Skip to main content

The Rta/Orf50 Transactivator Proteins of the Gamma-Herpesviridae

  • Chapter
Kaposi Sarcoma Herpesvirus: New Perspectives

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 312))

Abstract

The replication and transcription activator protein, Rta, is encoded by Orf50 in Kaposi’s sarcoma-associated herpesvirus (KSHV) and other known gammaherpesviruses including Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), herpesvirus saimiri(HVS), and murineherpesvirus 68 (MHV-68). Each Rta/Orf50 homologue of each gammaherpesvirus plays a pivotal role in the initiation of viral lytic gene expression and lytic reactivation from latency. Here we discuss the Rta/Orf50 of KSHV in comparison to the Rta/Orf50s of other gammaherpesviruses in an effort to identify structural motifs, mechanisms of action, and modulating host factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, Asch AS, Cesarman E, Gershengorn MC, Mesri EA, Gerhengorn MC (1998). G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator [see comments] [published erratum appears in Nature 1998 Mar 12;392 (6672):210]. Nature 391(6662):86–9.

    PubMed  CAS  Google Scholar 

  • Ballestas ME, Chatis PA, Kaye KM (1999). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284(5414):641–4.

    PubMed  CAS  Google Scholar 

  • Bechtel J, Grundhoff A, Ganem D (2005a). RNAs in the virion of Kaposi’s sarcoma-associated herpesvirus. J Virol 79(16):10138–46.

    PubMed  CAS  Google Scholar 

  • Bechtel JT, Winant RC, Ganem D (2005b). Host and viral proteins in the virion of Kaposi’s sarcoma-associated herpesvirus. J Virol 79(8):4952–64.

    PubMed  CAS  Google Scholar 

  • Boname JM, Coleman HM, May JS, Stevenson PG (2004). Protection against wild-type murine gammaherpesvirus-68 latency by a latency-deficient mutant. J Gen Virol 85 (Pt 1):131–5.

    PubMed  CAS  Google Scholar 

  • Boshoff C, Schulz TF, Kennedy MM, Graham AK, Fisher C, Thomas A, McGee JO, Weiss RA, O’Leary JJ (1995). Kaposi’s sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat Med 1(12):1274–8.

    PubMed  CAS  Google Scholar 

  • Bowser BS, DeWire SM, Damania B (2002). Transcriptional regulation of the K1 gene product of Kaposi’s sacroma-associated herpesvirus. J Virol 76(24):1257–1283

    Google Scholar 

  • Byun H, Gwack Y, Hwang S, Choe J (2002). Kaposi’s sarcoma-associated herpesvirus open reading frame (ORF) 50 transactivates K8 and ORF57 promoters via heterogeneous response elements. Mol Cells 14(2):185–91.

    PubMed  CAS  Google Scholar 

  • Cannon M, Cesarman E, Boshoff C (2006). KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood 107(1):277–84.

    PubMed  CAS  Google Scholar 

  • Chang H, Gwack Y, Kingston D, Souvlis J, Liang X, Means RE, Cesarman E, Hutt-Fletcher L, Jung JU (2005). Activation of CD21 and CD23 gene expression by Kaposi’s sarcoma-associated herpesvirus RTA J Virol 79(8):4651–63.

    PubMed  CAS  Google Scholar 

  • Chang J, Renne R, Dittmer D, Ganem D (2000). Inflammatory cytokines and the reactivation of Kaposi’s sarcoma-associated herpesvirus lytic replication. Virology 266(1):17–25.

    PubMed  CAS  Google Scholar 

  • Chang PJ, Miller G (2004). Autoregulation of DNA binding and protein stability of Kaposi’s sarcoma-associated herpesvirus ORF50 protein. J Virol 78(19):10657–73.

    PubMed  CAS  Google Scholar 

  • Chang PJ, Shedd D, Gradoville L, Cho MS, Chen LW, Chang J, Miller G (2002). Open reading frame 50 protein of Kaposi’s sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol 76(7):3168–78.

    PubMed  CAS  Google Scholar 

  • Chen H, Lee JM, Wang Y, Huang DP, Ambinder RF, Hayward SD (1999). The Epstein-Barr virus latency BamHI-Q promoter is positively regulated by STATs and Zta interferencewith JAK/STAT activation leads to loss of BamHI-Q promoter activity. Proc Natl Acad Sci USA 96(16):9339–44.

