Skip to main content

Large-Eddy Simulation of a Turbulent Flow around a Multi-Perforated Plate

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 56))

Abstract

The film cooling technique is often used to protect the hot components in gas turbines engines by introducing cold air through small holes drilled in the wall. The hot products are mixed with the injected gas and the temperature in the vicinity of the wall is reduced. Classical wall functions developed for impermeable walls and used in Reynolds-Averaged Navier-Stokes methods cannot predict momentum/ heat transfer on perforated plates because the flow is drastically modified by effusion. In order to obtain a better understanding of the flow structure and predominant effects, accurate simulations of a turbulent flow around an effusion plate are reported. Large-Eddy Simulations of the flow created by an infinite multi-perforated plate are presented. The plate is perforated with short staggered holes inclined at an angle of 30 deg to the main flow, with a length-to-diameter ratio of 3.46. Injection holes are spaced 6.74 diameters apart in the spanwise direction and 11.68 diameters apart in the streamwise direction. Results for mean velocity and velocity fluctuations are compared with measurements made on the LARA large-scale isothermal experiment [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Miron. Étude expérimentale des lois de parois et du film de refroidissement produit par une zone multiperforée sur une paroi plane. PhD thesis, Université de Pau et des Pays de l'Adour, 2005.

    Google Scholar 

  2. A. H. Lefebvre. Gas Turbines Combustion. Taylor & Francis, 1999.

    Google Scholar 

  3. R.J. Goldstein. Advances in Heat Transfer. Academic Press, New-York and London, 1971.

    Google Scholar 

  4. K. M. Bernhard Gustafsson. Experimental Studies of Effusion Cooling. PhD thesis, Chalmers University of Technology. Goteborg, 2001.

    Google Scholar 

  5. S. Yavuzkurt, R.J. Moffat, and W.M. Kays. Full coverage film cooling. Part 1. Three-dimensional measurements of turbulence structure. J. Fluid Mech., 101:129–158, 1980.

    Article  Google Scholar 

  6. F. Bazdidi-Tehrani and G.E. Andrews. Full-coverage discrete hole film cooling: investigation of the effect of variable density ratio. Journal of Engineering for Gas Turbines and Power, 116:587–596, 1994.

    Google Scholar 

  7. S. Rouvreau. Étude expérimentale de la structure moyenne et instantan ée d'un film produit par une one multiperforée sur une paroi plane. Application au refroidissement des chambres de combustion des oteurs aeronautiques. PhD thesis, E.N.S.M.A. et Faculté des Sciences Fondamentales et Appliquées, 001.

    Google Scholar 

  8. M. K Harrington, M. A. McWaters, D. G. Bogard, Lemmon C. A., and K. A. Thole. Full-coverage film cooling with short normal injection holes. ASME TURBOEXPO 2001. 2001-GT-0130, 2001.

    Google Scholar 

  9. E. Papanicolaou, D. Giebert, R. Koch, and A. Schultz. A conservationbased discretization approach for conjugate heat transfer calculations in hot-gas ducting turbomachinery components. International Journal of Heat and Mass Transfer, 44:3413–3429, 2001.

    Article  MATH  Google Scholar 

  10. M. Tyagi and S. Acharya. Large eddy simulation of film cooling flow from an inclined cylindrical jet. Journal of Turbomachinery, 125:734–742, 2003.

    Article  Google Scholar 

  11. L. L. Yuan, R. L. Street, and J. H. Ferziger. Large-eddy simulations of a round jet in crossflow. J. Fluid Mech., 379:71–104, 1999.

    Article  MATH  Google Scholar 

  12. P. Moin and K. Mahesh. Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech., 30(539–578), 1998.

    Google Scholar 

  13. S. Mendez, F. Nicoud, and P. Miron. Direct and large-eddy simulations of a turbulent flow with effusion. In ERCOFTAC WORKSHOP. Direct and Large-Eddy Simulations 6. Poitiers FRANCE, 2005.

    Google Scholar 

  14. T. Poinsot and S. Lele. Boundary conditions for direct simulations of compressible viscous flows. J. Comp. Physics, vol.101(1):104–129, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. V. Moureau, G. Lartigue, Y. Sommerer, C. Angelberger, O. Colin, and T. Poinsot. Numerical methods for unsteady compressible multicomponent reacting flows on fixed and moving grids. J. Comp. Physics, 202(2):710–736, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62(3):183–200, 1999.

    Article  MATH  Google Scholar 

  17. O. Colin and M. Rudgyard. Development of high-order Taylor-Galerkin schemes for unsteady calculations. J. Comp. Physics, 162(2):338–371, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Miron, C. Berat, and V. Sabelnikov. Effect of blowing rate on the film cooling coverage on a multi-holed plate: application on combustor walls. In Eighth International Conference on Heat Transfer. Lisbon, Portugal, 2004.

    Google Scholar 

  19. J.H. Leylek and R. D. Zerkle. Discrete-jet dilm cooling: A comparison of computational results with experiments. Journal of Turbomachinery, 116:358–368, 1994.

    Article  Google Scholar 

  20. D.K. Walters and J.H. Leylek. A systematic methodology applied to a three-dimensional film-cooling flowfield. Journal of Turbomachinery, 119:777–785, 1997.

    Google Scholar 

  21. D.K. Walters and J.H. Leylek. A detailed analysis of film-cooling physics: Part 1- Streamwise injection with cylindrical holes. Journal of Turbomachinery, 122:102–112, 2000.

    Article  Google Scholar 

  22. J. Andreopoulos and W. Rodi. Experimental investigation of jets in a crossflow. J. Fluid Mech., 138:93–127, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Mendez, S., Nicoud, F., Poinsot, T. (2007). Large-Eddy Simulation of a Turbulent Flow around a Multi-Perforated Plate. In: Kassinos, S.C., Langer, C.A., Iaccarino, G., Moin, P. (eds) Complex Effects in Large Eddy Simulations. Lecture Notes in Computational Science and Engineering, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34234-2_21

Download citation

Publish with us

Policies and ethics