Advertisement

Interactions Between HIV-1 Tat and KSHV

  • Y. Aoki
  • G. Tosato
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 312)

Abstract

Since the advent of the HIV-1 pandemic, a close association between HIV-1 infection and the development of selected types of cancers has been brought to light. The discovery of Kaposi sarcoma-associated herpesvirus (KSHV) has led to significant advances in uncovering the virological and molecular mechanisms involved in the pathogenesis of AIDS-related malignancies. Extensive evidence indicates that HIV-1 trans-activating protein Tat plays an oncogenic role in the development of KSHV-associated neoplasms. Comprehensive knowledge of the functions of Tat-1 together with the KSHV genes will contribute to a better understanding of the pathogenesis of virus-associated cancers and the interaction of viruses with their hosts.

Keywords

Primary Effusion Lymphoma Human Brain Microvascular Endothelial Cell KSHV Infection Multicentric Castleman Disease Primary Effusion Lymphoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akula SM, Pamod NP, Wang FZ, Chandran B (2002) Integrin a3b1 (CD 49c/29) is a cellular receptor for Kaposi’ sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108:407–419PubMedGoogle Scholar
  2. Albini A, Benelli R, Presta M, Rusnati M, Ziche M, Rubartelli A, Paglialunga G, Bussolino F, Noonan D (1996a) HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene 12:289–297PubMedGoogle Scholar
  3. Albini A, Fontanini G, Masiello L, Tacchetti C, Bigini D, Luzzi P, Noonan DM, Stetler-Stevenson WG (1994) Angiogenic potential in vivo by Kaposi’ sarcoma cell-free supernatants and HIV-1 tat product: inhibition of KS-like lesions by tissue inhibitor of metalloproteinase-2. AIDS 8:1237–1244PubMedGoogle Scholar
  4. Albini A, Soldi R, Giunciuglio D, Giraudo E, Benelli R, Primo L, Noonan D, Salio M, Camussi G, Rockl W, Bussolino F (1996b) The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat Med 2:1371–1375PubMedGoogle Scholar
  5. Ambrosino C, Ruocco MR, Chen X, Mallardo M, Baudi F, Trematerra S, Quinto I, Venuta S, Scala G (1997) HIV-1Tat induces the expression of the interleukin-6 (IL6) gene by binding to the IL6 leader RNA and by interacting with CAAT enhancer-binding protein beta (NF-IL6) transcription factors. J Biol Chem 272:14883–14892PubMedGoogle Scholar
  6. Antman K, Chang Y (2000) Kaposi’ sarcoma. N Engl J Med 342: 1027–1038PubMedGoogle Scholar
  7. Aoki Y, Feldman GM, Tosato G (2003a) Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 101:1535–1542PubMedGoogle Scholar
  8. Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS, Tosato G (1999a) Angiogenesis and hematopoiesis induced by Kaposi’ sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93:4034–4043PubMedGoogle Scholar
  9. Aoki Y, Jones KD, Tosato G (2000a) Kaposi’ sarcoma-associated herpesvirus-encoded interleukin-6. J Hematother Stem Cell Res 9:137–145PubMedGoogle Scholar
  10. Aoki Y, Tosato G (1999b) Role of vascular endothelial growth factor/vascular permeability factor in the pathogenesis of Kaposi’ sarcoma-associated herpesvirus-infected primary effusion lymphomas. Blood 94:4247–4254PubMedGoogle Scholar
  11. Aoki Y, Tosato G (2001a) Vascular endothelial growth factor/vascular permeability factor in the pathogenesis of primary effusion lymphomas. Leuk Lymphoma 41:229–237PubMedGoogle Scholar
  12. Aoki Y, Tosato G (2004a) HIV-1 Tat enhances Kaposi sarcoma-associated herpesvirus (KSHV) infectivity. Blood 104:810–814PubMedGoogle Scholar
  13. Aoki Y, Tosato G, Fonville TW, Pittaluga S (2001b) Serum viral interleukin-6 in AIDS-related multicentric Castleman’ disease. Blood 97:2526–2527PubMedGoogle Scholar
