakibara S, Ueda K, Chen J, Okuno T, Yamanishi K (2001). Octamer-binding sequence is a key element for the autoregulation of Kaposi’s sarcoma-associated herpesvirus ORF50/Lyta gene expression. J Virol 75(15):6894–900.PubMedGoogle Scholar
  98. Sarid R, Flore O, Bohenzky RA, Chang Y, Moore PS (1998). Transcription mapping of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 72(2):1005–12.PubMedGoogle Scholar
  99. Saveliev A, Zhu F, Yuan Y (2002). Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi’s sarcoma-associated herpesvirus. Virology 299(2):301–14.PubMedGoogle Scholar
  100. Schafer A, Lengenfelder D, Grillhosl C, Wieser C, Fleckenstein B, Ensser A (2003). The latency-associated nuclear antigen homolog of herpesvirus saimiri inhibits lytic virus replication. J Virol 77(10):5911–25.PubMedGoogle Scholar
  101. Seaman WT, Quinlivan EB (2003). Lytic switch protein (ORF50) response element in the Kaposi’s sarcoma-associated herpesvirus K8 promoter is located within but does not require a palindromic structure. Virology 310(1):72–84.PubMedGoogle Scholar
  102. Shanley JD, Debs RJ (1989). The folate antagonist, methotrexate, is a potent inhibitor of murine and human cytomegalovirus in vitro. Antiviral Res 11(2):99–106.PubMedGoogle Scholar
  103. Shaw RN, Arbiser JL, Offermann MK (2000). Valproic acid induces human herpesvirus 8 lytic gene expression in BCBL-1 cells. AIDS 14(7):899–902.PubMedGoogle Scholar
  104. Song MJ, Deng H, Sun R (2003). Comparative study of regulation of RTA-responsive genes in Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 77(17):9451–62.PubMedGoogle Scholar
  105. Song MJ, Hwang S, Wong W, Round J, Martinez-Guzman D, Turpaz Y, Liang J, Wong B, Johnson RC, Carey M, Sun R (2004). The DNA architectural protein HMGB1 facilitates RTA-mediated viral gene expression in gamma-2 herpesviruses. J Virol 78(23):12940–50.PubMedGoogle Scholar
  106. Song MJ, Li X, Brown HJ, Sun R (2002). Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 76(10):5000–13.PubMedGoogle Scholar
  107. Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, Miller G (1998). A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 95(18):10866–71.PubMedGoogle Scholar
  108. Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999). Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 73(3):2232–42.PubMedGoogle Scholar
  109. Swenson JJ, Holley-Guthrie E, Kenney SC (2001). Epstein-Barr virus immediate-early protein BRLF1 interacts with CBP, promoting enhanced BRLF1 transactivation. J Virol 75(13):6228–34.PubMedGoogle Scholar
  110. Tang S, Zheng ZM (2002). Kaposi’s sarcoma-associated herpesvirus K8 exon 3 contains three 5′-splice sites and harbors a K8.1 transcription start site. J Biol Chem 277(17):14547–56.PubMedGoogle Scholar
  111. Thurau M, Whitehouse A, Wittmann S, Meredith D, Fickenscher H (2000). Distinct transcriptional and functional properties of the R transactivator gene Orf50 of the transforming herpesvirus saimiri strain C488. Virology 268(1):167–77.PubMedGoogle Scholar
  112. Triezenberg SJ, LaMarco KL, McKnight SL (1988). Evidence of DNA: protein interactions that mediate HSV-1 immediate early gene activation by VP16. Genes Dev 2(6):730–42.PubMedGoogle Scholar
  113. Trus BL, Heymann JB, Nealon K, Cheng N, Newcomb WW, Brown JC, Kedes DH, Steven AC (2001). Capsid structure of Kaposi’s sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. J Virol 75(6):2879–90.PubMedGoogle Scholar
  114. Ueda K, Ishikawa K, Nishimura K, Sakakibara S, Do E, Yamanishi K (2002). Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) replication and transcription factor activates the K9 (vIRF) gen through two distinct cis elements by a non-DNA-binding mechanism. J Virol 76(23):12044–54.PubMedGoogle Scholar
  115. Walters MS, Hall KT, Whitehouse A (2004). The herpesvirus saimiri open reading frame (ORF) 50 (Rta) protein contains an AT hook required for binding to the ORF 50 response element in delayed-early promoters. J Virol 78(9):4936–42.PubMedGoogle Scholar
  116. Walters MS, Hall KT, Whitehouse A (2005). The herpesvirus saimiri Rta gene autostimulates via binding to a non-consensus response element. J Gen Virol 86 (Pt 3):581–7.PubMedGoogle Scholar
  117. Wang J, Zhang J, Zhang L, Harrington W, Jr., West JT, Wood C (2005). Modulation of human herpesvirus 8/Kaposi’s sarcoma-associated herpesvirus replication and transcription activator transactivation by interferon regulatory factor 7. J Virol 79(4):2420–31.PubMedGoogle Scholar
  118. Wang S, Liu S, Wu MH, Geng Y, Wood C (2001). Identification of a cellular protein that interacts and synergizes with the RTA (ORF50) protein of Kaposi’s sarcoma-associated herpesvirus in transcriptional activation. J Virol 75(24):11961–73.PubMedGoogle Scholar
  119. Wang SE, Wu FY, Chen H, Shamay M, Zheng Q, Hayward GS (2004a). Early activation of the Kaposi’s sarcoma-associated herpesvirus RTA, RAP, MTA promoters by the tetradecanoyl phorbol acetate-induced AP1 pathway. J Virol 78(8):4248–67.PubMedGoogle Scholar
  120. Wang SE, Wu FY, Fujimuro M, Zong J, Hayward SD, Hayward GS (2003a). Role of CCAAT/enhancer-binding protein α (C/EBPα) in activation of the Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP J Virol 77(1):600–23.PubMedGoogle Scholar
  121. Wang SE, Wu FY, Yu Y, Hayward GS (2003b). CCAAT/enhancer-binding protein-α is induced during the early stages of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, PAN promoters. J Virol 77(17):9590–612.PubMedGoogle Scholar
  122. Wang Y, Chong OT, Yuan Y (2004). Differential regulation of K8 gene expression in immediate-early and delayed-early stages of Kaposi’s sarcoma-associated herpesvirus. Virology 325(1):149–63.PubMedGoogle Scholar
  123. Wang Y, Li H, Chan MY, Zhu FX, Lukac DM, Yuan Y (2004b). Kaposi’s sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: cis-acting requirements for replication and ori-Lyt-associated RNA transcription. J Virol 78(16):8615–29.PubMedGoogle Scholar
  124. Whitehouse A, Carr IM, Griffiths JC, Meredith DM (1997). The herpesvirus saimiri ORF50 gene, encoding a transcriptional activator homologous to the Epstein-Barr virus R protein, is transcribed from two distinct promoters of different temporal phases. J Virol 71(3):2550–4.PubMedGoogle Scholar
  125. Wu TT, Tong L, Rickabaugh T, Speck S, Sun R (2001). Function of Rta is essential for lytic replication of murine gammaherpesvirus 68. J Virol 75(19):9262–73.PubMedGoogle Scholar
  126. Wu TT, Usherwood EJ, Stewart JP, Nash AA, Sun R (2000). Rta of murine gammaher-pesvirus 68 reactivates the complete lytic cycle fromlatency. JVirol 74(8):3659–67.Google Scholar
  127. Xu Y, AuCoin DP, Huete AR, Cei SA, Hanson LJ, Pari GS (2005). A Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication. J Virol 79(6):3479–87.PubMedGoogle Scholar
  128. Ye J, Shedd D, Miller G (2005). An Sp1 response element in the Kaposi’s sarcoma-associated herpesvirus open reading frame 50 promoter mediates lytic cycle induction by butyrate. J Virol 79(3):1397–408.PubMedGoogle Scholar
  129. Yu Y, Wang SE, Hayward GS (2005). The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22(1):59–70.PubMedGoogle Scholar
  130. Zalani S, Holley-Guthrie E, Kenney S (1996). Epstein-Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc Natl Acad Sci USA 93(17):9194–9.PubMedGoogle Scholar
  131. Zhang L, Chiu J, Lin JC (1998). Activation of human herpesvirus 8 (HHV-8) thymidine kinase (TK) TATAA-less promoter by HHV-8 ORF50 gene product is SP1 dependent. DNA Cell Biol 17(9):735–42.PubMedGoogle Scholar
  132. Zhong W, Wang H, Herndier B, Ganem D (1996). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci USA 93(13):6641–6.PubMedGoogle Scholar
  133. Zhou FC, Zhang YJ, Deng JH, Wang XP, Pan HY, Hettler E, Gao SJ (2002). Efficient infection by a recombinant Kaposi’s sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J Virol 76(12):6185–96.PubMedGoogle Scholar
  134. Zhu FX, Chong JM, Wu L, Yuan Y (2005). Virion proteins of Kaposi’s sarcoma-associated herpesvirus. J Virol 79(2):800–11.PubMedGoogle Scholar
  135. Zhu FX, Cusano T, Yuan Y (1999). Identification of the immediate-early transcripts of Kaposi’s sarcoma-associated herpesvirus. J Virol 73(7):5556–67.PubMedGoogle Scholar
  136. Zhu FX, Yuan Y (2003). The ORF45 protein of Kaposi’s sarcoma-associated herpesvirus is associated with purified virions. J Virol 77(7):4221–30.PubMedGoogle Scholar
  137. Zhu J, Trang P, Kim K, Zhou T, Deng H, Liu F (2004). Effective inhibition of Rta expression and lytic replication of Kaposi’s sarcoma-associated herpesvirus by human RNase P. Proc Natl Acad Sci USA 101(24):9073–8.PubMedGoogle Scholar
  138. Zoeteweij JP, Eyes ST, Orenstein JM, Kawamura T, Wu L, Chandran B, Forghani B, Blauvelt A (1999). Identification and rapid quantification of early-and late-lytic human herpesvirus 8 infection in single cells by flow cytometric analysis: characterization of antiherpesvirus agents. J Virol 73(7):5894–902.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. R. Staudt
    • 1
  • D. P. Dittmer
    • 1
  1. 1.Department of Microbiology and Immunology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations