Technetium in Medicine

  • U. Mazzi
  • R. Schibli
  • H. -J. Pietzsch
  • J. -U. Künstler
  • H. Spies


Imaging Agent Tridentate Ligand Tricarbonyl Complex 99mTc Complex Technetium Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams MJ, Davison A, Brodack JW, Jones AG, Faggiani R, Lock CJ (1982) The preparation of technetium(III) compounds in aqueous media. J Labeled Comp Radiopharm 14:1596–1597Google Scholar
  2. Abrams MJ, Davison A, Jones AG, Costello CE, Pang H (1983) Synthesis and characterization of hexakis(alkylisocyanide) and hexakis(arylisocyanide) complexes of technetium(I). Inorg Chem 22:2798–2800CrossRefGoogle Scholar
  3. Abrams MJ, Larsen S, Zubieta J (1991) Investigations of the technetium hydrazido core — synthesis and structural characterization of [(N-C4H9)4N][Tc2(NNPH2)2(C6C14O2)4].CH2.Cl2·2CH3OH, a Tc(V)/Tc(IV) catecholate complex with the hydrazido ligands adopting the unusual eta-1 bridging mode. Inorg Chem 30:2031–2035CrossRefGoogle Scholar
  4. Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger PA (2001) Synthesis and properties of boranocarbonates: a convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc 123:3135–3136PubMedCrossRefGoogle Scholar
  5. Andros G, Harper PV, Lathrop KA, McCardle RJ (1965) Pertechnetate-99m localization in man with application to thyroid scanning and the study of thyroid physiology. J Clin Endocrinol Metab 25:1067–1076PubMedCrossRefGoogle Scholar
  6. Baldas J, Bonnyman J, Poier PM, William GA, Mackay MF (1981) Synthesis and structure of bis(diethyldithiocarbamato)nitrido technetium(V): a technetium-nitrogen triple bond. J Chem Soc Dalton Trans 9:1798–1801CrossRefGoogle Scholar
  7. Bandoli G, Mazzi U, Moresco A, Nicolini M, Refosco F, Tisato F (1986) Technetium complexes containing tridentate and bidentate Schiff base type ligands. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium in chemistry and nuclear medicine 2. Cortina International, Verona, Italy, pp 73–80Google Scholar
  8. Bandoli G, Mazzi U, Roncari E, Deutsch E (1982) Crystal structures of technetium compounds. Coord Chem Rev 44:210CrossRefGoogle Scholar
  9. Bandoli G, Nicolini M, Mazzi U, Spies H, Muenze R (1984) Synthesis and X-ray crystal structure of tetraethylammonium bis[1,2-di(carbomethoxy)ethane-1,2-dithiolato]oxotechnetate(V). Transition Met Chem 9:127–129CrossRefGoogle Scholar
  10. Bergstein PL, Subramanyam V (1986) Ether isonitriles and radiolabeled complexes thereof. Eur. Patent Appl. EP 86117847.3Google Scholar
  11. Bolzati C, Boschi A, Uccelli L, Tisato F, Refosco F, Cagnolini A, Duatti A, Pracash S, Bandoli G, Vittadini A (2002) Chemistry of the strong electrophilic metal fragment [99Tc(N)(PXP)]2+ (PXP diphosphine ligand). A novel tool for the selective labeling of small molecules. J Am Chem Soc 124:11468–11479PubMedCrossRefGoogle Scholar
  12. Brenner D, Davison A, Lister-James J, Jones AG (1984) Synthesis and characterization of a series of isomeric oxotechnetium(V) diamino dithiolates. Inorg Chem 23:3793–3797CrossRefGoogle Scholar
  13. Burgi HB, Anderegg G, Blauenstein P (1981) Preparation, characterisation, crystal and molecular structure of Na2[N(CH2COO)3Tc(IV)(m-O)2Tc(IV)(H2EDTA)·5H2O. Inorg Chem 20:3829–3834CrossRefGoogle Scholar
  14. Costello CE, Brodack JW, Jones AG, Davison A, Johnson DL, Kasina S, Fritzberg AR (1983) The investigation of radiopharmaceutical components by fast atom bombardment mass spectroscopy: the identification of Tc-HIDA and the epimers of Tc-CO2DADS. J Nucl Med 24:353–355PubMedGoogle Scholar
  15. Coveney JR, Robbins MS (1987) Comparison of technetium-99m MAG3 Kit with HPLC-purified technetium-99m MAG3 and OIH in rats. J Nucl Med 28:1881–1887PubMedGoogle Scholar
