Cellular Labeling with 99mTc Chelates: Relevance of In Vitro and In Vivo Viability Testing

  • H. Sinzinger
  • M. Rodrigues

8.6 Conclusions

Developments in both instrumentation and cell labeling have enabled a great expansion of their use in both clinical practice and research.

Studies with 99mTc-RBC are in widespread use in clinical practice. In contrast, 99mTc has not been successfully applied to platelet labeling. In contrast to 99mTc-RBC-research, there have been more methodological reports with 99mTc-WBC than clinical applications at the present. Much progress has been achieved in the techniques of harvesting and labeling WBC, but many challenges remain. HMPAO is currently the best 99mTc agent for labeling WBC, and played a particularly important role for the successful expansion of diagnostic imaging with radiolabeled WBC in nuclear medicine.

New approaches, such as the use of peptides, proteins, antibodies, and molecular recognition unit technologies, may result in substantial improvements in the labeling methodology and could yield labeled cells with the least damage and high in vivo stability in the future.


Human Platelet Albumin Colloid 99mTc Radiopharmaceutical Cohort Label High Elution Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelberger P, Sinzinger H, Kolbe H, Leithner C (1981) Labelling of human platelets with 111Inoxine and 99mTc-oxine. Comparison of in vitro and clinical use for monitoring of kidney transplants. Progr Radiopharmacol 2:211–220Google Scholar
  2. Arndt JW, van der Sluys Veer A, Blok K et al (1993) Prospective comparative study of technetium-99m-WBCs and indium-111-granulocytes for the examination of patients with inflammatory bowel disease. J Nucl Med 34:1052–1057PubMedGoogle Scholar
  3. Badenhorst PN, Lotter MG, Heyns A et al (1982) The influence of the “collection injury” on the survival and distribution of indium-111-labelled canine platelets. Br J Haematol 52:233–240PubMedGoogle Scholar
  4. Baldini MG, Myers TJ (1980) Utilitá e limitazioni degli studi di soprawivenza delle piastrine. Una valutazione critica [in Italian]. Haematologica 65:689–716PubMedGoogle Scholar
  5. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868PubMedCrossRefGoogle Scholar
  6. Becker W, Borner W, Borst U (1988a) 99mTc-hexamethylpropyleneamine-oxime (HMPAO) as a platelet label: evaluation of labelling parameters and first in vivo results. Nucl Med Commun 9:831–842PubMedGoogle Scholar
  7. Becker W, Schomann E, Fischbach W et al (1988b) Comparison of 99mTc-HM-PAO and 111In-oxine labelled granulocytes in man: first clinical results. Nucl Med Commun 9:435–437PubMedGoogle Scholar
  8. Bengel FM, Schachinger V, Dimmeler S (2005) Cell-based therapies and imaging in cardiology. Eur J Nucl Med Mol Imaging 32:404–416CrossRefGoogle Scholar
  9. Berger CL, Ederson RL (1979) Comparison of lymphocyte function after isolation by Ficoll-Hypaque flotation or elutriation. J Invest Dermatol 73:231–235PubMedCrossRefGoogle Scholar
  10. Berger HJ, Zaret BL (1984) Radionuclide assessment of cardiovascular performance: radiopharmaceuticals. In: Freeman LM (ed) Freeman and Johnson’s clinical radionuclide imaging. Grune & Stratton, Orlando, Fla., pp 366–367Google Scholar
  11. Birnie, GG, Eadie AS, Hosie CJ et al (1982) 111In-labelled white blood cells in the diagnosis of Felty’s syndrome. J Clin Pathol 35:74–76PubMedGoogle Scholar
  12. Bowring CS (1986) Imaging and quantitative scanning. In: Radionuclides in hematology. Lewis SM, Baily RJ (eds) Churchill Livingstone, Edinburgh, pp 151–172Google Scholar
  13. Brenner W, Aicher A, Eckey T, Massoudi S, Zuhayra M, Koehl U, Heeschen C, Kampen WU, Zeiher AM, Dimmeler S, Henze E (2004) In-111-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45:512–518PubMedGoogle Scholar
  14. Bunting RW, Callahan RJ, Finkelstein S, Lees RS, William MS (1982) A modified method for labelling human platelets with indium-111 oxine using albumin density-gradient separation. Radiology 145:219–221PubMedGoogle Scholar
