Skip to main content

Investigation of Multiscale Subgrid Models for LES of Instabilities and Turbulence in Wake Vortex Systems

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 56))

Abstract

This paper investigates the capabilities of different subgrid scale (SGS) models, including the recent “multiscale” models, for large-eddy simulation (LES), here in a vortex-in-cell (VIC) method, of complex wake vortex dynamics. More specifically, we here consider the multiscale dynamics developing in a counterrotating four-vortex system, that evolves from a simple state to a turbulent state. The various SGS models are tested and compared on this complex and transitional flow. Comparisons are also made with results obtained using a pseudo-spectral method. Energy diagnostics (global and modal) and spectra are provided and used to support the comparisons. A discussion on the applicability of the various models to LES of complex wake vortex flows is made. The multiscale models are seen to be the most appropriate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.-H. Cottet and P.D. Koumoutsakos. Vortex Methods: Theory and Practice, Cambridge Univ. Press, 2000.

    Google Scholar 

  2. G.-H. Cottet and P. Poncet. Advances in direct numerical simulations of 3D wall-bounded flows by Vortex-in-Cell methods, J. Comp. Phys., 193, 136–158, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  3. G.S. Winckelmans. Chapter 5: “Vortex Methods,” in Volume 3 (Fluids) of the Encyclopedia of Computational Mechanics, Erwin Stein, René de Borst, Thomas J.R. Hughes (Eds), John Wiley & Sons, 2004.

    Google Scholar 

  4. G. Winckelmans, R. Cocle, L. Dufresne, and R. Capart. Vortex methods and their application to trailing wake vortex simulations, C. R. Physique, 6, 467–486, 2005.

    Article  Google Scholar 

  5. R. Cocle, G.S. Winckelmans, G. Daeninck, and F. Thirifay. An efficient combination of vortex-in-cell and fast multipole methods, 2005, submitted to J. Comp. Phys.

    Google Scholar 

  6. M. Germano, U. Piomelli, P. Moin, and W. Cabot. A dynamic subgridscale eddy-viscosity model, Phys. Fluids, A 3, 1760, 1991.

    Article  MATH  Google Scholar 

  7. S. Ghosal, T.S. Lund, P. Moin, and K. Akselvoll. A dynamic localization model for large-eddy simulation of turbulent flows, J. Fluid Mech., 286, 229, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. G.S. Winckelmans, A.A.Wray, O.V. Vasilyev, and H. Jeanmart. Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term, Phys. Fluids, 13, 1385–1403, 2001.

    Article  Google Scholar 

  9. F. Ducros, P. Comte, and M. Lesieur. Large-eddy simulation of transition to turbulence in a boundary layer spatially developing over a flat plate, J. Fluid Mech., 326, 1–36, 1996.

    Article  MATH  Google Scholar 

  10. F. Laporte. Simulation numérique appliquée à la caractérisation et aux instabilités des tourbillons de sillage d'avions de transport, PhD thesis, INPT, Toulouse, 2002.

    Google Scholar 

  11. G.S. Winckelmans and H. Jeanmart. Assessment of some models for LES without and with explicit filtering, Direct and Large-Eddy Simulation IV, edited by Geurts B.J., Friedrich R. and Métais O., ERCOFTAC Series 8, Kluwer, 55–66, 2001.

    Google Scholar 

  12. H. Jeanmart and G.S. Winckelmans. Comparison of recent dynamic subgrid-scale models in turbulent channel flow, Proc. Summer Program 2002, Center for Turbulence Research, Stanford University and NASA Ames, 105–116, 2002.

    Google Scholar 

  13. F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow Turb. Comb., 62(3), 183–200, 1999.

    MATH  Google Scholar 

  14. T.J.R. Hughes, L. Mazzei, A.A. Oberai, and A.A. Wray. The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys. Fluids, 13, 505–512, 2001.

    Article  Google Scholar 

  15. T.J.R. Hughes, A.A. Oberai, and L. Mazzei. Large eddy simulation of turbulent channel flow by the variational multiscale method, Phys. Fluids, 13, 1784–1799, 2001.

    Article  Google Scholar 

  16. A.W. Vreman. The filtering analog of the variational multiscale method in large-eddy simulation, Phys. Fluids, 15, L61, 2003.

    Article  MathSciNet  Google Scholar 

  17. S. Stolz, P. Schlatter, D. Meyer, and L. Kleiser. High-pass filtered eddyviscosity models for LES, Direct and Large-Eddy Simulation V, edited by Friedrich R., Geurts B.J. and Métais O., Kluwer, 81–88, 2004.

    Google Scholar 

  18. S. Stolz, P. Schlatter, and L. Kleiser. High-pass filtered eddy-viscosity models for large-eddy simulations of transitional flow, Phys. Fluids, 17, 065103, 2005.

    Article  Google Scholar 

  19. C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods in Fluid Dynamics, Springer-Verlag, New-York, 1988.

    MATH  Google Scholar 

  20. J.P. Boyd. Chebyshev and Fourier Spectral Methods, Dover Publ., Mineola, 2nd ed, 2001.

    MATH  Google Scholar 

  21. V. Borue and S.A. Orszag. Self-similar decay of three-dimensional homogeneous turbulence with hyperviscosity, Phys. Rev. E, 51(2), R856–R859, 1995.

    Article  Google Scholar 

  22. V. Borue and S.A. Orszag. Kolmogorov's refined similarity hypothesis for hyper-viscous turbulence, Phys. Rev. E, 53(1), R21–R24, 1996.

    Article  Google Scholar 

  23. D. Fabre, L. Jacquin, and A. Loof. Optimal perturbations in a fourvortex aircraft wake in counter-rotating configuration, J. Fluid Mech., 451, 319–328, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  24. S.E. Widnall. The structure and dynamics of vortex filaments, Ann. Rev. Fluid Mech., 7, 141–165, 1975.

    Article  Google Scholar 

  25. P.R. Spalart. Airplane trailing vortices, Ann. Rev. Fluid Mech., 30, 107–138, 1998.

    Article  MathSciNet  Google Scholar 

  26. L. Jacquin, D. Fabre, D. Sipp, V. Theofilis, and H. Vollmers. Instability and unsteadiness of aircraft wake vortices, Aerosp. Sci. Tech., 7, 577–593, 2003.

    Article  Google Scholar 

  27. J.D. Crouch. Instability and transient growth for two trailing-vortex pairs, J. Fluid Mech., 350, 311–330, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.M. Ortega, R.L. Bristol and Ö. Savaş. Experimental study of the instability of unequal-strength counter-rotating vortex pairs, J. Fluid Mech., 474, 35–84, 2003.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Cocle, R., Dufresne, L., Winckelmans, G. (2007). Investigation of Multiscale Subgrid Models for LES of Instabilities and Turbulence in Wake Vortex Systems. In: Kassinos, S.C., Langer, C.A., Iaccarino, G., Moin, P. (eds) Complex Effects in Large Eddy Simulations. Lecture Notes in Computational Science and Engineering, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34234-2_11

Download citation

Publish with us

Policies and ethics