Modern Evolutionary History of the Human KSHV Genome

  • G. S. Hayward
  • J. -C. Zong
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 312)


The genomes of several human herpesviruses, including Kaposi sarcoma (KS) herpesvirus (KSHV), display surprisingly high levels of both genetic diversity and clustered subtyping at certain loci. We have been interested in understanding this phenomenon with the hope that it might be a useful diagnostic tool for viral epidemiology, and that it might provide some insights about how these large viral genomes evolve over a relatively short timescale. To do so, we have carried out extensive PCR DNA sequence analysis across the genomes of 200 distinct KSHV samples collected from KS patients around the world. Here we review and summarize current understanding of the origins of KSHV variability, the spread of KSHV and its human hosts out of Africa, the existence of chimeric genomes, and the concept that different segments of the genome have had different evolutionary histories.


Modern Human Constant Region Primary Effusion Lymphoma Recombination Junction South African Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken C, Sengupta SK, Aedes C, Moss DJ, and Sculley TB (1994). Heterogeneity within the Epstein-Barr virus nuclear antigen 2 gene in different strains of Epstein-Barr virus. J Gen Virol 75, 95–100PubMedCrossRefGoogle Scholar
  2. Alagiozoglou L, Sitas F, and Morris L (2000). Phylogenetic analysis of HHV-8 in South Africa and identification of a novel subgroup. J Gen Virol 81, 2029–2038PubMedGoogle Scholar
  3. Alexander L, Denekamp L, Knapp A, Auerbach MR, Damania B, and Desrosiers RC (2000). The primary sequence of rhesus monkey rhadinovirus isolate 26–95: sequence similarities to Kaposi’s sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J Virol 74, 3388–3398PubMedCrossRefGoogle Scholar
  4. Biggar R, Whitby D, Marshall V, Linhares AC, and Black F (2000). Human Herpesvirus 8 in Brazilian Amerindians: A hyperendemic population with a new subtype. J Infect Dis 181, 1562–1568PubMedCrossRefGoogle Scholar
  5. Brinkmann MM, Glenn M, Rainbow L, Kieser A, Henke-Gendo C, and Schulz TF (2003). Activation of mitogen-activated protein kinase and NF-κB pathways by a Kaposi’s sarcoma-associated herpesvirus K15 membrane protein. J Virol 77, 9346–9358PubMedCrossRefGoogle Scholar
  6. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, and Moore PS (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266, 1865–1869PubMedCrossRefGoogle Scholar
  7. Choi J-K, Lee B-S, Shim SN, Li M, and Jung JU (2000). Identification of the novel K15 gene at the rightmost end of the Kaposi’s sarcoma-associated herpesvirus genome. J Virol 74, 436–446PubMedCrossRefGoogle Scholar
  8. Chokunonga E, Levy LM, Bassett MT, Borok MZ, Mauchaza BG, Chirenje MZ, and Parkin DM (1999). AIDS and cancer in Africa: the evolving epidemic in Zimbabwe. AIDS 13, 2583–2588PubMedCrossRefGoogle Scholar
  9. Cook PM, Whitby D, Calabro ML, Luppi M, Kakoola DN, Hjalgrim H, Ariyoshi K, Ensoli B, Davison AJ, and Schulz TF (1999). Variability and evolution of Kaposi’s sarcoma-associated herpesvirus in Europe and Africa. International collaborative group. AIDS, 1165–1176Google Scholar
  10. Damania B, and Jung JU (2001). Comparative analysis of the transforming mechanisms of Epstein-Barr virus, Kaposi’s sarcoma-associated herpesvirus, and Herpesvirus saimiri. Adv Cancer Res 80, 51–82PubMedCrossRefGoogle Scholar
  11. Dambaugh T, Hennessey K, Chamnankit L, and Kieff E (1984). U2 region of Epstein-Barr virus DNA may encode Epstein-Barr virus nuclear antigen 2. Proc Natl Acad Sci USA 81, 7632–7636PubMedCrossRefGoogle Scholar
  12. Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, McGeoch DJ, and Hayward GS (2003). The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84, 17–28PubMedCrossRefGoogle Scholar
  13. Dedicoat M, and Newton R (2003). Review of the distribution of Kaposi’s sarcomaassociated herpesvirus (KSHV) in Africa in relation to the incidence of Kaposi’s sarcoma. Br J Cancer 88, 1–3PubMedCrossRefGoogle Scholar
  14. Fouchard N, Lacoste V, Couppie P, Develoux M, Mauclere P, Michel P, Herve V, Pradinaud R, Bestetti G, Huerre M, et al. (2000). Detection and genetic polymorphism of human herpesvirus Type 8 in endemic or epidemic Kaposi’s Sarcoma from West and Central Africa, and South America. Int J Cancer 85, 166–170PubMedGoogle Scholar