  15. Chervu LR, Huq SS, Joseph JA et al (1981) Medication-induced changes in biodistribution of radiopharmaceuticals. J Nucl Med 22:72Google Scholar
  16. Chin BB, Nakamoto Y, Bulte JW, Pittenger MF, Wahl R, Kraitchman DL (2003) In-111-oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun 24:1149–1154PubMedCrossRefGoogle Scholar
  17. Chisholm PM, Peters AM (1980) The effect of 111-indium labelling on the recirculation of rat lymphocytes. In: Thakur ML, Gottschalk A (eds) 111In-labelled neutrophils, platelets and lymphocytes. Trivirum, New York, pp 205–211Google Scholar
  18. Chisholm PM, Danpure HJ, Healey G, Osman S (1979) Cell damage resulting from the labelling of rat lymphocytes and HeLa S3 cells with In-111-oxine. J Nucl Med 20:1308–1311PubMedGoogle Scholar
  19. Danpure HJ, Osman S, Carroll MJ (1988) The development of a clinical protocol for the radiolabelling of mixed leukocytes with 99mTc-hexamethylpropyleneamine oxime. Nucl Med Commun 9:465–475PubMedGoogle Scholar
  20. De Vries RA, De Bruin M, Marx JJM, Van De Wiel A (1993) Radioisotopic labels for blood cell survival studies: a review. Nucl Med Biol 20:809–817PubMedCrossRefGoogle Scholar
  21. Eckleman W, Richards P, Hauser W, Atkins H (1979) Technetium-labelled red blood cells. J Nucl Med 20:22–24Google Scholar
  22. Ferrant A, Lewis SM, Szur L (1974) The elution of 99mTc from red cells and its effect on red cell volume measurement. J Clin Pathol 27:983–985PubMedGoogle Scholar
  23. Fisher DG, Koren HS (1981) Isolation of human monocytes. Adams DO, Edelson PJ, Koren HS (eds) In: Methods for studying mononuclear phagocytes. Academic, New York, 43–47Google Scholar
  24. Gorman, RR, Bunting S, Miller OV (1977) Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins 13:377–388.PubMedCrossRefGoogle Scholar
  25. Granegger S, Flores J, Widhalm K, Sinzinger H (1988) Increased low-density lipoproteins (LDL) negatively affect human labelling. Folia Haematol 115:451–453Google Scholar
  26. Harker LA, Slichter SJ, Sauvage LR (1977) Platelet consumption by arterial prostheses: the effects of endothelialization and pharmacologic inhibition of platelet function. Ann Surg 186:594–601PubMedCrossRefGoogle Scholar
  27. Hawker RJ, Hawker LM, Wilkinson AR (1987) Indium-labelled human platelets. Optimal method. Clin Sci 58:243–248Google Scholar
  28. Hegge FN, Hamilton GW, Larson SM et al (1978) Cardiac chamber imaging: a comparison of red blood cells labelled with Tc-99m in vitro and in vivo. J Nucl Med 19:129PubMedGoogle Scholar
  29. Hladik WB, Nigg KK, Rhodes BA (1982) Drug-induced changes in the biologic distribution of radiopharmaceuticals. Semin Nucl Med 12:184PubMedCrossRefGoogle Scholar
  30. International Committee For Standardization In Hematology (1988) Panel on diagnostic applications of radionuclides. Recommended method for indium-111 platelet survival studies. J Nucl Med 29:564–566Google Scholar
  31. Kao CH, Hunang WT, Wang YL et al (1994) A comparative study of 99mTc-HM-PAO and 99mTc-ECD as a leukocyte labelling agent. Nucl Med Comm 15:294–297Google Scholar
  32. Lantto EH, Lantto TJ, Vorne M (1991) Fast diagnosis of abdominal infections and inflammations with technetium-99m-HM-PAO labeled leukocytes. J. Nucl Med 32:2029–2034PubMedGoogle Scholar
  33. Lee HB, Wexler JP, Scharf SC et al (1983) Pharmacologic alterations in Tc-99m binding by red blood cells: concise communication. J Nucl Med 24:397–401PubMedGoogle Scholar
  34. Leitl GP, Drew HM, Kelly ME et al (1980) Interference with Tc99m-labelling of red blood cells (RBCs) by RBC antibodies. J Nucl Med 21:44Google Scholar
  35. Lötter MG, Heyns AD, Badenhorst PN et al (1987) Evaluation of mathematic models to assess platelet kinetics. J Nucl Med 27:1192–1201Google Scholar
  36. Mathias CJ, Welch MJ (1979) Labelling mechanism and localization of indium-111 in human platelets. J Nucl Med 20:659Google Scholar
  37. Mathias CJ, Welch MJ (1984) Radiolabelling of platelets. Semin Nucl Med 14:118–127PubMedCrossRefGoogle Scholar
  38. McAfee JG, Subramanian G, Gagne G (1984) Technique of leukocyte harvesting and labeling: problems and perspectives. Semin Nucl Med 14:83–106PubMedCrossRefGoogle Scholar
