Skip to main content

Highly Accurate Conservative Finite Difference Schemes and Adaptive Mesh Refinement Techniques for Hyperbolic Systems of Conservation Laws

  • Conference paper
Numerical Mathematics and Advanced Applications

Abstract

We review a conservative finite difference shock capturing scheme that has been used by our research team over the last years for the numerical simulations of complex flows [3, 6]. This scheme is based on Shu and Osher’s technique [9] for the design of highly accurate finite difference schemes obtained by flux reconstruction procedures (ENO, WENO) on Cartesian meshes and Donat-Marquina’s flux splitting [4]. We then motivate the need for mesh adaptivity to tackle realistic hydrodynamic simulations on two and three dimensions and describe some details of our Adaptive Mesh Refinement (AMR) ([2, 7]) implementation of the former finite difference scheme [1]. We finish the work with some numerical experiments that show the benefits of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeza, A., Mulet, P.: Adaptive mesh refinement techniques for high order shock capturing schemes for hyperbolic systems of conservation laws, GrAN report 05-01, Departament de Matemàtica Aplicada, Universitat de València, Spain (2005). http://gata.uv.es/cat/reports.html

    Google Scholar 

  2. Berger, M. J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys, 53, 484–512 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chiavassa, G., Donat, R., Marquina, A.: Fine-mesh numerical simulations for 2D Riemann problems with a multilevel scheme, International Series of Numerical Mathematics, 140, 247–256 (2001)

    MathSciNet  Google Scholar 

  4. Donat, R., Marquina, A.: Capturing shock reflections: an improved flux formula, J. Comput. Phys., 125, 42–58 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jiang, G.-S., Shu, C.-W.: Effcient implementation of weighted essentially nonoscillatory schemes J. Comp. Phys., 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Marquina, A. Mulet, P.: A Flux-Split Algorithm Applied to Conservative Models for Multicomponent Compressible Flows, J. Comput. Phys., 185, 120–138 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Quirk, J. J.: An adaptive grid algorithm for computational shock hydrodynamics, PhD Thesis, Cranffeld Institute of Technology, United Kingdom (1991)

    Google Scholar 

  8. Schult-Rinne, C. W.: Classification of the Riemann problem for two-dimensional gas dynamics, SIAM J. Math. Anal., 24, 76–88 (1993)

    Article  MathSciNet  Google Scholar 

  9. Shu, C.-W., Osher, S.: Effcient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys., 83, 32–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Mulet, P., Baeza, A. (2006). Highly Accurate Conservative Finite Difference Schemes and Adaptive Mesh Refinement Techniques for Hyperbolic Systems of Conservation Laws. In: de Castro, A.B., Gómez, D., Quintela, P., Salgado, P. (eds) Numerical Mathematics and Advanced Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34288-5_12

Download citation

Publish with us

Policies and ethics