  16. Davison A (1983) The coordination chemistry of technetium In: Deutsch E, Nicolini M, Wagner HN Jr (eds) Technetium in chemistry and nuclear medicine 1. Cortina International, Verona, Italy, pp 3–14Google Scholar
  17. Davison A, De Phamphilis BV, Jones AG, Franklin K, Lock CJL (1987) Synthesis and characterization of complexes containing the bis(1,2-thiolato)-oxotechnetium(V) core. Inorg Chim Acta 128:161–167CrossRefGoogle Scholar
  18. Davison A, Jones AG (1982) The chemistry of technetium(V). Int J Appl Radiat Isot 33: 875–881CrossRefGoogle Scholar
  19. Davison A, Jones AG, Orvig C, Sohn M. (1981) A new class of oxotechnetium(V) chelate complexes containing TcON2S2 core. Inorg Chem 20:1629–1632CrossRefGoogle Scholar
  20. Davison A, Sohn M, Orvig C, Jones AG, LaTegola MR (1979) A tetradentate ligand designed specifically to coordinate technetium. J Nucl Med 20:641Google Scholar
  21. De Kieviet W (1981) Technetium radiopharmaceuticals: chemical characterization and tissue bio-distribution of Tc-glucoheptonate using Tc-99m and carrier Tc-99. J Nucl Med 22:703–709PubMedGoogle Scholar
  22. De Pamphilis BV, Jones AG, Davis MA (1974) Preparation and crystal structure of oxotechnetium bis(thiomercaptoacetate) and its relationship to radiopharmaceuticals labeled with 99mTc. J Am Chem Soc 78:5570–5571Google Scholar
  23. Deutsch E, Elder RC, Laarge BA et al (1978) Structural characterization of a bridged technetium-99-tin-dimethylglyoxime complex: implication for the technetium-99m-labeled radiopharmaceuticals prepared by tin(II) reduction of pertechnetate. Proc Natl Acad Sci USA 73:653–660Google Scholar
  24. Deutsch E, Glavan KA, Sodd VJ et al (1981) Cationic Tc-99m complexes as potential myocardial imaging agents. J Nucl Med 22:897–907PubMedGoogle Scholar
  25. Deutsch E, Ketring AR, Libson K, Vanderheyden J-L, Hirth WJ (1989) The Noah’s ark experiment: species-dependent biodistributions of cationic 99mTc complexes. Int J Rad Appl Instrum 16:191–232Google Scholar
  26. Deutsch E, Libson K, Jurisson S, Lindoy LF (1983) Technetium chemistry and technetium radiopharmaceuticals In: Lippard SJ (ed) Progress in inorganic chemistry. Wiley, New York, pp 75–139Google Scholar
  27. Deutsch E, Vanderheyden J-L, Gerundini P, Libson K et al (1987) Development of non reducible technetium-99m(III) cations as myocardial perfusion imaging agents: initial experience in humans. J Nucl Med 28:1870–1880PubMedGoogle Scholar
  28. Deutsch E, Vanderheyden JL, Gerundini P, Libson K, Hirth W, Colombo F, Savi A, Fazio F (1987) Development of nonreducible technetium-99m(III) cations as myocardial perfusion imaging agents: initial experience in humans. J Nucl Med 28:1870–1880PubMedGoogle Scholar
  29. Dewanjee MK (1990) The chemistry of 99mTc-labeled radiopharmaceuticals. In: Seminars in nuclear medicine XX. Saunders, PhiladelphiaGoogle Scholar
  30. Eckelman WC, Meinken G, Richards P (1971) 99mTc-human serum albumin. J Nucl Med 12:707–710PubMedGoogle Scholar
  31. Edwards D, Cheesman E, Watson M, Maheu L, Nguyen S, Dimitre L, Nason T, Watson A, Walovitch R et al (1990) Synthesis and characterization of technetium and rhenium complexes of N,N′-1,2-ethylenediylbis-L-cysteine. Neurolite and its metabolites. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, Italy, p 433Google Scholar
  32. Epps LA, Burns HD, Lever SZ et al (1978) Brain imaging agents: synthesis and characterization of (N-piperidinylethyl)hexamethyl diaminodithiolate oxo-technetium(V) complexes. Int J Appl Radiat Isot 38:661–664Google Scholar
  33. Fair CK, Troutner DE, Schlemper EO, Murmann RK, Hoppe ML (1984) Oxo[3,3′-(1,3-propanediyldiimino)bis(3-methyl-2-butanone oximato)(3)-N,N′,N″,N‴]-technetium(V), [TcO(C13H25N4O2)]. Acta Cryst C40:1544–1546Google Scholar