  39. Mollison PL, Engelfriet CP, Contreras M (1987) The transfusion of platelets, leukocytes, haemopoietic cells and plasma components. In: Blood transfusions in clinical medicine. Blackwell, Oxford, pp 7–27Google Scholar
  40. Mortelmans L, Verbruggen A, De Roo M, Vermylen J (1986) Evaluation of three methods of platelet labeling. Nucl Med Comm 7: 519–529Google Scholar
  41. Mortelmans L, Malbrain S, Stuyck J et al (1989) In vitro and in vivo evaluation of granulocyte labeling with (99mTc)D,L-HM-PAO. J Nucl Med 30:2022–2028PubMedGoogle Scholar
  42. Mountford PJ, Kettle AG, O’Doherty MH, Coakley AJ (1990) Comparison of technetium-99m-HMPAO leukocytes with indium-111-oxine leukocytes for localizing intraabdominal sepsis. J Nucl Med 31:311–315PubMedGoogle Scholar
  43. Najean Y (1986) The choice of tracer for platelet kinetics and scintigraphic studies. Nucl Med Biol 13:159–164Google Scholar
  44. Neirinckx R, Canning L, Piper I et al (1987) Technetium-99m-D,L-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 28:191–202PubMedGoogle Scholar
  45. Peters AM (1988) Review of platelet labelling and kinetics. Nucl Med Commun 9:803–808PubMedGoogle Scholar
  46. Peters AM, Saverymuttu SH, Danpure HJ, Osman S (1986) Cell labeling. In: Bailey RJ, Lewis SM (eds) Radionuclides in haematology. Churchill Livingstone, Edinburgh, pp 79–109Google Scholar
  47. Porter WC, Dees SM, Freitas JE, Dworkin HJ (1983) Acid-citrate-dextrose compared with heparin in the preparation of in vivo/in vitro technetium-99m red blood cells. J Nucl Med 24:383–387PubMedGoogle Scholar
  48. Rao SA, Knobel J, Collier D et al (1986) Effect of Sn (II) ion concentration and heparin on technetium-99m red blood cell labelling. J Nucl Med 27:1202–1206.PubMedGoogle Scholar
  49. Raptopoulos V, Doherty PW, Goss TP et al (1982) Acute osteomyelitis: advantage of white cell scans in early detection. Am J Roentgenol 139:1077–1082Google Scholar
  50. Reiter S, Angelberger P, Kolbe H, Sinzinger H (1984) In vitro-und In vivo-Untersuchungen mit 111Indium-Oxin, 111Indium-Oxin-Sulfat und 99mTc-0xin zvir Erythrozytenmarkierung [in German]. Wien Klin Wschr 3:120–123Google Scholar
  51. Riordon F, Nelp WB (1982) Binding capacity of normal and sickle cell hemoglobin for technetium atoms. J Nucl Med 23:91Google Scholar
  52. Roddie ME, Peters AM, Danpure HJ et al (1988) Inflammation: imaging with Tc-99m HM-PAO-la-belled leukocytes. Radiology 166:767–772PubMedGoogle Scholar
  53. Rodrigues M, Sinzinger H (1994) Platelet labeling — methodology and clinical applications. Thromb Res 76:399–432PubMedCrossRefGoogle Scholar
  54. Sampson CB (1993) Adverse reactions and drug interactions with radiopharmaceuticals. Drug Saf 8:280–294PubMedGoogle Scholar
  55. Sampson CB (1995) Influence of drugs on cell labelling. 6th European Symposium on Radiopharmacy and Radiopharmaceuticals. Graz, March 1995Google Scholar
  56. Saverymuttu SH, Peters AM, Lavender JP et al (1983) Quantitative fecal indium-111 labelled leukocyte excretion in the assessment of activity in Crohn’s disease. Gastroenterology 85:1333.PubMedGoogle Scholar
  57. Scheffel U, Tsan MF, Mclntyre M (1979) Labeling of human platelets with (111In)8-hydroxyquino-line. J Nucl Med 20:524–531PubMedGoogle Scholar
  58. Schneider W, Gear ARL (1994) Significance of glucose and glycogen metabolism for platelet function. Am J Physiol 3:225–232Google Scholar
  59. Segall GM, Lang HV, Chaovapong W (1994) In vitro evaluation of white blood cell labelling with 99mTc radiopharmaceuticals. Nucl Med Commun 15:845–849PubMedGoogle Scholar
  60. Sfakianakis GN, Al-Sheikh W, Heal A et al (1982) Comparison of scintigraphy with In-111 leukocytes and Ga-67 in the diagnosis of occult sepsis. J Nucl Med 23:618PubMedGoogle Scholar
  61. Sfakianakis GN, Mnaymneh W, Ghandus-Mnaymneh L et al (1982) Positive In-111 leukocyte scintigraphy in a skeletal metastasis. Am J Roentgenol 139: 601–603Google Scholar
  62. Sinzinger H, Granegger S (1988) The effect of various antibiotics on the labelling efficiency of human white blood cells with 111In-oxine. Nucl Med Comm 9:597–601CrossRefGoogle Scholar