    PubMed  CAS  Google Scholar 

  • Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C, Corbellino M, Yamanishi K (2001). Activation of latent Kaposi’s sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci USA 98(7):4119–24.

    PubMed  CAS  Google Scholar 

  • Chen J, Ueda K, Sakakibara S, Okuno T, Yamanishi K (2000). Transcriptional regulation of the Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor gene. J Virol 74(18):8623–8634.

    PubMed  CAS  Google Scholar 

  • Ciufo DM, Cannon JS, Poole LJ, Wu FY, Murray P, Ambinder RF, Hayward GS (2001). Spindle cell conversion by Kaposi’s sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J Virol 75(12):5614–26.

    PubMed  CAS  Google Scholar 

  • Coleman HM, Brierley I, Stevenson PG (2003). An internal ribosome entry site directs translation of the murine gammaherpesvirus 68MK3 open reading frame. J Virol 77(24):13093–105.

    PubMed  CAS  Google Scholar 

  • Cox MA, Leahy J, Hardwick JM (1990). An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J Virol 64(1):313–21.

    PubMed  CAS  Google Scholar 

  • Curreli F, Cerimele F, Muralidhar S, Rosenthal LJ, Cesarman E, Friedman-Kien AE, Flore O (2002). Transcriptional downregulation of ORF50/Rta by methotrexate inhibits the switch of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 from latency to lytic replication. J Virol 76(10):5208–19.

    PubMed  CAS  Google Scholar 

  • Damania B, Jeong JH, Bowser BS, DeWire SM, Staudt MR, Dittmer DP (2004). Comparison of the Rta/Orf50 transactivator proteins of gamma-2-herpesviruses. J Virol 78(10):5491–9.

    PubMed  CAS  Google Scholar 

  • Damania B, Jung JU (2001). Comparative analysis of the transforming mechanisms of Epstein-Barr virus Kaposi’s sarcoma-associated herpesvirus, herpesvirus saimiri. Adv Cancer Res 80, 51–82.

    PubMed  CAS  Google Scholar 

  • Deng H, Chu JT, Rettig MB, Martinez-Maza O, Sun R (2002a). Rta of the human herpesvirus 8/Kaposi sarcoma-associated herpesvirus up-regulates human interleukin-6 gene expression. Blood 100(5):1919–21.

    PubMed  CAS  Google Scholar 

  • Deng H, Song MJ, Chu JT, Sun R (2002b). Transcriptional regulation of the interleukin-6 gene of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus). J Virol 76(16):8252–64.

    PubMed  CAS  Google Scholar 

  • Deng H, Young A, Sun R (2000). Auto-activation of the rta gene of human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus. J Gen Virol 81 (Pt 12):3043–8.

    PubMed  CAS  Google Scholar 

  • DeWire SM, Damania B (2005). The latency-associated nuclear antigen of rhesus monkey rhadinovirus inhibits viral replication through repression of Orf50/Rta transcriptional activation. J Virol 79(5):3127–38.

    PubMed  CAS  Google Scholar 

  • DeWire SM, McVoy MA, Damania B (2002). Kinetics of expression of rhesus monkey rhadinovirus (RRV) and identification and characterization of a polycistronic transcript encoding the RRV Orf50/Rta RRV R8, and R8.1 genes. J Virol 76(19):9819–31.

    PubMed  CAS  Google Scholar 

  • Dittmer DP, Gonzalez CM, Vahrson W, DeWire SM, Hines-Boykin R, Damania B (2005). Whole-genome transcription profiling of rhesus monkey rhadinovirus (RRV). J Virol 79(13):8637–50.

    PubMed  CAS  Google Scholar 

  • Doetzlhofer A, Rotheneder H, Lagger G, Koranda M, Kurtev V, Brosch G, Wintersberger E, Seiser C (1999). Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol 19(8):5504–11.

    PubMed  CAS  Google Scholar 

  • Duan W, Wang S, Liu S, Wood C (2001). Characterization of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8 ORF57 promoter. Arch Virol 146(2):403–13.

    PubMed  CAS  Google Scholar 

  • Ellwood KB, Yen YM, Johnson RC, Carey M (2000). Mechanism for specificity by HMG-1 in enhanceosome assembly. Mol Cell Biol 20(12):4359–70.

    PubMed  CAS  Google Scholar 

  • Ensser A, Thurau M, Wittmann S, Fickenscher H (2003). The genome of herpesvirus saimiri C488 which is capable of transforminghuman T cells. Virology 314(2):471–87.

    PubMed  CAS  Google Scholar 

  • Fakhari FD, Dittmer DP (2002). Charting latency transcripts in Kaposi’s sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR J Virol 76(12):6213–23.

    PubMed  CAS  Google Scholar 

  • Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W, Delecluse HJ (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19(12):3080–9.

    PubMed  CAS  Google Scholar 

  • Feng WH, Cohen JI, Fischer S, Li L, Sneller M, Goldbach-Mansky R, Raab-Traub N, Delecluse HJ, Kenney SC (2004). Reactivation of latent Epstein-Barr virus by methotrexate: a potential contributor to methotrexate-associated lymphomas. J Natl Cancer Inst 96(22):1691–702.

    PubMed  CAS  Google Scholar 

  • Foreman KE, Friborg J, Jr., Kong WP, Woffendin C, Polverini PJ, Nickoloff BJ, Nabel GJ (1997). Propagation of a human herpesvirus from AIDS-associated Kaposi’s sarcoma [see comments]. N Engl J Med 336(3):163–71.

    PubMed  CAS  Google Scholar 

  • Gao SJ, Deng JH, Zhou FC (2003). Productive lytic replicationof a recombinant Kaposi’s sarcoma-associated herpesvirus in efficient primary infection of primary human endothelial cells. J Virol 77(18):9738–49.

    PubMed  CAS  Google Scholar 

  • Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C (2005). Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA Blood 105(6):2510–8.

    PubMed  CAS  Google Scholar 

  • Goodwin DJ, Walters MS, Smith PG, Thurau M, Fickenscher H, Whitehouse A (2001). Herpesvirus saimiri open reading frame 50 (Rta) protein reactivates the lytic replication cycle in a persistently infected A549 cell line. J Virol 75(8):4008–4013.

    PubMed  CAS  Google Scholar 

  • Gradoville L, Gerlach J, Grogan E, Shedd D, Nikiforow S, Metroka C, Miller G (2000). Kaposi’s sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol 74(13):6207–6212.

    PubMed  CAS  Google Scholar 

  • Grundhoff A, Ganem D (2004). Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 113(1):124–36.

    PubMed  CAS  Google Scholar 

  • Gwack Y, Baek HJ, Nakamura H, Lee SH, Meisterernst M, Roeder RG, Jung JU (2003a). Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi’s sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol Cell Biol 23(6):2055–67.

    PubMed  CAS  Google Scholar 

  • Gwack Y, Byun H, Hwang S, Lim C, Choe J (2001a). CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi’s sarcoma-associated herpesvirus open reading frame 50. J Virol 75(4):1909–17.

    PubMed  CAS  Google Scholar 

  • Gwack Y, Hwang S, Byun H, Lim C, Kim JW, Choi EJ, Choe J (2001b). Kaposi’s sarcoma-associated herpesvirus open reading frame 50 represses p53-induced transcriptional activity and apoptosis. J Virol 75(13):6245–8.

    PubMed  CAS  Google Scholar 

  • Gwack Y, Hwang S, Lim C, Won YS, Lee CH, Choe J (2002). Kaposi’s Sarcoma-associated herpesvirus open reading frame 50 stimulates the transcriptional activity of STAT3. J Biol Chem277(8):6438–42.

    PubMed  CAS  Google Scholar 

  • Gwack Y, Nakamura H, Lee SH, Souvlis J, Yustein JT, Gygi S, Kung HJ, Jung JU (2003b). Poly(ADP-ribose) polymerase 1 and Ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol Cell Biol 23(22):8282–94.

    PubMed  CAS  Google Scholar 

  • Hall KT, Stevenson AJ, Goodwin DJ, Gibson PC, Markham AF, Whitehouse A (1999). The activation domain of herpesvirus saimiri R protein interacts with the TATA-binding protein. J Virol 73(12):9756–7337.

    PubMed  CAS  Google Scholar 

  • Hong GK, Delecluse HJ, Gruffat H, Morrison TE, Feng WH, Sergeant A, Kenney SC (2004). The BRRF1 early gene of Epstein-Barr virus encodes a transcription factor that enhances induction of lytic infection by BRLF1. J Virol 78(10):4983–92.

    PubMed  CAS  Google Scholar 

  • Jenner RG, Alba MM, Boshoff C, Kellam P (2001). Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75(2):891–902.

    PubMed  CAS  Google Scholar 

  • Jeong J, Papin J, Dittmer D (2001). Differential regulation of the overlapping Kaposi’s sarcoma-associated herpesvirus vGCR (Orf74) and LANA (ORF73) promoters. J Virol 75(4):1798–807

    PubMed  CAS  Google Scholar 

  • Jia Q, Wu TT, Liao HI, Chernishof V, Sun R (2004). Murine gammaherpesvirus 68 open reading frame 31 is required for viral replication. J Virol 78(12):6610–20.

    PubMed  CAS  Google Scholar 

  • Klass CM, Krug LT, Pozharskaya VP, Offermann MK (2005). The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood 105(10):4028–34.

    PubMed  CAS  Google Scholar 

  • Krishnan HH, Naranatt PP, Smith MS, Zeng L, Bloomer C, Chandran B (2004). Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi’s sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 78(7):3601–20.

    PubMed  CAS  Google Scholar 

  • Lagunoff M, Bechtel J, Venetsanakos E, Roy A-M, Abbey N, Herndier B, McMahon M, Ganem D (2002). De novo infection and serial transmission of Kaposi’s sarcoma-associated herpesvirus in cultured endothelial cells. J Virol 76(5):2440–2448.

    PubMed  CAS  Google Scholar 

  • Lan K, Kuppers DA, Robertson ES (2005). Kaposi’s sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jκ, the major downstream effector of the Notch signaling pathway. J Virol 79(6):3468–78.

    PubMed  CAS  Google Scholar 

  • Lan K, Kuppers DA, Verma SC, Robertson ES (2004). Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 78(12):6585–94.

    PubMed  CAS  Google Scholar 

  • Lan K, Kuppers DA, Verma SC, Sharma N, Murakami M, Robertson ES (2005). Induction of Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen by the lytic transactivator RTA: a novel mechanism for establishment of latency. J Virol 79(12):7453–65.

    PubMed  CAS  Google Scholar 

  • Lau LF, Nathans D (1985). Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J 4(12):3145–51.

    PubMed  CAS  Google Scholar 

  • Lau LF, Nathans D (1987). Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci USA 84(5):1182–6.

    PubMed  CAS  Google Scholar 

  • Lembo D, Cavallo R, Cornaglia M, Mondo A, Hertel L, Angeretti A, Landolfo S (1999). Overexpression of cellular dihydrofolate reductase abolishes the anticytomegaloviral activity of methotrexate. Arch Virol 144(7):1397–403.

    PubMed  CAS  Google Scholar 

  • Liang Y, Chang J, Lynch SJ, Lukac DM, Ganem D (2002). The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jκ (CSL), the target of the Notch signaling pathway. Genes Dev 16(15):1977–89.

    PubMed  CAS  Google Scholar 

  • Liang Y, Ganem D (2003). Lytic but not latent infection by Kaposi’s sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci USA 100(14):8490–5.

    PubMed  CAS  Google Scholar 

  • Liang Y, Ganem D (2004). RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi’s sarcoma-associated herpesvirus by the lytic switch protein RTA J Virol 78(13):6818–26.

    PubMed  CAS  Google Scholar 

  • Liao W, Tang Y, Kuo YL, Liu BY, Xu CJ, Giam CZ (2003a). Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA-binding protein that interacts with tandem arrays of phased A/T-tri-nucleotide motifs. J Virol 77(17):9399–411.

    PubMed  CAS  Google Scholar 

  • Liao W, Tang Y, Lin SF, Kung HJ, Giam CZ (2003b). K-bZIP of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) binds KSHV/HHV-8 Rta and represses Rta-mediated transactivation. J Virol 77(6):3809–15.

    PubMed  CAS  Google Scholar 

  • Lin SF, Robinson DR, Oh J, Jung JU, Luciw PA, Kung HJ (2002). Identification of the bZIP and Rta homologues in the genome of rhesusmonkey rhadinovirus. Virology 298(2):181–8.

    PubMed  CAS  Google Scholar 

  • Liu S, Pavlova IV, Virgin HWt., and Speck SH (2000). Characterization of gamma-herpesvirus 68 gene 50 transcription. J Virol 74(4):2029–37.

    PubMed  CAS  Google Scholar 

  • Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM (2003). Chromatin remodeling of the Kaposi’s sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol 77(21):11425–35.