  14. Aoki Y, Tosato G, Nambu Y, Iwamoto A, Yarchoan R (2000b) Detection of vascular endothelial growth factor in AIDS-related primary effusion lymphomas. Blood 95:1109–1110PubMedGoogle Scholar
  15. Aoki Y, Yarchoan R, Braun J, Iwamoto A, Tosato G (2000c) Viral and cellular cytokines in AIDS-related malignant lymphomatous effusions. Blood 96:1599–1601PubMedGoogle Scholar
  16. Aoki Y, Yarchoan R, Wyvill K, Okamoto S, Little RF, Tosato G (2001c) Detection of viral interleukin-6 in Kaposi sarcoma-associated herpesvirus-linked disorders. Blood 97:2173–2176PubMedGoogle Scholar
  17. Ariyoshi K, Schim van der Loeff M, Cook P, Whitby D, Corrah T, Jaffar S, Cham F, Sabally S, O’Donovan D, Weiss RA, Schulz TF, Whittle H (1998) Kaposi’ sarcoma in the Gambia, West Africa is less frequent in human immunodeficiency virus type 2 than in human immunodeficiency virus type 1 infection despite a high prevalence of human herpesvirus 8. J Hum Virol 1:193–199PubMedGoogle Scholar
  18. Badou A, Bennasser Y, Moreau M, Leclerc C, Benkirane M, Bahraoui E (2000) Tat protein of human immunodeficiency virus type 1 induces interleukin-10 inhuman peripheral blood monocytes: implication of protein kinase C-dependent pathway. J Virol 74:10551–10562PubMedGoogle Scholar
  19. Barillari G, Gendelman R, Gallo RC, Ensoli B (1993) The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci USA 90:7941–7945PubMedGoogle Scholar
  20. Barozzi P, Luppi M, Facchetti F, Mecucci C, Alu M, Sarid R, Rasini V, Ravazzini L, Rossi E, Festa S, Crescenzi B, Wolf DG, Schulz TF, Torelli G (2003) Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat Med 9:554–561PubMedGoogle Scholar
  21. Beck JT, Hsu SM, Wijdenes J, Bataille R, Klein B, Vesole D, Hayden K, Jagannath S, Barlogie B (1994) Brief report: alleviation of systemic manifestations of Castleman’ disease by monoclonal anti-interleukin-6 antibody. N Engl J Med 330:602–605PubMedGoogle Scholar
  22. Bennasser Y, Bahraoui E (2002) HIV-1 Tat protein induces interleukin-10 in human peripheral blood monocytes: involvement of protein kinase C-βII and-δ. FASEB J 16:546–554PubMedGoogle Scholar
  23. Berkhout B, Gatignol A, Silver J, Jeang KT (1990) Efficient trans-activation by the HIV-2 Tat protein requires a duplicated TAR RNA structure. Nucleic Acids Res 18:1839–1846PubMedGoogle Scholar
  24. Bock PJ, Markovitz DM (2001) Infection with HIV-2. AIDS 15 Suppl 5: S35–45PubMedGoogle Scholar
  25. Boshoff C, Weiss R (2002) AIDS-related malignancies. Nat Rev Cancer 2:373–382PubMedGoogle Scholar
  26. Calnan BJ, Biancalana S, Hudson D, Frankel AD (1991) Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev 5:201–210PubMedGoogle Scholar
  27. Cannon M, Philpott NJ, Cesarman E (2003) The Kaposi’ sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol 77:57–67PubMedGoogle Scholar
  28. Cavert W, Notermans DW, Staskus K, Wietgrefe SW, Zupancic M, Gebhard K, Henry K, Zhang ZQ, Mills R, McDade H, Schuwirth CM, Goudsmit J, Danner SA, Haase AT (1997) Kinetics of response in lymphoid tissues to antiretroviral therapy of HIV-1 infection. Science 276:960–964PubMedGoogle Scholar
  29. Cesarman E, Mesri EA, Gershengorn MC (2000) Viral G protein-coupled receptor and Kaposi’ sarcoma: a model of paracrine neoplasia? J Exp Med 191:417–422PubMedGoogle Scholar
  30. Chang YN, Jeang KT (1992) The basic RNA-binding domain of HIV-2 Tat contributes to preferential trans-activation of a TAR2-containing LTR. Nucleic Acids Res 20:5465–5472PubMedGoogle Scholar
  31. Chen LL, Frankel AD, Harder JL, Fawell S, Barsoum J, Pepinsky B (1995) Increased cellular uptake of the human immunodeficiency virus-1 Tat protein after modification with biotin. Anal Biochem 227:168–175PubMedGoogle Scholar
  32. Chen P, Mayne M, Power C, Nath A (1997) The Tat protein of HIV-1 induces tumor necrosis factor-α production. Implications for HIV-1-associated neurological diseases. J Biol Chem 272:22385–22388PubMedGoogle Scholar
  33. Choi J, Means RE, Damania B, Jung JU (2001) Molecular piracy of Kaposi’ sarcoma associated herpesvirus. Cytokine Growth Factor Rev 12:245–257PubMedGoogle Scholar
  34. Cilla G, Rodes B, Perez-Trallero E, Arrizabalaga J, Soriano V (2001) Molecular evidence of homosexual transmission of HIV type 2 in Spain. AIDS Res Hum Retroviruses 17:417–422PubMedGoogle Scholar
  35. Clarke B, Chetty R (2002) Postmodern cancer: the role of human immunodeficiency virus in uterine cervical cancer. Mol Pathol 55:19–24PubMedGoogle Scholar
  36. Dandekar DH, Ganesh KN, Mitra D (2004) HIV-1 Tat directly binds to NFκB enhancer sequence: role in viral and cellular gene expression. Nucleic Acids Res 32:1270–1278PubMedGoogle Scholar
  37. Delling U, Roy S, Sumner-Smith M, Barnett R, Reid L, Rosen CA, Sonenberg N (1991) The number of positively charged amino acids in the basic domain of Tat is critical for trans-activation and complex formation with TAR RNA. Proc Natl Acad Sci USA 88:6234–6238PubMedGoogle Scholar
  38. Demarchi F, d’Adda di Fagagna F, Falaschi A, Giacca M (1996) Activation of transcription factor NF-кB by the Tat protein of human immunodeficiency virus type 1. J Virol 70:4427–4437PubMedGoogle Scholar
  39. Dimitrov DS (2004) Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol 2:109–122PubMedGoogle Scholar
  40. Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A (1999) The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 190:1025–1032PubMedGoogle Scholar
  41. Dupin N, Diss TL, Kellam P, Tulliez M, Du MQ, Sicard D, Weiss RA, Isaacson PG, Boshoff C (2000) HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood 95:1406–1412PubMedGoogle Scholar
  42. Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M, Franck N, van Marck E, Salmon D, Gorin I, Escande JP, Weiss RA, Alitalo K, Boshoff C (1999) Distribution of human herpesvirus-8 latently infected cells in Kaposi’ sarcoma, multicentric Castleman’ disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 96:4546–4551PubMedGoogle Scholar
  43. Ehret A, Li-Weber M, Frank R, Krammer PH (2001) The effect of HIV-1 regulatory proteins on cellular genes: derepression of the IL-2 promoter by Tat. Eur J Immunol 31:1790–1799PubMedGoogle Scholar
  44. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’ sarcoma lesions of AIDS patients. Nature 345:84–86PubMedGoogle Scholar
  45. Flore O, Rafii S, Ely S, O’Leary JJ, Hyjek EM, Cesarman E (1998) Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature 394:588–592PubMedGoogle Scholar
  46. Frankel AD, Chen L, Cotter RJ, Pabo CO (1988) Dimerization of the tat protein from human immunodeficiency virus: a cysteine-rich peptide mimics the normal metal-linked dimer interface. Proc Natl Acad Sci USA 85:6297–6300PubMedGoogle Scholar
  47. Frankel AD, Young JA (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67:1–25PubMedGoogle Scholar
  48. Garcia JA, Harrich D, Pearson L, Mitsuyasu R, Gaynor RB (1988) Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat. EMBO J 7:3143–3147PubMedGoogle Scholar
  49. Gibellini D, Re MC, Vitone F, Rizzo N, Maldini C, La Placa M, Zauli G (2003) Selective up-regulation of functional CXCR4 expression in erythroid cells by HIV-1 Tat protein. Clin Exp Immunol 131:428–435PubMedGoogle Scholar
  50. Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C (2005) Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 105:2510–2518PubMedGoogle Scholar
  51. Grundhoff A, Ganem D (2004) Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 113:124–136PubMedGoogle Scholar
  52. Guasparri I, Keller SA, Cesarman E (2004) KSHV vFLIP Is essential for the survival of infected lymphoma cells. J Exp Med 199:993–1003PubMedGoogle Scholar
  53. Guo HG, Pati S, Sadowska M, Charurat M, Reitz M (2004) Tumorigenesis by human herpesvirus 8 vGPCR is accelerated by human immunodeficiency virus type 1 Tat. J Virol 78:9336–9342PubMedGoogle Scholar
  54. Guo HG, Sadowska M, Reid W, Tschachler E, Hayward G, Reitz M (2003) Kaposi’s sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J Virol 77:2631–2639PubMedGoogle Scholar
  55. Hauber J, Malim MH, Cullen BR (1989) Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J Virol 63:1181–1187PubMedGoogle Scholar
  56. Hockett RD, Kilby JM, Derdeyn CA, Saag MS, Sillers M, Squires K, Chiz S, Nowak MA, Shaw GM, Bucy RP (1999) Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J Exp Med 189:1545–1554PubMedGoogle Scholar
  57. Holkova B, Takeshita K, Cheng DM, Volm M, Wasserheit C, Demopoulos R, Chanan-Khan A (2001) Effect of highly active antiretroviral therapy on survival in patients with AIDS-associated pulmonary Kaposi’s sarcoma treated with chemotherapy. J Clin Oncol 19:3848–3851PubMedGoogle Scholar
  58. Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M (2004) Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 36:683–685PubMedGoogle Scholar
  59. Huang SK, Martin FJ, Jay G, Vogel J, Papahadjopoulos D, Friend DS (1993) Extravasation and transcytosis of liposomes in Kaposi’s sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene. Am J Pathol 143:10–14PubMedGoogle Scholar
  60. Hyun TS, Subramanian C, Cotter MA, 2nd, Thomas RA, Robertson ES (2001) Latency-associated nuclear antigen encoded by Kaposi’s sarcoma-associated herpesvirus interacts with Tat and activates the long terminal repeat of human immunodeficiency virus type 1 in human cells. J Virol 75:8761–8771PubMedGoogle Scholar
  61. Inoue N, Winter J, Lal RB, Offermann MK, Koyano S (2003) Characterization of entry mechanisms of human herpesvirus 8 by using an Rta-dependent reporter cell line. J Virol 77:8147–8152PubMedGoogle Scholar
  62. Jones KD, Aoki Y, Chang Y, Moore PS, Yarchoan R, Tosato G (1999) Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi’s sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood 94:2871–2879PubMedGoogle Scholar
  63. Kanki PJ, Travers KU, S MB, Hsieh CC, Marlink RG, Gueye NA, Siby T, Thior I, Hernandez-Avila M, Sankale JL, et al. (1994) Slower heterosexual spread of HIV-2 than HIV-1. Lancet 343:943–946PubMedGoogle Scholar
  64. Karp JE, Pluda JM, Yarchoan R (1996) AIDS-related Kaposi’s sarcoma. A template for the translation of molecular pathogenesis into targeted therapeutic approaches. Hematol Oncol Clin North Am 10:1031–1049PubMedGoogle Scholar
  65. Katano H, Sato Y, Kurata T, Mori S, Sata T (1999) High expression of HHV-8-encoded ORF73 protein in spindle-shaped cells of Kaposi’s sarcoma. Am J Pathol 155:47–52PubMedGoogle Scholar
  66. Katano H, Sato Y, Kurata T, Mori S, Sata T (2000) Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi’s sarcoma, and multicentric Castleman’s disease. Virology 269:335–344PubMedGoogle Scholar
  67. Keller SA, Schattner EJ, Cesarman E (2000) Inhibition of NF-κB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 96:2537–2542PubMedGoogle Scholar
  68. Kim TA, Avraham HK, Koh YH, Jiang S, Park IW, Avraham S (2003) HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells. J Immunol 170:2629–2637PubMedGoogle Scholar
