Skip to main content

A Low-Numerical Dissipation, Patch-Based Adaptive-Mesh-Refinement Method for Large-Eddy Simulation of Compressible Flows

  • Conference paper
Complex Effects in Large Eddy Simulations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 56))

  • 1382 Accesses

Abstract

This paper presents a hybrid finite-difference method for the large-eddy simulation of compressible flows with low-numerical dissipation and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described. An explicit centered scheme is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. Several two- and three-dimensional numerical experiments and validation calculations are presented including homogeneous shock-free turbulence, turbulent jets and the strongly shockdriven mixing of a Richtmyer-Meshkov instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial-Differential equations. J. Comp. Phys., 53(3):484–512, 1984.

    Article  MATH  Google Scholar 

  2. M.J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys., 82(1):64–84, 1989.

    Article  MATH  Google Scholar 

  3. P. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure and Appl. Math., 13(2):217–237, 1960.

    Article  MATH  Google Scholar 

  4. T.A. Zang. On the rotation and skew-symmetric forms for incompressible flow simulation. Appl. Numer. Math., 7(1):27–40, 1991.

    Article  MATH  Google Scholar 

  5. R. Deiterding. Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Brandenburgische Technische Universität Cottbus, 2003.

    Google Scholar 

  6. D.J. Hill and D.I. Pullin. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. J. Comp. Phys., 194(2):435–450, 2004.

    Article  MATH  Google Scholar 

  7. A. Misra and D.I. Pullin. A vortex-based subgrid model for large-eddy simulation. Phys. Fluids, 9(8):2443–2454, 1997.

    Article  Google Scholar 

  8. D.I. Pullin. Vortex-based model for subgrid flux of a passive scalar. Phys. Fluids, 12(9):2311–2319, 2000.

    Article  Google Scholar 

  9. A.E. Honein and P. Moin. Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comp. Phys., 201(2):531–545, 2004.

    Article  MATH  Google Scholar 

  10. Y. Morinishi, T.S. Lund, O.V. Vasilyev, and P. Moin. Fully conservative higher order finite difference schemes for incompressible flow. J. Comp. Phys., 143(1):90–124, 1998.

    Article  MATH  Google Scholar 

  11. F. Ducros, F. Laporte, T. Souleres, V. Guinot, P. Moinat, and B. Caruelle. High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: Application to compressible flows. J. Comp. Phys., 161(1):114–139, 2000.

    Article  MATH  Google Scholar 

  12. A. Benkenida, J. Bohbot, and J.C. Jouhaud. Patched grid and adaptive mesh refinement strategies for the calculation of the transport of vortices. Int. J. Numer. Meth. Fluids, 40:855–873, 2002.

    Article  MATH  Google Scholar 

  13. G.-S. Jiang and C.-W. Shu. Effcient implementation of weighted ENO schemes. J. Comp. Phys., 126(1):202–228, 1996.

    Article  MATH  Google Scholar 

  14. D.S. Balsara and C.W. Shu. Monotonicity preserving weighted essentially non-oscillatory schemes with increasing high order of accuracy. J. Comp. Phys., 160(2):405–452, 2000.

    Article  MATH  Google Scholar 

  15. E. Gutmark and I. Wygnanski. The planar turbulent jet. J. Fluid Mech., 73(3):465–495, 1976.

    Article  Google Scholar 

  16. M. Vetter and B. Sturtevant. Experiments on the Richtmyer-Meshkov instability on a air/SF6 interface. Shock Waves, 4(5):247–252, 1995.

    Article  Google Scholar 

  17. J.E. Rehm and N.T. Clemens. The large-scale turbulent structure of nonpremixed planar jet flames. Combustion and Flame, 116(4):615–626, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Pantano, C., Deiterding, R., Hill, D., Pullin, D. (2007). A Low-Numerical Dissipation, Patch-Based Adaptive-Mesh-Refinement Method for Large-Eddy Simulation of Compressible Flows. In: Kassinos, S.C., Langer, C.A., Iaccarino, G., Moin, P. (eds) Complex Effects in Large Eddy Simulations. Lecture Notes in Computational Science and Engineering, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34234-2_18

Download citation

Publish with us

Policies and ethics