Rhesus Monkey Rhadinovirus: A Model for the Study of KSHV

  • C. M. O’Connor
  • D. H. Kedes
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 312)


Rhesus monkey rhadinovirus (RRV) is one of the closest phylogenetic relatives to the human pathogen Kaposi sarcoma-associated herpesvirus (KSHV)—a gamma-2 herpesvirus and the etiologic agent of three malignancies associated with immunosuppression. In contrast to KSHV, RRV displays robust lytic-phase growth in culture, replicating to high titer, and therefore holds promise as an effective model for studying primate gammaherpesvirus lytic gene transcription as well as virion structure, assembly, and proteomics. More recently, investigators have devised complementary latent systems of RRV infection, thereby also enabling the characterization of the more restricted latent transcriptional program. Another benefit of working with RRV as a primate gammaherpesvirus model is that its efficient lytic growth makes genetic manipulation easier than that in its human counterpart. Exploiting this quality, laboratories have already begun to generate mutant RRV, setting the stage for future work investigating the function of individual viral genes. Finally, rhesus macaques support experimental infection with RRV, providing a natural in vivo model of infection, while similar nonhuman systems have remained resistant to prolonged KSHV infection. Recently, dual infection with RRV and a strain of simian immunodeficiency virus (SIV) has led to a lymphoproliferative disorder (LPD) reminiscent of multicentric Castleman disease (MCD)—a clinical manifestation of KSHV infection in a subset of immunosuppressed patients. RRV, in short, shows a high degree of homology with KSHV yet is more amenable to experimental manipulation both in vitro and in vivo. Taken together, these qualities ensure its current position as one of the most relevant viral models of KSHV biology and infection.


Simian Immunodeficiency Virus Lytic Replication KSHV Infection Multicentric Castleman Disease KSHV Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander L, Denekamp L, Knapp A, Auerbach MR, Damania B, Desrosiers RC (2000) The primary sequence of rhesus monkey rhadinovirus isolate 26–95: sequence similarities to Kaposi’s sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J Virol 74:3388–98PubMedCrossRefGoogle Scholar
  2. AuCoin DP, Colletti KS, Xu Y, Cei SA, Pari GS (2002) Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) contains two functional lytic origins of DNA replication. J Virol 76:7890–6PubMedCrossRefGoogle Scholar
  3. Bechtel JT, Liang Y, Hvidding J, Ganem D (2003) Host range of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J Virol 77:6474–81PubMedCrossRefGoogle Scholar
  4. Bechtel JT, Winant RC, Ganem D (2005) Host and viral proteins in the virion of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:4952–64PubMedCrossRefGoogle Scholar
  5. Bergquam EP, Avery N, Shiigi SM, Axthelm MK, Wong SW (1999) Rhesus rhadinovirus establishes a latent infection in B lymphocytes in vivo. J Virol 73:7874–6PubMedGoogle Scholar
  6. Boshoff C, Chang Y (2001) Kaposi’s sarcoma-associated herpesvirus: a new DNA tumor virus. Annu Rev Med 52:453–70PubMedCrossRefGoogle Scholar
  7. Boshoff C, Weiss RA (1998) Kaposi’s sarcoma-associated herpesvirus. Adv Cancer Res 75:57–86PubMedCrossRefGoogle Scholar
  8. Chan SR, Bloomer C, Chandran B (1998) Identification and characterization of human herpesvirus-8 lytic cycle-associated ORF 59 protein and the encoding cDNA by monoclonal antibody. Virology 240:118–26PubMedCrossRefGoogle Scholar
  9. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–9PubMedCrossRefGoogle Scholar
  10. Cotter MA 2nd, Robertson ES (1999) The latency-associated nuclear antigen tethers the Kaposi’s sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264:254–64PubMedCrossRefGoogle Scholar
  11. Cotter MA 2nd, Subramanian C, Robertson ES (2001) The Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen binds to specific sequences at the left end of the viral genome through its carboxy-terminus. Virology 291:241–59PubMedCrossRefGoogle Scholar
  12. Damania B, Lee H, Jung JU, 1999a. Primate herpesviral oncogenes. Mol Cells 9:345–9PubMedGoogle Scholar
  13. Damania B, Li M, Choi JK, Alexander L, Jung JU, Desrosiers RC, 1999b. Identification of the R1 oncogene and its protein product from the rhadinovirus of rhesus monkeys. J Virol 73:5123–31PubMedGoogle Scholar