  63. Sinzinger H, Angelberger P, Höfer R (1981) Platelet labelling with 111In-oxine: benefit of prostacyclin (PGI2) — addition for preparation and injection. J Nucl Med 22:292PubMedGoogle Scholar
  64. Sinzinger H, Flores J, Widhalm K, Granegger S (1987a) Platelet viability (aggregation, migration, recovery) after radiolabelling of platelets from hypercholesterolemics using various tracers (oxine, oxine-sulphate, tropolone, MPO). Eur J Nucl Med 14:358–361Google Scholar
  65. Sinzinger H, Fitscha P, Kaliman J (1987b) Prostaglandin I2 improves recovery, but does not change platelet half-life and platelet uptake over active human lesion sites. Prostaglandins 33:787–790Google Scholar
  66. Sinzinger H, Granegger S (2006) Radionuclide vascular imaging and characterization of human metabolic endothelial surface lining. Q J Nucl Med Mol Imaging 50:226–235PubMedGoogle Scholar
  67. Sinzinger H, Kolbe H, Strobl-Jager E, Höfer R (1984) A simple and safe technique for sterile auto-logous platelet labelling using “Monovette” vials. Eur J Nucl Med 9:320–322PubMedCrossRefGoogle Scholar
  68. Skretting A, Benestad HB, Sundrehagen H (1988) Whole body distribution of 99mTc labelled autologous human granulocytes and radiation dose to cells and organs. Eur J Nucl Med 14:1–7PubMedCrossRefGoogle Scholar
  69. Srivastava S, Rao Chervu L (1984) Radionuclide-labelled red blood cells: current status and future prospects. Semin Nucl Med 14:68–82PubMedCrossRefGoogle Scholar
  70. Srivastava S, Straub RF (1990) Blood cell labelling with 99mTc: progress and perspectives. Semin Nucl Med 20:41–51PubMedCrossRefGoogle Scholar
  71. Sweeney JD, Holme S, Heaton WAL, Nelson E (1995) White cell-reduced platelet concentrates prepared by in-line filtration of platelet-rich plasma. Transfusion 35:131–136PubMedCrossRefGoogle Scholar
  72. Tatum JL, Burke TS, Hirsh JI et al (1983) Pitfall to modified in vivo method of technetium-99m red blood cell labelling. Iodinated contrast media. Clin Nucl Med 8:585–587PubMedCrossRefGoogle Scholar
  73. Thakur ML, Welch MJ, Malech HL (1981) Indium-111 labelled human platelets: improved method, efficacy and evaluation. J Nucl Med 22:381–385PubMedGoogle Scholar
  74. Thierens HM, Vral AM, Van-Haelst JP et al (1982) Lymphocyte labelling with technetium-99m-HM-PAO: a radiotoxicity study using the micronucleus assay. J Nucl Med 33:1167–1174Google Scholar
  75. Towler HMA (1984) Effect of 111In-oxinate and tropolonate labelling on human platelet aggregation and β-thromboglobulin release. In: Thakur ML, Ezekowitz MD, Hardeman MR (eds) Radiola-beled blood cellular elements. Plenum, New YorkGoogle Scholar
  76. Uchida T, Nemoto T, Yui T et al (1979) Use of technetium-99m as a radioactive label to study migratory patterns of leukocytes. J Nucl Med 20:1197–2000PubMedGoogle Scholar
  77. Vallabhajosula S, Machac J, Goldsmith SJ et al (1986) 111Indium platelet kinetics in normal human subjects: tropolone versus oxine methods. J Nucl Med 27:1669–1674PubMedGoogle Scholar
  78. Wagner X, Granegger S, Dembinska-Kiec A, Sinzinger H (1998) Nitric oxide (NO) for radiolabelling of human platelets. In: Sinzinger H, Thakur ML (eds) Nuclear medicine research. Facultas, Vienna, p 58Google Scholar
  79. Webber D, Nunan TO, Doherty JO (1994) The effect of varying type and volume of sedimenting agents on leukocyte harvesting and labelling in sickle cell patients. Nucl Med Comm 15:735–741Google Scholar
  80. Wilson ME, Hung JC (1992) Evaluation of heparin and anticoagulant citrate dextrose in the preparation of technetium-99m-red blood cells with Ultra Tag® RBC kit. J Nucl Med 33:306–307PubMedGoogle Scholar
  81. Winzelberg GG, McKusick KA, Froelich JW et al (1982) Detection of gastrointestinal bleeding with 99mTc-labelled red blood cells. Semin Nucl Med 12:139–146PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • H. Sinzinger
    • 1
  • M. Rodrigues
    • 1
  1. 1.Department of Nuclear MedicineMedical University ViennaViennaAustria

Personalised recommendations