  34. Franklin KJ, Lock HE, Lock CJL (1982) Preparation, spectroscopic properties and structure of 1-oxo-2,3,6-(D-penicillaminato NSO)-4,5-(D-penicillaminato NS) technetium(V). Inorg Chem 21:1941CrossRefGoogle Scholar
  35. Fritzberg AR (1986) Advances in renal radiopharmaceuticals In: Fritzberg AR (ed) Radiopharmaceuticals: progress and clinical perspectives, vol. I. CRC Press, Boca Raton, pp 61–87Google Scholar
  36. Fritzberg AR, Kasina S, Eshima D, Johnson DL (1986) Synthesis and biological evaluation of technetium-99m MAG3 as a Hippuran replacement. J Nucl Med 27:111–116PubMedGoogle Scholar
  37. Gerson M, Deutsch E, Nishiyma H et al (1983) Myocardial perfusion imaging with 9mTc-DMPE in man. Eur J Nucl Med 8:371–374PubMedCrossRefGoogle Scholar
  38. Gorski B, Koch H (1970) Technetium complex formation with chelate-forming ligands. II. J Inorg Nucl Chem 32:3831–3836CrossRefGoogle Scholar
  39. Harper PV, Lathrop KA, Gottschalk A (1966) Pharmacodynamics of some technetium-99m preparations. In: Andrews GA, Knisely RM, Wagner HN Jr (eds) Radioactive pharmaceuticals. AEC symposium series conf 651111 1966, pp 335–357Google Scholar
  40. Holman BL, Jones AG, Lister-James J et al (1984) A new Tc-99m-labeled myocardial imaging agent, hexakis(t-butylisonitrile)technetium(I) (Tc-99mTBI). Initial experience in the human. J Nucl Med 25:13501355Google Scholar
  41. Ikeda I, Inoue O, Kurata K. (1976) Chemical and biological studies on 99mTc-DMS-II: effect of Sn(II) on the formation of various Tc-DMS complexes. Int J Appl Radiat Isot 27:681–688PubMedCrossRefGoogle Scholar
  42. Ikeda I, Inoue O, Kurata K. (1977a) Preparation of various Tc-99m dimercaptosuccinate complexes and their evaluation as radiotracers. J Nucl Med 18:1222–1229PubMedGoogle Scholar
  43. Ikeda I, Inoue O, Kurata, K (1977b) Chemical and biological studies on 99mTc-DMS-I: formation of complexes by four different methods. Int. J Nucl Med Biol 4:56–65PubMedCrossRefGoogle Scholar
  44. Johannsen B, Spies H (1988) Progress and problems in the chemistry of technetium-99m tracers. Isotopenpraxis 24:449–454Google Scholar
  45. Johannsen B, Spies H, Syhre R (1979) Studies on complexation of 99mTc with dimercaptosuccinic acids with regard to organ specificity of 99mTc-radiopharmaceuticals. Eur J Nucl Med 4:148Google Scholar
  46. Jones AG, Davison A (1982) The chemistry of technetium I, II, III, IV. Int Appl Radiat Isot 33:867–874CrossRefGoogle Scholar
  47. Jones AG, Dionauge GF, Davison A et al (1985) Biological distribution and structure function relationship of hexakis isonitrile Tc(I) complexes (abstract). J Nucl Med All Sci 29:200Google Scholar
  48. Jurisson S, Dancey K, McPartlin M, Tasker P, Deutsch E (1984) Synthesis, characterization, and electrochemical properties of technetium complexes containing both tetradentate Schiff base ligands and monodentate tertiary phopshine ligands: single crystal structure of trans-(N,N′-ethylenebis(acetylacetone-iminato)bis(triphenylphos-phine)-technetium(III)-hexafluoro-phosphate. Inorg Chem 23:4743–4744CrossRefGoogle Scholar
  49. Jurisson S, Schlemper EO, Troutner DE, Canning LR, Nowotnik DP, Neirinckx RD (1987) Synthesis, characterization and X-ray structural determination of Technetium(V)-oxo-tetradentate amine oxime complexes. Inorg Chem 25:3576–3582CrossRefGoogle Scholar
  50. Katti KV, Singh PR, Barnes CL, Katti KK, Kopicka K, Ketring AR, Volkert WA (1993) Organometallic phosphinimines as building blocks for potential new radiopharmaceuticals. Z Naturforsch 486:1381–1386Google Scholar
  51. Kelly JD, Forster AM, Higley B, Archer CM, Booker FS, Canning LR, Chiu KW, Edwards B, Gill HK, McPartlin M, Nagle KR, Latham IA, Pickett RD, Storey AE, Webbon PM (1993) Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med 34:222–227PubMedGoogle Scholar