  14. Desrosiers RC, Sasseville VG, Czajak SC, Zhang X, Mansfield KG, Kaur A, Johnson RP, Lackner AA, Jung JU (1997) A herpesvirus of rhesus monkeys related to the human Kaposi’s sarcoma-associated herpesvirus. J Virol 71:9764–9PubMedGoogle Scholar
  15. DeWire SM, Damania B (2005) The latency-associated nuclear antigen of rhesus monkey rhadinovirus inhibits viral replication through repression of Orf50/Rta transcriptional activation. J Virol 79:3127–38PubMedCrossRefGoogle Scholar
  16. DeWire SM, McVoy MA, Damania B (2002) Kinetics of expression of rhesus monkey rhadinovirus (RRV) and identification and characterization of a polycistronic transcript encoding the RRV Orf50/Rta, RRV R8, and R8.1 genes. J Virol 76:9819–31PubMedCrossRefGoogle Scholar
  17. DeWire SM, Money ES, Krall SP, Damania B (2003) Rhesus monkey rhadinovirus (RRV): Construction of an RRV-GFP recombinant virus and the development of assays to assess viral replication. Virology 312:122–134PubMedCrossRefGoogle Scholar
  18. Dezube BJ, Zambela M, Sage DR, Wang JF, Fingeroth JD (2002) Characterization of Kaposi sarcoma-associated herpesvirus/human herpesvirus-8 infection of human vascular endothelial cells: early events. Blood 100:888–96PubMedCrossRefGoogle Scholar
  19. Dittmer D, Stoddart C, Renne R, Linquist-Stepps V, Moreno ME, Bare C, McCune JM, Ganem D (1999) Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J Exp Med 190:1857–68PubMedCrossRefGoogle Scholar
  20. Dittmer DP, Gonzalez CM, Vahrson W, DeWire SM, Hines-Boykin R, Damania B (2005) Whole-genome transcription profiling of rhesus monkey rhadinovirus. J Virol 79:8637–50PubMedCrossRefGoogle Scholar
  21. Garber AC, Shu MA, Hu J, Renne R (2001) DNA binding and modulation of gene expression by the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus. J Virol 75:7882–92PubMedCrossRefGoogle Scholar
  22. Giddens WE Jr, Bielitzki JT, Morton WR, Ochs HD, Myers MS, Blakely GA, Boyce JT (1979) Idiopathic retroperitoneal fibromatosis: an enzootic disease in the pigtail monkey, Macaca nemestrina. Lab Invest 1979:294Google Scholar
  23. Grundhoff A, Ganem D (2003) The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus permits replication of terminal repeat-containing plasmids. J Virol 77:2779–83PubMedCrossRefGoogle Scholar
  24. Homa FL, Brown JC (1997) Capsid assembly and DNA packaging in herpes simplex virus. Rev Med Virol 7:107–122PubMedCrossRefGoogle Scholar
  25. Hu J, Garber AC, Renne R (2002) The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J Virol 76:11677–87PubMedCrossRefGoogle Scholar
  26. Jeong J, Papin J, Dittmer D (2001) Differential regulation of the overlapping Kaposi’s sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters. J Virol 75:1798–807PubMedCrossRefGoogle Scholar
  27. Kirchoff VS, Wong SJS, Pari GS (2002) Generation of a life-expanded rhesus monkey fibroblast cell line for the growth of rhesus rhadinovirus (RRV). Arch Virol 147:321–33PubMedCrossRefGoogle Scholar
  28. Lagunoff M, Bechtel J, Venetsanakos E, Roy AM, Abbey N, Herndier B, McMahon M, Ganem D (2002) De novo infection and serial transmission of Kaposi’s sarcoma-associated herpesvirus in cultured endothelial cells. J Virol 76:2440–8PubMedCrossRefGoogle Scholar
  29. Lee H, Veazey R, Williams K, Li M, Guo J, Neipel F, Fleckenstein B, Lackner A, Desrosiers RC, Jung JU (1998) Deregulation of cell growth by the K1 gene of Kaposi’s sarcoma-associated herpesvirus. Nat Med 4:435–40PubMedCrossRefGoogle Scholar
  30. Mansfield KG, Westmoreland SV, DeBakker CD, Czajak S, Lackner AA, Desrosiers RC (1999) Experimental infection of rhesus and pig-tailed macaques with macaque rhadinoviruses. J Virol 73:10320–8PubMedGoogle Scholar
  31. Miller G, Heston L, Grogan E, Gradoville L, Rigsby M, Sun R, Shedd D, Kushnaryov VM, Grossberg S, Chang Y (1997) Selective switch between latency and lytic replication of Kaposi’s sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol 71:314–24PubMedGoogle Scholar
  32. Moore PS, Chang Y (2001) Molecular virology of Kaposi’s sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci 356:499–516PubMedCrossRefGoogle Scholar
  33. Nealon K, Newcomb WW, Pray TR, Craik CS, Brown JC, Kedes DH (2001) Lytic replication of Kaposi’s sarcoma-associated herpesvirus results in the formation of multiple capsid species: isolation and molecular characterization of A, B, and C capsids from a gammaherpesvirus. J Virol 75:2866–78PubMedCrossRefGoogle Scholar
  34. O’Connor CM (2005) Structural and Proteomic Analyses of the Gammaherpesviruses KSHV and RRV. University of Virginia, Charlottesville, 302 pp.Google Scholar