    PubMed  CAS  Google Scholar 

  • Lukac DM, Garibyan L, Kirshner JR, Palmeri D, Ganem D (2001). DNA binding by Kaposi’s sarcoma-associated herpesvirus lytic switch protein is necessary for transcriptional activation of two viral delayed early promoters. JVirol 75(15):6786–99.

    CAS  Google Scholar 

  • Lukac DM, Kirshner JR, Ganem D (1999). Transcriptional activation by the product of open reading frame 50 of Kaposi’s sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73(11):9348–61.

    PubMed  CAS  Google Scholar 

  • Lukac DM, Renne R, Kirshner JR, Ganem D (1998). Reactivation of Kaposi’s sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252(2):304–12.

    PubMed  CAS  Google Scholar 

  • Martinez-Guzman D, Rickabaugh T, Wu TT, Brown H, Cole S, Song MJ, Tong L, Sun R (2003). Transcription program of murine gammaherpesvirus 68. J Virol 77(19):10488–503.

    PubMed  CAS  Google Scholar 

  • Matsumura S, Fujita Y, Gomez E, Tanese N, Wilson AC (2005). Activation of the Kaposi’s sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol 79(13):8493–505.

    PubMed  CAS  Google Scholar 

  • May JS, Coleman HM, Smillie B, Efstathiou S, Stevenson PG (2004). Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. J GenVirol 85 (Pt 1):137–46.

    CAS  Google Scholar 

  • McAllister SC, Hansen SG, Messaoudi I, Nikolich-Zugich J, Moses AV (2005). Increased efficiency of phorbol ester-induced lytic reactivation of Kaposi’s sarcoma-associated herpesvirus during S phase. J Virol 79(4):2626–30.

    PubMed  CAS  Google Scholar 

  • McKnight JL, Pellett PE, Jenkins FJ, Roizman B (1987). Characterization and nucleotide sequence of two herpes simplex virus 1 genes whose products modulate alpha-trans-inducing factor-dependent activation of alpha genes. JVirol 61(4):992–1001.

    CAS  Google Scholar 

  • Mitsouras K, Wong B, Arayata C, Johnson RC, Carey M (2002). The DNA architectural protein HMGB1 displays two distinct modes of action that promote enhanceosome assembly. Mol Cell Biol 22(12):4390–401.

    PubMed  CAS  Google Scholar 

  • Moses AV, Fish KN, Ruhl R, Smith PP, Strussenberg JG, Zhu L, Chandran B, Nelson JA (1999). Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol 73(8):6892–902.

    PubMed  CAS  Google Scholar 

  • Mumm JS, Kopan R (2000). Notch signaling: from the outside in. Dev Biol 228(2):151–65.

    PubMed  CAS  Google Scholar 

  • Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU (2003). Global changes in Kaposi’s sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 77(7):4205–20.

    PubMed  CAS  Google Scholar 

  • O’Connor C, M, Kedes DH (2006). Mass spectrometric analyses of purified rhesus monkey rhadinovirus reveal 33 virion-associated proteins. J Virol 80(3):1574–83.

    PubMed  CAS  Google Scholar 

  • Paulose-Murphy M, Ha N-K, Xiang C, Chen Y, Gillim L, Yarchoan R, Meltzer P, Bittner M, Trent J, Zeichner S (2001). Transcription program of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus). J Virol 75(10):4843–4853.

    PubMed  CAS  Google Scholar 

  • Pavlova I, Lin CY, Speck SH (2005). Murine gammaherpesvirus 68 Rta-dependent activation of the gene 57 promoter. Virology 333(1):169–79.

    PubMed  CAS  Google Scholar 

  • Pavlova IV, Virgin HWt., and Speck SH (2003). Disruption of gammaherpesvirus 68 gene 50 demonstrates that Rta is essential for virus replication. J Virol 77(10):5731–9.

    PubMed  CAS  Google Scholar 

  • Polson AG, Wang D, DeRisi J, Ganem D (2002). Modulation of host gene expression by the constitutively active G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus. Cancer Res 62(15):4525–30.

    PubMed  CAS  Google Scholar 

  • Pozharskaya VP, Weakland LL, Offermann MK (2004). Inhibition of infectious human herpesvirus 8 production by gamma interferon and alpha interferon in BCBL-1 cells. J Gen Virol 85 (Pt 10):2779–87.

    PubMed  CAS  Google Scholar 

  • Quinlivan EB, Holley-Guthrie EA, Norris M, Gutsch D, Bachenheimer SL, Kenney SC (1993). Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter BMRF1. Nucleic Acids Res 21(14):1999–2007.

    PubMed  CAS  Google Scholar 

  • Ragoczy T, Heston L, Miller G (1998). The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72(10):7978–84.

    PubMed  CAS  Google Scholar 

  • Ragoczy T, Miller G (1999). Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol 73(12):9858–66.

    PubMed  CAS  Google Scholar 

  • Ragoczy T, Miller G (2001). Autostimulation of the Epstein-Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. J Virol 75(11):5240–51.

    PubMed  CAS  Google Scholar 

  • Renne R, Blackbourn D, Whitby D, Levy J, Ganem D (1998). Limited transmission of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J Virol 72(6):5182–8.

    PubMed  CAS  Google Scholar 

  • Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996). Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2(3):342–6.

    PubMed  CAS  Google Scholar 

  • Rickabaugh TM, Brown HJ, Wu TT, Song MJ, Hwang S, Deng H, Mitsouras K, Sun R (2005). Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 RTA reactivates murine gammaherpesvirus 68 from latency. J Virol 79(5):3217–22.

    PubMed  CAS  Google Scholar 

  • Rochford R, Lutzke ML, Alfinito RS, Clavo A, Cardin RD (2001). Kinetics of murine gammaherpesvirus 68 gene expression following infection of murine cells in culture and in mice. J Virol 75(11):4955–63.

    PubMed  CAS  Google Scholar 

  • Roizman B (1996). Herpesviridae. In “Virology” (BN Fields DM Knipe, and PM Howley Eds.), Vol. 2, pp. 2221–2230. 2 vols. Lippincott-Raven Philadelphia.

    Google Scholar 

  • Russo James J, Bohenzky Roy A, Chien M-C, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman Isidore S, Chang Y, Moore Patrick S (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93(25):14862–14867.

    PubMed  CAS  Google Scholar 

  • Sakakibara S, Ueda K, Chen J, Okuno T, Yamanishi K (2001). Octamer-binding sequence is a key element for the autoregulation of Kaposi’s sarcoma-associated herpesvirus ORF50/Lyta gene expression. J Virol 75(15):6894–900.

    PubMed  CAS  Google Scholar 

  • Sarid R, Flore O, Bohenzky RA, Chang Y, Moore PS (1998). Transcription mapping of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 72(2):1005–12.

    PubMed  CAS  Google Scholar 

  • Saveliev A, Zhu F, Yuan Y (2002). Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi’s sarcoma-associated herpesvirus. Virology 299(2):301–14.

    PubMed  CAS  Google Scholar 

  • Schafer A, Lengenfelder D, Grillhosl C, Wieser C, Fleckenstein B, Ensser A (2003). The latency-associated nuclear antigen homolog of herpesvirus saimiri inhibits lytic virus replication. J Virol 77(10):5911–25.

    PubMed  CAS  Google Scholar 

  • Seaman WT, Quinlivan EB (2003). Lytic switch protein (ORF50) response element in the Kaposi’s sarcoma-associated herpesvirus K8 promoter is located within but does not require a palindromic structure. Virology 310(1):72–84.

    PubMed  CAS  Google Scholar 

  • Shanley JD, Debs RJ (1989). The folate antagonist, methotrexate, is a potent inhibitor of murine and human cytomegalovirus in vitro. Antiviral Res 11(2):99–106.

    PubMed  CAS  Google Scholar 

  • Shaw RN, Arbiser JL, Offermann MK (2000). Valproic acid induces human herpesvirus 8 lytic gene expression in BCBL-1 cells. AIDS 14(7):899–902.

    PubMed  CAS  Google Scholar 

  • Song MJ, Deng H, Sun R (2003). Comparative study of regulation of RTA-responsive genes in Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 77(17):9451–62.

    PubMed  CAS  Google Scholar 

  • Song MJ, Hwang S, Wong W, Round J, Martinez-Guzman D, Turpaz Y, Liang J, Wong B, Johnson RC, Carey M, Sun R (2004). The DNA architectural protein HMGB1 facilitates RTA-mediated viral gene expression in gamma-2 herpesviruses. J Virol 78(23):12940–50.

    PubMed  CAS  Google Scholar 

  • Song MJ, Li X, Brown HJ, Sun R (2002). Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 76(10):5000–13.

    PubMed  CAS  Google Scholar 

  • Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, Miller G (1998). A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 95(18):10866–71.

    PubMed  CAS  Google Scholar 

  • Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999). Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 73(3):2232–42.

    PubMed  CAS  Google Scholar 

  • Swenson JJ, Holley-Guthrie E, Kenney SC (2001). Epstein-Barr virus immediate-early protein BRLF1 interacts with CBP, promoting enhanced BRLF1 transactivation. J Virol 75(13):6228–34.

    PubMed  CAS  Google Scholar 

  • Tang S, Zheng ZM (2002). Kaposi’s sarcoma-associated herpesvirus K8 exon 3 contains three 5′-splice sites and harbors a K8.1 transcription start site. J Biol Chem 277(17):14547–56.

    PubMed  CAS  Google Scholar 

  • Thurau M, Whitehouse A, Wittmann S, Meredith D, Fickenscher H (2000). Distinct transcriptional and functional properties of the R transactivator gene Orf50 of the transforming herpesvirus saimiri strain C488. Virology 268(1):167–77.

    PubMed  CAS  Google Scholar 

  • Triezenberg SJ, LaMarco KL, McKnight SL (1988). Evidence of DNA: protein interactions that mediate HSV-1 immediate early gene activation by VP16. Genes Dev 2(6):730–42.

    PubMed  CAS  Google Scholar 

  • Trus BL, Heymann JB, Nealon K, Cheng N, Newcomb WW, Brown JC, Kedes DH, Steven AC (2001). Capsid structure of Kaposi’s sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. J Virol 75(6):2879–90.

    PubMed  CAS  Google Scholar 

  • Ueda K, Ishikawa K, Nishimura K, Sakakibara S, Do E, Yamanishi K (2002). Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) replication and transcription factor activates the K9 (vIRF) gen through two distinct cis elements by a non-DNA-binding mechanism. J Virol 76(23):12044–54.

    PubMed  CAS  Google Scholar 

  • Walters MS, Hall KT, Whitehouse A (2004). The herpesvirus saimiri open reading frame (ORF) 50 (Rta) protein contains an AT hook required for binding to the ORF 50 response element in delayed-early promoters. J Virol 78(9):4936–42.

    PubMed  CAS  Google Scholar 

  • Walters MS, Hall KT, Whitehouse A (2005). The herpesvirus saimiri Rta gene autostimulates via binding to a non-consensus response element. J Gen Virol 86 (Pt 3):581–7.

    PubMed  CAS  Google Scholar 

  • Wang J, Zhang J, Zhang L, Harrington W, Jr., West JT, Wood C (2005). Modulation of human herpesvirus 8/Kaposi’s sarcoma-associated herpesvirus replication and transcription activator transactivation by interferon regulatory factor 7. J Virol 79(4):2420–31.

    PubMed  CAS  Google Scholar 

  • Wang S, Liu S, Wu MH, Geng Y, Wood C (2001). Identification of a cellular protein that interacts and synergizes with the RTA (ORF50) protein of Kaposi’s sarcoma-associated herpesvirus in transcriptional activation. J Virol 75(24):11961–73.

    PubMed  CAS  Google Scholar 

  • Wang SE, Wu FY, Chen H, Shamay M, Zheng Q, Hayward GS (2004a). Early activation of the Kaposi’s sarcoma-associated herpesvirus RTA, RAP, MTA promoters by the tetradecanoyl phorbol acetate-induced AP1 pathway. J Virol 78(8):4248–67.

    PubMed  CAS  Google Scholar 

  • Wang SE, Wu FY, Fujimuro M, Zong J, Hayward SD, Hayward GS (2003a). Role of CCAAT/enhancer-binding protein α (C/EBPα) in activation of the Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP J Virol 77(1):600–23.

    PubMed  CAS  Google Scholar 

  • Wang SE, Wu FY, Yu Y, Hayward GS (2003b). CCAAT/enhancer-binding protein-α is induced during the early stages of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, PAN promoters. J Virol 77(17):9590–612.

    PubMed  CAS  Google Scholar 

  • Wang Y, Chong OT, Yuan Y (2004). Differential regulation of K8 gene expression in immediate-early and delayed-early stages of Kaposi’s sarcoma-associated herpesvirus. Virology 325(1):149–63.