  15. Glenn M, Rainbow L, Aurade F, Davison A, and Schulz TF (1999). Identification of a spliced gene from Kaposi’s sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein-Barr virus. J Virol 73, 6953–6963PubMedGoogle Scholar
  16. Hayward GS (1999). KSHV Strains: The origin and global spread of the virus. (Review) Semin Cancer Biol, 187–199Google Scholar
  17. Kadyrova E, Lacoste V, Duprez R, Pozharissky K, Molochkov V, Huerre M, Gurtsevitch V, and Gessain A (2003). Molecular epidemiology of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 strains from Russian patients with classic, posttransplant, and AIDS-associated Kaposi’s sarcoma. J Med Virol 71, 548–556PubMedCrossRefGoogle Scholar
  18. Kajumbula H, Wallace RG, Zong JC, Hokello J, Sussman N, Simms S, Rockwell RF, Pozos R, Hayward GS, and Boto W (2006). Ugandan Kaposi’s sarcoma-associated herpesvirus phylogeny: Evidence for cross-ethnic transmission of viral subtypes. Intervirology 49, 133–143PubMedCrossRefGoogle Scholar
  19. Kakoola DN, Sheldon J, Byabazaire N, Bowden RJ, Katongole-Mbidde E, Schulz TF, and Davison AJ (2001). Recombination in human herpesvirus-8 strains from Uganda and evolution of the K15 gene. J Gen Virol 82, 2393–2404PubMedGoogle Scholar
  20. Kasolo FC, Mpabalwani E, and Gompels UA (1997). Infection with AIDS-related herpesviruses in human immunodeficiency virus-negative infants and endemic childhood Kaposi’s sarcoma in Africa. J Gen Virol 78, 847–856PubMedGoogle Scholar
  21. Lacoste V, Judde JG, Briere J, Tulliez M, Garin B, Kassa-Kelembho E, Morvan J, Couppie P, Clyti E, Forteza Vila J, et al. (2000a). Molecular epidemiology of human herpesvirus 8 in Africa: both B and A5 K1 genotypes, as well as the M and P genotypes of K14.1/K15 loci, are frequent and widespread. Virology 278, 60–74PubMedCrossRefGoogle Scholar
  22. Lacoste V, Kadyrova E, Chistiakova I, Gurtsevitch V, Judde JG, and Gessain A (2000b). Molecular characterization of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8 strains from Russia. J Gen Virol 81 Pt 5, 1217–1222PubMedGoogle Scholar
  23. Lacoste V, Mauclere P, Dubreuil G, Lewis J, Georges-Courbot MC, and Gessain A (2000c). KSHV-like herpesviruses in chimps and gorillas. Nature 407, 151–152PubMedCrossRefGoogle Scholar
  24. Lacoste V, Mauclere P, Dubreuil G, Lewis J, Georges-Courbot MC, and Gessain A (2001). A novel gamma 2-herpesvirus of the Rhadinovirus 2 lineage in chimpanzees. Genome Res 11, 1511–1519PubMedCrossRefGoogle Scholar
  25. Lagunoff M, and Ganem D (1997). The structure and coding organization of the genomic termini of Kaposi’s Sarcoma-associated herpesvirus (Human Herpesvirus 8). Virology 236, 147–154PubMedCrossRefGoogle Scholar
  26. Lee BS, Connole M, Tang Z, Harris NL, and Jung JU (2003). Structural analysis of the Kaposi’s sarcoma-associated herpesvirus K1 protein. J Virol 77, 8072–8086PubMedCrossRefGoogle Scholar
  27. Lee BS, Lee SH, Feng P, Chang H, Cho NH, and Jung JU (2005). Characterization of the Kaposi’s sarcoma-associated herpesvirus K1 signalosome. J Virol 79, 12173–12184PubMedCrossRefGoogle Scholar
  28. Ling PD, Ryon JJ, and Hayward SD (1993). EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. J Virol 67, 2990–3003PubMedGoogle Scholar
  29. Meng YX, Sata T, Stamey FR, Voevodin A, Katano H, Koizumi H, Deleon M, De Cristofano MA, Galimberti R, and Pellett PE (2001). Molecular characterization of strains of human herpesvirus 8 from Japan, Argentina and Kuwait. J Gen Virol 82, 499–506PubMedGoogle Scholar
  30. Meng YX, Spira TJ, Bhat GJ, Birch CJ, Druce JD, Edlin BR, Edwards R, Gunthel C, Newton R, Stamey FR, et al. (1999). Individuals from North America, Australasia, and Africa are infected with four different genotypes of human herpesvirus 8. Virology 261, 106–119PubMedCrossRefGoogle Scholar
  31. Nicholas J, Zong J-C, Alcendor DJ, Ciufo DM, Poole LJ, Sarisky RT, Chiou CJ, Zhang X, Wan X, Guo H-G, et al. (1998). Novel organizational features, captured cellular genes and strain variability within the genome of KSHV/HHV8. J Natl Cancer Inst Monogr 23, 79–88PubMedGoogle Scholar
  32. Poole LJ, Zong J-C, Ciufo DM, Alcendor DJ, Cannon JS, Ambinder R, Orenstein J, Reitz MS, and Hayward GS (1999). Comparison of genetic variability at multiple loci across the genomes of the major subgroups of Kaposi’s sarcoma associated herpesvirus (HHV8) reveals evidence for recombination and for two distinct types of ORF-K15 alleles at the right hand end. J Virol 73, 6646–6660PubMedGoogle Scholar
  33. Rose TM, Ryan, J. T., Schultz, E.R., Raden, B.W., Tsai, C-C (2003). Analysis of 4.3 kilobases of divergent locus B of macaque retroperitoneal fibromatosis-associated herpesvirus reveals a close similarity in gene sequence and genome organization to Kaposi’s sarcoma-associated herpesvirus. JVirol 77, 5084–5097CrossRefGoogle Scholar
  34. Rose TM, Strand KB, Schultz ER, Schaefer G, G.W. Rankin J, Thouless ME, Tsai C-C, and Bosch ML (1997). Identification of two homologs of the Kaposi’s sarcomaassociated herpesvirus (human herpesvirus 8) in retroperitoneal fibromatosis of different macaque species. J Virol 71, 4138–4144PubMedGoogle Scholar
  35. Russo JJ, Bohenzky RA, Chien M-C, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, and Moore PS (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA93, 14862–14867PubMedCrossRefGoogle Scholar
  36. Searles RP, Bergquam EP, Axthelm MK, and Wong SW (1999). Sequence and genomic analysis of a rhesus macaque rhadinovirus with similarity to Kaposi’s sarcomaassociated herpesvirus/human herpesvirus 8. J Virol 73, 3040–3053PubMedGoogle Scholar
  37. Sharp TV, Wang HW, Koumi A, Hollyman D, Endo Y, Ye H, Du MQ, and Boshoff C (2002). K15 protein of Kaposi’s sarcoma-associated herpesvirus is latently expressed and binds to HAX-1, a protein with antiapoptotic function. J Virol 76, 802–816PubMedCrossRefGoogle Scholar
  38. Shim YS, Kim CW, and Lee WK (1998). Sequence variation of EBNA2 of Epstein-Barr virus isolates from Korea. Mol Cells 8, 226–232PubMedGoogle Scholar
  39. Stebbing J, Bourboulia D, Johnson M, Henderson S, Williams I, Wilder N, Tyrer M, Youle M, Imami N, Kobu T, et al. (2003). Kaposi’s sarcoma-associated herpesvirus cytotoxic T lymphocytes recognize and target Darwinian positively selected autologous K1 epitopes. J Virol 77, 4306–4314PubMedCrossRefGoogle Scholar
  40. Treurnicht FK, Engelbrecht S, Taylor MB, Schneider JW, and van Rensburg EJ (2002). HHV-8 subtypes in South Africa: identification of a case suggesting a novel B variant. J Med Virol 66, 235–240PubMedCrossRefGoogle Scholar
  41. Wang L, Wakisaka N, Tomlinson CC, DeWire SM, Krall S, Pagano JS, and Damania B (2004). The Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) K1 protein induces expression of angiogenic and invasion factors. Cancer Res 64, 2774–2781PubMedCrossRefGoogle Scholar
  42. Whitby D, Marshall VA, Bagni RK, Wang CD, Gamache CJ, Guzman JR, Kron M, Ebbesen P, and Biggar RJ (2004). Genotypic characterization of Kaposi’s sarcoma-associated herpesvirus in asymptomatic infected subjects from isolated populations. J Gen Virol 85, 155–163PubMedCrossRefGoogle Scholar
  43. Zhang YJ, Davis TL, Wang XP, Deng JH, Baillargeon J, Yeh IT, Jenson HB, and Gao SJ (2001). Distinct distribution of rare US genotypes of Kaposi’s sarcoma-associated herpesvirus (KSHV) in South Texas: implications for KSHV epidemiology. J Infect Dis 183, 125–129PubMedCrossRefGoogle Scholar
  44. Zong J-C, Ciufo DM, Alcendor DJ, Wan X, Nicholas J, Browning P, Rady P, Tyring SK, Orenstein J, Rabkin C, et al. (1999). High level variability in the ORF-K1 membrane protein gene at the left end of the Kaposi’s sarcoma associated herpesvirus (HHV8) genome defines four major virus subtypes and multiple clades in different human populations. J Virol 73, 4156–4170PubMedGoogle Scholar
  45. Zong JC, Ciufo DM, Viscidi R, Alagiozoglou L, Tyring S, Rady P, Orenstein J, Boto W, Kajumbula H, Romano N, et al. (2002). Genotypic analysis at multiple loci across Kaposi’s sarcoma herpesvirus (KSHV) DNA molecules: clustering patterns, novel variants and chimerism. J Clin Virol 23, 119–148PubMedCrossRefGoogle Scholar
  46. Zong J-C, Metroka C, Reitz MS, Nicholas J, and Hayward GS (1997). Strain variability among Kaposi sarcoma associated herpesvirus (HHV8) genomes: Evidence that a large cohort of U.S.A. AIDS patients may have been infected by a single common isolate. J Virol 71, 2505–2511PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • G. S. Hayward
    • 1
  • J. -C. Zong
    • 1
  1. 1.Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations