Skip to main content

Error Control for Discretizations of Electromagnetic-Mechanical Multifield Problem

  • Conference paper
Numerical Mathematics and Advanced Applications
  • 1409 Accesses

Abstract

The modeling of numerous industrial processes leads to multifield problems, which are governed by the coupled interaction of several physical fields. As an example, consider electromagnetic forming, where the evolution of the deformation field of a mechanical structure consisting of well conducting material is coupled with an electromagnetic field, triggering a Lorentz force, which drives the deformation process. The purpose of the work reported on here is to develop techniques for a posteriori error control for the finite element approximation to the solution of certain systems of two boundary value problems that are coupled via their coefficients and their right-hand sides. As a first step, an error estimator for the right-hand side of the mechanical subsystem is presented in the case of a simplified model problem for the electromagnetic system. The particular influence of the mixed character of the evolution equations is discussed for a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math., 4, 137–164 (1996)

    MathSciNet  Google Scholar 

  2. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM J. Numer. Anal., 28, 43–77 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems II: Optimal error estimates in L∞L2 and L∞L∞. SIAM J. Numer. Anal., 32, 706–740 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems IV: Nonlinear problems. SIAM J. Numer. Anal., 32, 1729–1749 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems V: Long-time integration SIAM J. Numer. Anal., 32, 1750–1763 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fenton, G., Daehn, G. S.: Modeling of electromagnetically formed sheet metal. J. Mat. Process. Tech. 75, 6–16 (1998)

    Article  Google Scholar 

  7. Gourdin, W. H.: Analysis and assessment of electromagnetic ring expansion as a high-strain rate test. J. Appl. Phys. 65, 411–422 (1989)

    Article  Google Scholar 

  8. Gourdin, W. H., Weinland, S. L., Boling, R. M.: Development of the electromagnetically-launched expanding ring as a high strain-rate test. Rev. Sci. Instrum. 60, 427–432, (1989)

    Article  Google Scholar 

  9. Kleiner, M., Brosius, A., Beerwald, C.: Determination of flow stress at very high strain rates by a combination of magnetic forming and FEM calculation. In: International Workshop on Friction and Flow Stress in Cutting and Forming (ENSAM), Paris, 175–182 (2000)

    Google Scholar 

  10. Moon, F.: Magnetic interactions in solids. John-Wiley ' Sons (1984)

    Google Scholar 

  11. Schinnerl, M., Schöberl, J., Kaltenbacher, M., Lerch, R.: Multigrid methods for three-dimensional simulation of nonlinear magnetomechanical systems. IEEE Trans. Mag. 38, 1497–1511 (2002)

    Article  Google Scholar 

  12. Simo, J. C., Hughes, T. J. R.: Computational inelasticity. Springer Series on Interdisciplinary Applied Mathematics 7, Springer Verlag (1998)

    Google Scholar 

  13. Stiemer, M., Unger, J., Blum, H., Svendsen, B.: Algorithmic formulation and numerical implementation of coupled multifield models for electromagnetic metal forming simulations. Internat. J. Numer. Methods Engng. (accepted) (2006).

    Google Scholar 

  14. Svendsen, B., Chanda, T.: Continuum thermodynamic modeling and simulation of electromagnetic forming, Technische Mechanik 23, 103–112 (2003)

    Google Scholar 

  15. Svendsen, B., Chanda, T.: Continuum thermodynamic formulation of models for electromagnetic thermoinlastic materials with application to electromagnetic metal forming, Cont. Mech. Thermodyn., 17, 1–16 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Takata, N., Kato, M., Sato, K., Tobe, T.: High-speed forming of metal sheets by electromagnetic forces. Japan Soc. Mech. Eng. Int. J. 31, 142, (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Stiemer, M. (2006). Error Control for Discretizations of Electromagnetic-Mechanical Multifield Problem. In: de Castro, A.B., Gómez, D., Quintela, P., Salgado, P. (eds) Numerical Mathematics and Advanced Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34288-5_19

Download citation

Publish with us

Policies and ethics