  52. Leveille J, Demonceau G, De Roo M, Rigo P, Taillefer R, Morgan R, Kupranick D, Walovitch RC (1989) Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 1. Pharmacology of technetium-99m ECD in nonhuman primates. J Nucl Med 30:1892Google Scholar
  53. Lever SZ (1995) Technetium and rhenium compounds. In: Wagner HN Jr, Szabo S, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 213–220Google Scholar
  54. Lever SZ, Burns HD, Kervitsky TM, Goldfarb HW, Woo DV, Wong DF, Epps LA, Kramer AV, Wagner HN Jr (1985) Design, preparation and biodistribution of a technetium-99 diaminodithiol complex to assess regional cerebral blood flow. J Nucl Med 26:1287–1294PubMedGoogle Scholar
  55. Libson K, Deutsch E, Barnett BL (1980) Structural characterisation of a Tc-99 diphosphonate complex. Implication for the chemistry of technetium-99m skeletal imaging agents. J Am Chem Soc 102:2476–2478CrossRefGoogle Scholar
  56. Linder KE (1986) Aminocarboxylate complex of technetium. PhD thesis, Massachusettes Institute of Technology, JuneGoogle Scholar
  57. Loberg MD, Fields AT (1978) Chemical structure of technetium-99m-labeled N-(2,6-dimethyl-phenylcarbamoylmethyl)-iminodiacetic acid (99mTc-HIDA). Int J Appl Radiat Isot 29:167–173CrossRefGoogle Scholar
  58. Marchi A, Garuti P, Duatti A et al (1990) Synthesis of technetium(V)-nitrido complexes with chelating amines: a novel class of monocationic, octahedral complexes containing the [Tc =N] 2+ core. Crystal structures of [TcN(en)2Cl]+ (en = ethylenediamine) and [TcN (tad)Cl]+ (tad= 1,5,8,12-tetraazadodecane). Inorg Chem 29:2091–2096CrossRefGoogle Scholar
  59. Mazzi U (1989) The coordination chemistry of technetium in its intermediate oxidation states. Polyhedron 8:1983–1688CrossRefGoogle Scholar
  60. McAfee JG, Fueger GF, Baggish MS, Holzman GB, Zolle I (1964) 99mTc-labeled serum albumin for scintillation scanning of the placenta. J Nucl Med 5:936–946PubMedGoogle Scholar
  61. McAfee JG, Fueger GF, Stern HS, Wagner HN Jr, Migita T (1964) 99mTc-pertechnetate for brain scanning. J Nucl Med 5:811–827PubMedGoogle Scholar
  62. Morgan G, Deblaton M, Hussein W, Thornback J, Evrard G, Durant F, Stach J, Abram U, Abram S (1991) Rhenium(V) and technetium(V) complexes with N-(2(1H-pyrolmethyl)-H′-(4-pentene-3-one-2)ethane-1,2-diaminate (C12H16N3O, MRP20) — X-ray crystal-structures of H3MRP20 and TcO(MRP20). Inorg Chim Acta 190:257–264CrossRefGoogle Scholar
  63. Morgan GF, Abram U, Evrard G, Durant F, Deblaton M, Clemens P, Vandenbroeck P, Thornback JR (1990) Structural Characterization of the new brain imaging agent [99mTc][Tc0(L)], H3L=N-4-oxopentan-2-ylidene-N’-pyrrol-2-ylmethylen-ethane-l,2-diamine (MRP20). J Chem Soc Chem Comm 24:1772–1773CrossRefGoogle Scholar
  64. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Mariott JA, Chaplin SB (1987) Technetium-99m d,l-HM-PAO: a new radiopharma-ceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 28:191–202PubMedGoogle Scholar
  65. Noll B, Seifert S, Muenze R (1980) New Tc(IV) compounds with nitrilo-triacetic acid. Radiochem Radioanal Lett 43:215–218Google Scholar
  66. Nosco DL, Tofe AJ, Dunn TJ, Lyle LR et al (1989) New developments in radiopharmaceuticals at Mallinckrodt. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, Italy, pp 381–392Google Scholar
  67. Nowotnik DP (1994) Physico-chemical concepts in the preparation of radiopharmaceuticals In: Sampson CB (ed) Textbook of radiopharmacy: theory and practice, second enlarged edition. Gordon and Breach, ReadingGoogle Scholar
  68. Nunn AD, Loberg MD, Conley RA (1983) A structure-distribution-relationship approach leading to the development of Tc-99m-mebrofenin: an improved cholescintigraphic agent. J Nucl Med 24:423–430PubMedGoogle Scholar