  35. O’Connor CM, Damania B, Kedes DH (2003) De novo infection with rhesus monkey rhadinovirus leads to the accumulation of multiple intranuclear capsid species during lytic replication but favors the release of genome-containing virions. J Virol 77:13439–47PubMedCrossRefGoogle Scholar
  36. O’Connor CM, Kedes DH (2006) Mass spectrometric analysis of rhesus monkey rhadinovirus. J Virol 80:1574–1583PubMedCrossRefGoogle Scholar
  37. Pari GS, AuCoin D, Colletti K, Cei SA, Kirchoff V, Wong SW (2001) Identification of the rhesus macaque rhadinovirus lytic origin of DNA replication. J Virol 75:11401–7PubMedCrossRefGoogle Scholar
  38. Parsons CH, Adang LA, Overderest J, O’Connor CM, Taylor JR, Camerini D, Kedes DH (2006) KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice. J Clin Invest 116:1963–1973PubMedCrossRefGoogle Scholar
  39. Renne R, Blackbourn D, Whitby D, Levy J, Ganem D (1998) Limited transmission of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J Virol 72:5182–8PubMedGoogle Scholar
  40. Renne R, Dittmer D, Kedes D, Schmidt K, Desrosiers RC, Luciw PA, Ganem D (2004) Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) to SIV-positive and SIV-negative rhesus macaques. JMed Primatol 33:1–9Google Scholar
  41. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996) Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2:342–6PubMedCrossRefGoogle Scholar
  42. Rose TM, Ryan JT, Schultz ER, Raden BW, Tsai CC (2003) Analysis of 4.3 kilobases of divergent locus B of macaque retroperitoneal fibromatosis-associated herpesvirus reveals a close similarity in gene sequence and genome organization to Kaposi’s sarcoma-associated herpesvirus. J Virol 77:5084–97PubMedCrossRefGoogle Scholar
  43. Rose TM, Strand KB, Schultz ER, Schaefer G, Rankin GW Jr, Thouless ME, Tsai CC, Bosch ML (1997) Identification of two homologs of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in retroperitoneal fibromatosis of different macaque species. J Virol 71:4138–44PubMedGoogle Scholar
  44. Sakurada S, Katano H, Sata T, Ohkuni H, Watanabe T, Mori S (2001) Effective human herpesvirus 8 infection of human umbilical vein endothelial cells by cell-mediated transmission. J Virol 75:7717–22PubMedCrossRefGoogle Scholar
  45. Schultz ER, Rankin GW Jr, Blanc MP, Raden BW, Tsai CC, Rose TM (2000) Characterization of two divergent lineages of macaque rhadinoviruses related to Kaposi’s sarcoma-associated herpesvirus. J Virol 74:4919–28PubMedCrossRefGoogle Scholar
  46. Schwam DR, Luciano RL, Mahajan SS, Wong L, Wilson AC (2000) Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. J Virol 74:8532–40PubMedCrossRefGoogle Scholar
  47. Searles RP, Bergquam EP, Axthelm MK, Wong SW (1999) Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 73:3040–53PubMedGoogle Scholar
  48. Strand K, Harper E, Thormahlen S, Thouless ME, Tsai C, Rose T, Bosch ML (2000) Two distinct lineages of macaque gamma herpesviruses related to the Kaposi’s sarcoma associated herpesvirus. J Clin Virol 16:253–69PubMedCrossRefGoogle Scholar
  49. Wang L, Wakisaka N, Tomlinson CC, DeWire SM, Krall S, Pagano JS, Damania B (2004) The Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) K1 protein induces expression of angiogenic and invasion factors. Cancer Res 64:2774–81PubMedCrossRefGoogle Scholar
  50. Wong SW, Bergquam EP, Swanson RM, Lee FW, Shiigi SM, Avery NA, Fanton JW, Axthelm MK (1999) Induction of B cell hyperplasia in simian immunodeficiency virus-infected rhesus macaques with the simian homologue of Kaposi’s sarcoma-associated herpesvirus. J Exp Med 190:827–40PubMedCrossRefGoogle Scholar
  51. Wu L, Lo P, Yu X, Stoops JK, Forghani B, Zhou ZH (2000) Three-dimensional structure of the human herpesvirus 8 capsid. J Virol 74:9646–54PubMedCrossRefGoogle Scholar
  52. Yu XK, O’Connor CM, Atanasov I, Damania B, Kedes DH, Zhou ZH (2003) Three-dimensional structures of the A, B, and C capsids of rhesus monkey rhadinovirus: insights into gammaherpesvirus capsid assembly, maturation, and DNA packaging. J Virol 77:13182–93PubMedCrossRefGoogle Scholar
  53. Zhong W, Wang H, Herndier B, Ganem D (1996) Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci U S A 93:6641–6PubMedCrossRefGoogle Scholar
  54. Zhu FX, Chong JM, Wu L, Yuan Y (2005) Virion proteins of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:800–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • C. M. O’Connor
    • 1
  • D. H. Kedes
    • 1
  1. 1.Departments of Microbiology and Internal Medicine, Division of Infectious Diseases and Myles H. Thaler Center for AIDS and Human Retrovirus ResearchUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations