Skip to main content

Finite Volume Solvers for the Shallow Water Equations Using Matrix Radial Basis Function Reconstruction

  • Conference paper
Numerical Mathematics and Advanced Applications

Abstract

The accuracy of low order numerical methods for the shallow water equations is improved by using vector reconstruction techniques based on matrix valued radial basis functions. Applications to geophysical fluid dynamics problems show that these reconstruction techniques allow to maintain important discrete conservation properties while greatly reducing the error with respect to low order discretizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa, A., Lamb, V.: A potential enstrophy and energy conserving scheme for the shallow water equations. Monthly Weather Review, 109, 18–136 (1981)

    Article  Google Scholar 

  2. Baudisch, J.: Reconstruction of Vector Fields Using Radial Basis Functions. MA Thesis, Munich University of Technology, Munich (2005)

    Google Scholar 

  3. Bonaventura, L., Kornblueh, L., Heinze, T., Ripodas, P.: A semi-implicit method conserving mass and potential vorticity for the shallow water equations on the sphere, Int. J. Num. Methods in Fluids, 47, 863–869 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonaventura, L., Ringler, T.: Analysis of discrete shallow water models on geodesic Delaunay grids with C-type staggering, Monthly Weather Review, 133, 2351–2373 (2005)

    Article  Google Scholar 

  5. Casulli, V.,Walters, R.A.: An unstructured grid, three-dimensional model based on the shallow water equations, Int. J. Num. Methods in Fluids, 32, 331–348 (2000)

    Article  MATH  Google Scholar 

  6. Miglio, E., Quarteroni, A., Saleri, F.: Finite element approximation of quasi- 3d shallow water equations, Comp. Methods in Appl. Mech. and Eng., 174, 355–369 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Narcowich, F.J., Ward, J.D.: Generalized Hermite interpolation via matrixvalued conditionally positive definite functions, Math. Comp., 63, 661–687 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pedlosky, J.: Geophysical Fluid Dynamics. Springer Verlag, New York - Berlin (1987)

    MATH  Google Scholar 

  9. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer Verlag, New York - Berlin (1994)

    MATH  Google Scholar 

  10. Rosatti, G., Bonaventura, L., Cesari, D.: Semi-implicit, semi-Lagrangian environmental modelling on cartesian grids with cut cells, J. Comp. Phys., 204, 353–377 (2005)

    Article  MATH  Google Scholar 

  11. Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A Standard Test Set for Numerical Approximations to the Shallow Water Equations in Spherical Geometry, J. Comp. Phys., 102, 211–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Bonaventura, L., Miglio, E., Saleri, F. (2006). Finite Volume Solvers for the Shallow Water Equations Using Matrix Radial Basis Function Reconstruction. In: de Castro, A.B., Gómez, D., Quintela, P., Salgado, P. (eds) Numerical Mathematics and Advanced Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34288-5_13

Download citation

Publish with us

Policies and ethics