  69. Kirk O, Pedersen C, Cozzi-Lepri A, Antunes F, Miller V, Gatell JM, Katlama C, Lazzarin A, Skinhoj P, Barton SE (2001) Non-Hodgkin lymphoma in HIV-infected patients in the era of highly active antiretroviral therapy. Blood 98:3406–3412PubMedGoogle Scholar
  70. Klagsbrun M, Baird A (1991) A dual receptor system is required for basic fibroblast growth factor activity. Cell 67:229–231PubMedGoogle Scholar
  71. Klouche M, Brockmeyer N, Knabbe C, Rose-John S (2002) Human herpesvirus 8-derived viral IL-6 induces PTX3 expression in Kaposi’s sarcoma cells. AIDS 16: F9–18PubMedGoogle Scholar
  72. Krown SE (2004) Highly active antiretroviral therapy in AIDS-associated Kaposi’s sarcoma: implications for the design of therapeutic trials in patients with advanced, symptomatic Kaposi’s sarcoma. J Clin Oncol 22:399–402PubMedGoogle Scholar
  73. Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17:3551–3561PubMedGoogle Scholar
  74. Lafrenie RM, Wahl LM, Epstein JS, Yamada KM, Dhawan S (1997) Activation of monocytes by HIV-Tat treatment is mediated by cytokine expression. J Immunol 159:4077–4083PubMedGoogle Scholar
  75. Levine AM, Seneviratne L, Espina BM, Wohl AR, Tulpule A, Nathwani BN, Gill PS (2000) Evolving characteristics of AIDS-related lymphoma. Blood 96:4084–4090PubMedGoogle Scholar
  76. Li CJ, Wang C, Friedman DJ, Pardee AB (1995) Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92:5461–5464PubMedGoogle Scholar
  77. Marlink R, Kanki P, Thior I, Travers K, Eisen G, Siby T, Traore I, Hsieh CC, Dia MC, Gueye EH, et al. (1994) Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 265:1587–1590PubMedGoogle Scholar
  78. Masood R, Cesarman E, Smith DL, Gill PS, Flore O (2002) Human herpesvirus-8-transformed endothelial cells have functionally activated vascular endothelial growth factor/vascular endothelial growth factor receptor. Am J Pathol 160:23–29PubMedGoogle Scholar
  79. Mitola S, Soldi R, Zanon I, Barra L, Gutierrez MI, Berkhout B, Giacca M, Bussolino F (2000) Identification of specific molecular structures of human immunodeficiency virus type 1 Tat relevant for its biological effects on vascular endothelial cells. J Virol 74:344–353PubMedGoogle Scholar
  80. Mocroft A, Katlama C, Johnson AM, Pradier C, Antunes F, Mulcahy F, Chiesi A, Phillips AN, Kirk O, Lundgren JD (2000) AIDS across Europe, 1994–98: the EuroSIDA study. Lancet 356:291–296PubMedGoogle Scholar
  81. Moore PS, Chang Y (1995) Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and without HIV infection. N Engl J Med 332:1181–1185PubMedGoogle Scholar
  82. Moses AV, Fish KN, Ruhl R, Smith PP, Strussenberg JG, Zhu L, Chandran B, Nelson JA (1999) Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol 73:6892–6902PubMedGoogle Scholar
  83. Nasti G, Talamini R, Antinori A, Martellotta F, Jacchetti G, Chiodo F, Ballardini G, Stoppini L, Di Perri G, Mena M, Tavio M, Vaccher E, D’Arminio Monforte A, Tirelli U (2003) AIDS-related Kaposi’s Sarcoma: evaluation of potential new prognostic factors and assessment of the AIDS Clinical Trial Group Staging System in the Haart Era-the Italian Cooperative Group on AIDS and Tumors and the Italian Cohort of Patients Naive From Antiretrovirals. J Clin Oncol 21:2876–2882PubMedGoogle Scholar
  84. Oksenhendler E, Cazals-Hatem D, Schulz TF, Barateau V, Grollet L, Sheldon J, Clauvel JP, Sigaux F, Agbalika F (1998) Transient angiolymphoid hyperplasia and Kaposi’s sarcoma after primary infection with human herpesvirus 8 in a patient with human immunodeficiency virus infection. N Engl J Med 338:1585–1590PubMedGoogle Scholar
  85. Pagtakhan AS, Tong-Starksen SE (1995) Function of exon 2 in optimal trans-activation by Tat of HIV type 2. AIDS Res Hum Retroviruses 11:1367–1372PubMedGoogle Scholar
  86. Pagtakhan AS, Tong-Starksen SE (1997) Interactions between Tat of HIV-2 and transcription factor Sp1. Virology 238:221–230PubMedGoogle Scholar
  87. Palella FJ, Jr., Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860PubMedGoogle Scholar
  88. Pantaleo G, Cohen OJ, Schacker T, Vaccarezza M, Graziosi C, Rizzardi GP, Kahn J, Fox CH, Schnittman SM, Schwartz DH, Corey L, Fauci AS (1998) Evolutionary pattern of human immunodeficiency virus (HIV) replication and distribution in lymph nodes following primary infection: implications for antiviral therapy. Nat Med 4:341–345PubMedGoogle Scholar
  89. Pantaleo G, Graziosi C, Demarest JF, Butini L, Montroni M, Fox CH, Orenstein JM, Kotler DP, Fauci AS (1993) HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355–358PubMedGoogle Scholar
  90. Poole LJ, Yu Y, Kim PS, Zheng QZ, Pevsner J, Hayward GS (2002) Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi’s sarcoma-associated herpesvirus. J Virol 76:3395–3420PubMedGoogle Scholar
  91. Popper SJ, Sarr AD, Travers KU, Gueye-Ndiaye A, Mboup S, Essex ME, Kanki PJ (1999) Lower human immunodeficiency virus (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. J Infect Dis 180:1116–1121PubMedGoogle Scholar
  92. Prakash O, Teng S, Ali M, Zhu X, Coleman R, Dabdoub RA, Chambers R, Aw TY, Flores SC, Joshi BH (1997) The human immunodeficiency virus type 1 Tat protein potentiates zidovudine-induced cellular toxicity in transgenic mice. Arch Biochem Biophys 343:173–180PubMedGoogle Scholar
  93. Reeves JD, Doms RW (2002) Human immunodeficiency virus type 2. J Gen Virol 83:1253–1265PubMedGoogle Scholar
  94. Rhim H, Rice AP (1993) TAR RNA binding properties and relative transactivation activities of human immunodeficiency virus type 1 and 2 Tat proteins. J Virol 67:1110–1121PubMedGoogle Scholar
  95. Rhim H, Rice AP (1994) Exon2 of HIV-2 Tat contributes to transactivation of the HIV-2 LTR by increasing binding affinity to HIV-2 TAR RNA. Nucleic Acids Res 22:4405–4413PubMedGoogle Scholar
  96. Rhim H, Rice AP (1995) HIV-1 Tat protein is able to efficiently transactivate the HIV-2 LTR through a TAR RNA element lacking both dinucleotide bulge binding sites. Virology 206:673–678PubMedGoogle Scholar
  97. Roy S, Delling U, Chen CH, Rosen CA, Sonenberg N (1990) A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes Dev 4:1365–1373PubMedGoogle Scholar
  98. Rubartelli A, Poggi A, Sitia R, Zocchi MR (1998) HIV-I Tat: a polypeptide for all seasons. Immunol Today 19:543–545PubMedGoogle Scholar
  99. Ruben S, Perkins A, Purcell R, Joung K, Sia R, Burghoff R, Haseltine WA, Rosen CA (1989) Structural and functional characterization of human immunodeficiency virus tat protein. J Virol 63:1–8PubMedGoogle Scholar
  100. Rusnati M, Taraboletti G, Urbinati C, Tulipano G, Giuliani R, Molinari-Tosatti MP, Sennino B, Giacca M, Tyagi M, Albini A, Noonan D, Giavazzi R, Presta M (2000) Thrombospondin-1/HIV-1 tat protein interaction: modulation of the biological activity of extracellular Tat. FASEB J 14:1917–1930PubMedGoogle Scholar
  101. Sakurada S, Katano H, Sata T, Ohkuni H, Watanabe T, Mori S (2001) Effective human herpesvirus 8 infection of human umbilical vein endothelial cells by cell-mediated transmission. J Virol 75:7717–7722PubMedGoogle Scholar
  102. Samaniego F, Pati S, Karp JE, Prakash O, Bose D (2001) Human herpesvirus 8 K1-associated nuclear factor-κB-dependent promoter activity: role in Kaposi’s sarcoma inflammation? J Natl Cancer Inst Monogr: 15–23Google Scholar
  103. Scala G, Ruocco MR, Ambrosino C, Mallardo M, Giordano V, Baldassarre F, Dragonetti E, Quinto I, Venuta S (1994) The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med 179:961–971PubMedGoogle Scholar