    PubMed  CAS  Google Scholar 

  • Wang Y, Li H, Chan MY, Zhu FX, Lukac DM, Yuan Y (2004b). Kaposi’s sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: cis-acting requirements for replication and ori-Lyt-associated RNA transcription. J Virol 78(16):8615–29.

    PubMed  CAS  Google Scholar 

  • Whitehouse A, Carr IM, Griffiths JC, Meredith DM (1997). The herpesvirus saimiri ORF50 gene, encoding a transcriptional activator homologous to the Epstein-Barr virus R protein, is transcribed from two distinct promoters of different temporal phases. J Virol 71(3):2550–4.

    PubMed  CAS  Google Scholar 

  • Wu TT, Tong L, Rickabaugh T, Speck S, Sun R (2001). Function of Rta is essential for lytic replication of murine gammaherpesvirus 68. J Virol 75(19):9262–73.

    PubMed  CAS  Google Scholar 

  • Wu TT, Usherwood EJ, Stewart JP, Nash AA, Sun R (2000). Rta of murine gammaher-pesvirus 68 reactivates the complete lytic cycle fromlatency. JVirol 74(8):3659–67.

    CAS  Google Scholar 

  • Xu Y, AuCoin DP, Huete AR, Cei SA, Hanson LJ, Pari GS (2005). A Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication. J Virol 79(6):3479–87.

    PubMed  CAS  Google Scholar 

  • Ye J, Shedd D, Miller G (2005). An Sp1 response element in the Kaposi’s sarcoma-associated herpesvirus open reading frame 50 promoter mediates lytic cycle induction by butyrate. J Virol 79(3):1397–408.

    PubMed  CAS  Google Scholar 

  • Yu Y, Wang SE, Hayward GS (2005). The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22(1):59–70.

    PubMed  CAS  Google Scholar 

  • Zalani S, Holley-Guthrie E, Kenney S (1996). Epstein-Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc Natl Acad Sci USA 93(17):9194–9.

    PubMed  CAS  Google Scholar 

  • Zhang L, Chiu J, Lin JC (1998). Activation of human herpesvirus 8 (HHV-8) thymidine kinase (TK) TATAA-less promoter by HHV-8 ORF50 gene product is SP1 dependent. DNA Cell Biol 17(9):735–42.

    PubMed  CAS  Google Scholar 

  • Zhong W, Wang H, Herndier B, Ganem D (1996). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci USA 93(13):6641–6.

    PubMed  CAS  Google Scholar 

  • Zhou FC, Zhang YJ, Deng JH, Wang XP, Pan HY, Hettler E, Gao SJ (2002). Efficient infection by a recombinant Kaposi’s sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J Virol 76(12):6185–96.

    PubMed  CAS  Google Scholar 

  • Zhu FX, Chong JM, Wu L, Yuan Y (2005). Virion proteins of Kaposi’s sarcoma-associated herpesvirus. J Virol 79(2):800–11.

    PubMed  CAS  Google Scholar 

  • Zhu FX, Cusano T, Yuan Y (1999). Identification of the immediate-early transcripts of Kaposi’s sarcoma-associated herpesvirus. J Virol 73(7):5556–67.

    PubMed  CAS  Google Scholar 

  • Zhu FX, Yuan Y (2003). The ORF45 protein of Kaposi’s sarcoma-associated herpesvirus is associated with purified virions. J Virol 77(7):4221–30.

    PubMed  CAS  Google Scholar 

  • Zhu J, Trang P, Kim K, Zhou T, Deng H, Liu F (2004). Effective inhibition of Rta expression and lytic replication of Kaposi’s sarcoma-associated herpesvirus by human RNase P. Proc Natl Acad Sci USA 101(24):9073–8.

    PubMed  CAS  Google Scholar 

  • Zoeteweij JP, Eyes ST, Orenstein JM, Kawamura T, Wu L, Chandran B, Forghani B, Blauvelt A (1999). Identification and rapid quantification of early-and late-lytic human herpesvirus 8 infection in single cells by flow cytometric analysis: characterization of antiherpesvirus agents. J Virol 73(7):5894–902.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Staudt, M.R., Dittmer, D.P. (2007). The Rta/Orf50 Transactivator Proteins of the Gamma-Herpesviridae. In: Boshoff, C., Weiss, R.A. (eds) Kaposi Sarcoma Herpesvirus: New Perspectives. Current Topics in Microbiology and Immunology, vol 312. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34344-8_3

Download citation

Publish with us

Policies and ethics