  104. Schim van der Loeff MF, Aaby P (1999) Towards a better understanding of the epidemiology of HIV-2. AIDS 13Suppl A: S69–84PubMedGoogle Scholar
  105. Schwarze SR, Hruska KA, Dowdy SF (2000) Protein transduction: unrestricted delivery into all cells? Trends Cell Biol 10:290–295PubMedGoogle Scholar
  106. Sommer A, Rifkin DB (1989) Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J Cell Physiol 138:215–220PubMedGoogle Scholar
  107. Spear PG, Longnecker R (2003) Herpesvirus entry: an update. J Virol 77:10179–10185PubMedGoogle Scholar
  108. Tao J, Frankel AD (1993) Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins. Proc Natl Acad Sci USA 90:1571–1575PubMedGoogle Scholar
  109. Tessler S, Rockwell P, Hicklin D, Cohen T, Levi BZ, Witte L, Lemischka IR, Neufeld G (1994) Heparin modulates the interaction of VEGF165 with soluble and cell associated flk-1 receptors. J Biol Chem 269:12456–12461PubMedGoogle Scholar
  110. Tomescu C, Law WK, Kedes DH (2003) Surface downregulation of major histocom-patibility complex class I, PE-CAM, and ICAM-1 following de novo infection of endothelial cells with Kaposi’s sarcoma-associated herpesvirus. J Virol 77:9669–9684PubMedGoogle Scholar
  111. Varthakavi V, Smith RM, Deng H, Sun R, Spearman P (2002) Human immunodeficiency virus type-1 activates lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus through induction of KSHV Rta. Virology 297:270–280PubMedGoogle Scholar
  112. Vieira J, O’Hearn P, Kimball L, Chandran B, Corey L (2001) Activation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol 75:1378–1386PubMedGoogle Scholar
  113. Vives E, Richard JP, Rispal C, Lebleu B (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4:125–132PubMedGoogle Scholar
  114. Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, Elliman S, Flanagan AM, Alitalo K, Boshoff C (2004) Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36:687–693PubMedGoogle Scholar
  115. Watson K, Edwards RJ (1999) HIV-1-trans-activating (Tat) protein: both a target and a tool in therapeutic approaches. Biochem Pharmacol 58:1521–1528PubMedGoogle Scholar
  116. Weiss R, Boshoff C (2000) Addressing controversies over Kaposi’s sarcoma. J Natl Cancer Inst 92:677–679PubMedGoogle Scholar
  117. Westendorp MO, Li-Weber M, Frank RW, Krammer PH (1994) Human immunodeficiency virus type 1 Tat upregulates interleukin-2 secretion in activated T cells. J Virol 68:4177–4185PubMedGoogle Scholar
  118. Yang TY, Chen SC, Leach MW, Manfra D, Homey B, Wiekowski M, Sullivan L, Jenh CH, Narula SK, Chensue SW, Lira SA (2000) Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 191:445–454PubMedGoogle Scholar
  119. Yao L, Salvucci O, Cardones AR, Hwang ST, Aoki Y, De La Luz Sierra M, Sajewicz A, Pittaluga S, Yarchoan R, Tosato G (2003) Selective expression of stromal-derived factor-1 in the capillary vascular endothelium plays a role in Kaposi sarcoma pathogenesis. Blood 102:3900–3905PubMedGoogle Scholar
  120. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848PubMedGoogle Scholar
  121. Zauli G, Gibellini D, Caputo A, Bassini A, Negrini M, Monne M, Mazzoni M, Capitani S (1995) The human immunodeficiency virus type-1 Tat protein upregulates Bcl-2 gene expression in Jurkat T-cell lines and primary peripheral blood mononuclear cells. Blood 86:3823–3834PubMedGoogle Scholar
  122. Zietz C, Bogner JR, Goebel FD, Lohrs U (1999) An unusual cluster of cases of Castleman’s disease during highly active antiretroviral therapy for AIDS. N Engl J Med 340:1923–1924PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Y. Aoki
    • 1
  • G. Tosato
    • 1
  1. 1.Development, Astellas Pharma Inc.Japan

Personalised recommendations