  69. Nunn AD, Treher EN, Feld T (1986) Boronic acid adducts of technetium oxime complexes (BATOs), a new class of neutral complexes with myocardial imaging capabilities. J Nucl Med 27:893Google Scholar
  70. Pasqualini R, Comazzi V, Bellande E, Duatti A, Marchi A (1992) A new efficient method for the preparation of 99mTc-radiopharmaceuticals containing the Tc ≡ N multiple bond. Int J Appl Radiat Isot 43:1329–1333CrossRefGoogle Scholar
  71. Pasqualini R. Duatti A, Bellande E, Comazzi V, Brucato V et al (1994) Bis(dithiocarbamato)nitrido technetium-99m radiopharmaceuticals. A class of neutral myocardial imaging agents. J Nucl Med 35:334–341PubMedGoogle Scholar
  72. Peacock RD (1966) The chemistry of technetium and rhenium. Elsevier, LondonGoogle Scholar
  73. Perrier C, Segrè E (1937) Radioactive isotopes of element 43. Nature 140:193–194Google Scholar
  74. Perrier C, Segrè E (1947) Technetium: the element of atomic number 43. Nature 159:24 (Letter)Google Scholar
  75. Richards P (1966) Nuclide generators. In: Radioactive pharmaceuticals. USAEC symposium series, no. 6, (CONF-651111), Oak Ridge, Tenn., pp 155–163Google Scholar
  76. Rimmer J (1982) Radiopharmaceutical composition based on technetium-99m and the reagent for making it. Eur Patent Appl EP 78,642Google Scholar
  77. Schibli R, Labela R, Alberto R, Garcia-Garayoa E, Ortner K, Abram U, Schubiger PA (2000) Influence of the denticity of ligand systems on the in vitro and in vivo behavior of Tc-99m(I)-tricarbonyl complexes: a hint for the future functionalization of biomole-cules. Bioconjugate Chem 11:345–351CrossRefGoogle Scholar
  78. Schwochau K (1983) The present status of technetium chemistry. Radiochim Acta 32:139–152Google Scholar
  79. Segrè E, Seaborg GT (1938) Nuclear isomerism in element 43. Phys Rev 54:772CrossRefGoogle Scholar
  80. Seifert S, Noll B, Muenze R (1982) Studies of the complex formation of technetium(IV) with ami-nopolycarboxylic acids in aqueous solution. Int J Appl Radiat Isot 33:1391–1398CrossRefGoogle Scholar
  81. Sharp PF, Smith FW, Gemmel HG, Lyall D, Evans NTS, Gvozdanovic D, Davidson J, Tyrrell DA, Pickett RD, Neirinckx RD (1986) Technetium-99m HM-PAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies. J Nucl Med 27:171–177PubMedGoogle Scholar
  82. Singh PR, Ketring AR, Volkert WA, Katti KV (1996) Potential of phosphinimines and phosphinimine-containing polymers as scavenging agents for the extraction of 99TcC4 from aqueous media. In: Bandoli G, Mazzi U, Nicolini M, SG Editoriali (eds) Technetium and rhenium in chemistry and nuclear medicine 4. Padova, Italy, pp 239–242Google Scholar
  83. Spies H, Johannsen B, Muenze R (1980) Kinetics investigations on the reaction of technetium(V)-gluconate with meso-dimercaptosuccinic acid and meso-dimercapto-succinic acid dimethylester. Radiochemical Radioanal Lett 43:311–318Google Scholar
  84. Steigman J, Eckelman WC (1992) The chemistry of technetium in medicine. National Academy Press, Washington, DCGoogle Scholar
  85. Steigman J, Meinken G, Richards P (1975) Reduction of pertechnetate-99 by stannous chloride. I. Stoichiometry of the reaction in hydrochloric acid, in a citrate buffer, and in a DTPA buffer. Int J Appl Radiat Isot 26:601–609CrossRefGoogle Scholar
  86. Stern HS, McAfee JG, Subramanian G (1966) Preparation, distribution and utilization of technetium-99m-sulfur colloid. J. Nucl Med 7:655–675Google Scholar
  87. Stern HS, Zolle I, McAfee JG (1965) Preparation of 99mTc-labeled serum albumin. Int J Appl Radiat Isot 16:283–288PubMedCrossRefGoogle Scholar
  88. Subramanian G, McAfee JG, Blair RG, Kallfelz FA, Thomas FD (1975) Technetium-99m-methylene-diphosphonate-a superior agent for skeletal imaging: comparison with other technetium complexes. J Nucl Med 16:744–755PubMedGoogle Scholar
  89. Tofe AJ, Bevan JA, Fawzi MB, Francis MD, Silberstein EB, Alexander GA, Gunderson DE, Blair K (1980) Gentisic acid: a new stabilizer for low tin skeletal imaging agents: concise communication. J Nucl Med 21:366–370PubMedGoogle Scholar
  90. Tofe AJ, Francis MD (1976) In vitro stabilization of a low tin bone imaging kit. J Nucl Med 16:414–422Google Scholar
  91. Treher EN, Francesconi LC, Gougoutas JZ, Malley M, Nunn A (1989) Mono-capped tris dioxime complexes of technetium (III): synthesis and structural characterization of TCX (dioxime)3, B-R (X=Cl, Br; dioximedimethylglyoxime cyclohexanedioxime; R=CH3, C4H9). Inorg Chem 28:3411–3416CrossRefGoogle Scholar
  92. Troutner DE, Volkert WA, Hoffman TJ, Holmes RA (1984) A neutral lipophilic complex of 99mTc with a multidentate amine oxime. Int J Appl Radiat Isot 35:467–470PubMedCrossRefGoogle Scholar
  93. Tweedle MF (1983) Accelerators for forming cationic technetium complexes useful as diagnostic agents. Int. Patent Appl. PCT 83,02,615Google Scholar
  94. Van den Brand JAGM, Das HA, Dekker B, De Ligny CL (1981) The gel chromatographic separation and identification of the Tc(Sn) HEDP complexes using the radiotracers 32P, 99mTc, 18Sn. Int J Appl Radiat Isot 32:637CrossRefGoogle Scholar
  95. Verbruggen A, Bormans G, Cleynhens B, Hoogmartens M, Vandecruys A, De Roo M (1989) Separation of the enantiomers of technetium-99m-MAG3 and their renal excretion in baboons and a volunteer. Nuklearmedizin 25:436–439Google Scholar
  96. Verbruggen A, Bormans G, Van Nerom C, Cleynhens B, Crombez D, De Roo M (1989) Isolation of the mono-ester mono-acid derivatives of 99mTc-ECD and their biodistribution in mice. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, Italy, pp 445–452Google Scholar
  97. Wackers FJTh, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, Boucher CA, Picard M, Holman BL, Fridrich R, Inglese E, Delaloye B, Bischof-Delaloye A, Camin L, McKusick K (1989) Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 30:301–311PubMedGoogle Scholar
  98. Watson AD, Tulip TH, Roe DC (1987) The synthesis, characterization and multinuclear NMR studies of a technetium bisaminebisthiol complex: a new radiopharmaceutical precursor. In: Nicoli-ni M, Bandoli G, Mazzi U (eds) Technetium in chemistry and nuclear medicine 2. Cortina International, Verona, Italy, 61–64Google Scholar
  99. Yokoyama A, Hata N, Horiuchi K, Matsuda H, Saji H, Ohta H et al (1985) The design of a pentava-lent 99mTc-dimercaptosuccinate complex as a tumor imaging agent. J Nucl Med 12:273–279Google Scholar
  100. Yokoyama A, Horiuchi K, Hata N et al (1979) Technetium in technetium-99m radiopharmaceuticals. I. Tetravalent mononuclear technetium penicillamine complex. J Labeled Compd Radiopharm 16:80–81Google Scholar
  101. Zuckman SA, Freeman GM, Troutner DE, Volkert WA, Holmes RA, Van Derveer DG, Barefield EK (1981) Preparation and X-ray structure of trans-dioxo(l,4,8,ll-tetraazacyclotetradecane)technetium(V) perchlorate hydrate. Inorg Chem 20:2386–2389CrossRefGoogle Scholar

Further Reading

  1. Deutsch E, Nicolini M, Wagner HN Jr, (1983) Technetium in chemistry and nuclear medicine 1. Cortina International, Verona, ItalyGoogle Scholar
  2. Nicolini M, Bandoli G, Mazzi U (1986) Technetium in chemistry and nuclear medicine 2. Cortina International, Verona, ItalyGoogle Scholar
  3. Nicolini M, Bandoli G, Mazzi U (1990) Technetium and rhenium in chemistry and nuclear medicine 3. Cortina International, Verona, ItalyGoogle Scholar
  4. Nicolini M, Bandoli G, Mazzi U (1996) Technetium and rhenium in chemistry and nuclear medicine 4. SG Editoriali, Padova, ItalyGoogle Scholar
  5. Nicolini M, Bandoli G, Mazzi U (1999) Technetium, rhenium and other metals in chemistry and nuclear medicine 5. SG Editoriali, Padova, ItalyGoogle Scholar
  6. Nicolini M, Mazzi U (2002) Technetium, rhenium and other metals in chemistry and nuclear medicine 6. SG Editoriali, Padova, ItalyGoogle Scholar


  1. Alberto R, Schibli R, Egli A, Schubiger PA, Herrmann WA, Artus G, Abram U, Kaden TA (1995) Metal carbonyl syntheses XXII. Low-pressure carbonylation of [MOCl4] and [MO4]: the technetium (I) and rhenium (I) complexes [NEt4]2[MCl3(CO)3]. J Organomet Chem 493:119–127CrossRefGoogle Scholar
  2. Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA (1998) A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [9mTc(OH2)3 (CO)3]+ from (TcO4) in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc 120:7987–7988CrossRefGoogle Scholar
  3. Alberto R, Schibli R, Schubiger AP, Abram U, Pietzsch HJ, Johannsen B (1999) First application of fac-[99mTc(OH2)3(CO)3]+ in bioorganometallic chemistry: design, structure, and in vitro affinity of a 5-HT1A receptor ligand labeled with Tc-99m. J Am Chem Soc 121:6076–6077CrossRefGoogle Scholar
  4. Alberto R, Schibli R, Waibel R, Abram U, Schubiger AP (1999) Basic aqueous chemistry of M(OH2)3(CO)3+ (M Re, Tc) directed towards radiopharmaceutical application. Coord Chem Rev 192:901–919CrossRefGoogle Scholar
  5. Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger AP (2001) Synthesis and properties of boranocarbonate: A convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3 (CO)3]+. J Am Chem Soc 123:3135–3136PubMedCrossRefGoogle Scholar
  6. Alberto R, Pak JK, van Staveren D, Mundwiler S, Benny P (2004) Mono-, bi-, or tridentate ligands? The labeling of peptides with Tc-99m-carbonyls. Biopolymers 76:324–333PubMedCrossRefGoogle Scholar
  7. Alves S, Paulo A, Correia JDG, Gano L, Smith CJ, Hoffman TJ, Santos I (2005) Pyrazolyl derivatives as bifunctional chelators for labeling tumour-seeking peptides with the fao-M(CO)3+ moiety (M = Tc-99m, Re): synthesis, characterization, and biological behavior. Bioconjugate Chem 16:438–449CrossRefGoogle Scholar
  8. Amann A, Decristoforo C, Ott I, Wenger M, Bader D, Alberto R, Putz G (2001) Surfactant protein B labelled with 99mTc(CO)3(H2O)3+ retains biological activity in vitro. Nucl. Med. Biol. 28:243–250PubMedCrossRefGoogle Scholar
  9. Arterburn JB, Corona C, Rao KV, Carlson KE, Katzenellenbogen JA (2003) Synthesis of 17-alpha-substituted estradiol-pyridin-2-yl hydrazine conjugates as effective ligands for labeling with Alberto’s complex fac-Re(OH2)3(CO)3+ in water. J Org Chem 68:7063–7070PubMedCrossRefGoogle Scholar
  10. Banerjee SR, Levadala MK, Lazarova N, Wei LH, Valliant JF, Stephenson KA, Babich JW, Maresca KP, Zubieta J (2002) Bifunctional single amino acid chelates for labeling of biomolecules with the [Tc(CO)3]+ and [Re(CO)3]+ cores. Crystal and molecular structures of ReBr(CO)3(H2NCH2C5H4N), Re(CO)3[(C5H4NCH2)2NH] Br, Re(CO)3[(C5H4NCH2)2NCH2CO2H] Br, Re(CO)3[X(Y)NCH2-CO2CH2CH3] Br (XY=2-pyridylmethyl; X=2-pyridyimethyl, Y=2-(l-methylimidazolyl)methyl; XY=2-(l-methylimidazolyl)methyl), ReBr(CO)3[(C5H4NCH2)NH(CH2C4H3S)], and Re(CO)3 [(C5H4NCH2)N(CH2C4H3S)(CH2CO2)]. Inorg Chem 41:6417–6425PubMedCrossRefGoogle Scholar
  11. Banerjee SR, Babich JW, Zubieta J (2004) Bifunctional chelates with aliphatic amine donors for labeling of biomolecules with the [Tc(CO)3]+ and [Re(CO)3]+ cores: the crystal and molecular structure of Re(CO)3[(H2NCH2CH2)2N(CH2)4CO2Me]. Br Inorg Chem Commun 7:481–484CrossRefGoogle Scholar
  12. Banerjee SR, Babich JW, Zubieta J (2005a) Site directed maleimide bifunctional chelators for the M(CO)3+ core (M=Tc-99m, Re). Chemical Commun 13:1784–1786CrossRefGoogle Scholar
  13. Banerjee SR, Schaffer P, Babich JW, Valliant JF, Zubieta J (2005b) Design and synthesis of site directed maleimide bifunctional chelators for technetium and rhenium. Dalton Transactions 3886–3897Google Scholar
  14. Bernard J, Ortner K, Spingler B, Pietzsch HJ, Alberto R (2003) Aqueous synthesis of derivatized cyclopentadienyl complexes of technetium and rhenium directed toward radiopharmaceutical application. Inorg Chem 42:1014–1022PubMedCrossRefGoogle Scholar
  15. Biechlin ML, d’Hardemare AD, Fraysse M, Gilly FN, Bonmartin A (2005) Improvement in radiolabelling proteins with the Tc-99m-tricarbonyl-core 99mTc(CO)3+, by thiol-derivatization with iminothiolane: application to gamma-globulins and annexin V. J Labelled Compd Radiopharm 48:873–885CrossRefGoogle Scholar
  16. Bigott HM, Parent E, Luyt LG, Katzenellenbogen JA, Welch MJ (2005) Design and synthesis of functionalized cyclopentadienyl tricarbonylmetal complexes for technetium-94m PET imaging of estrogen receptors. Bioconjugate Chem 16:255–264CrossRefGoogle Scholar
  17. Blauenstein P, Garayoa EG, Ruegg D, Blanc A, Tourwe D, Beck-Sickinger A, Schubiger PA (2004) Improving the tumor uptake of Tc-99m-labeled neuropeptides using stabilized peptide analogues. Cancer Biother Radiopharml 9:181–188CrossRefGoogle Scholar
  18. Bruehlmeier M, Garayoa EG, Blanc A, Holzer B, Gergely S, Tourwe D, Schubiger PA, Blauenstein P (2002) Stabilization of neurotensin analogues: effect on peptide catabolism, biodistribution and tumor binding. Nucl Med Biol 29:321–327PubMedCrossRefGoogle Scholar
  19. Correia JDG, Domingos A, Santos I, Alberto R, Ortner K (2001) Re tricarbonyl complexes with ligands containing P,N,N and P,N,O donor atom sets: synthesis and structural characterization. Inorg Chem 40:5147–5151PubMedCrossRefGoogle Scholar
  20. Deyev SM, Waibel R, Lebedenko EN, Schubiger AP, Pluckthun A (2003) Design of multivalent complexes using the barnase-barstar module. Nat Biotechnol 21:1486–1492PubMedCrossRefGoogle Scholar
  21. Egli A, Hegetschweiler K, Alberto R, Abram U, Schibli R, Hedinger R, Gramlich V, Kissner R, Schubiger PA (1997) Hydrolysis of the organometallic aqua ion fac-triaquatricarbonylrhenium(I). Mechanism, pKa, and formation constants of the polynuclear hydrolysis products. Organometallics 16:1833–1840CrossRefGoogle Scholar
  22. Egli A, Alberto R, Tannahill L, Schibli R, Abram U, Schaffland A, Waibel R, Tourwe D, Jeannin L, Iterbeke K, Schubiger PA (1999) Organometallic Tc-99m-aquaion labels peptide to an unprecedented high specific activity. J Nuc Med 40:1913–1917Google Scholar
  23. Garcia R, Paulo A, Domingos A, Santos I, Ortner K, Alberto R (2000) Re and Tc complexes containing B—H·M agostic interactions as building blocks for the design of radiopharmaceuticals. J Am Chem Soc 122:11240–11241CrossRefGoogle Scholar
  24. Garcia-Garayoa E, Allemann-Tannahill L, Blauenstein P, Willmann M, Carrel-Remy N, Tourwe D, Iterbeke K, Conrath P, Schubiger PA (2001) In vitro and in vivo evaluation of new radiolabeled neurotensin(8–13) analogues with high affinity for NT1 receptors. Nucl Med Biol 28:75–84PubMedCrossRefGoogle Scholar
  25. Garcia R, Xing YH, Paulo A, Domingos A, Santos I (2002) Rhenium(I) tricarbonyl complexes with mercaptoimidazolylborate ligands bearing piperazine fragments. Dalton Transactions 22:4236–4241Google Scholar
  26. Garcia-Garayoa E, Blauenstein P, Bruehlmeier M, Blanc A, Iterbeke K, Conrath P, Tourwe D, Schubiger PA (2002) Preclinical evaluation of a new, stabilized neurotensin(8–13) pseudopeptide radiolabeled with Tc-99m. J Nuc Med 43:374–383Google Scholar
  27. He HY, Lipowska M, Xu XL, Taylor AT, Carlone M, Marzilli LG (2005) Re(CO)3 complexes synthesized via an improved preparation of aqueous fac-Re(CO)3(H2O)3+ as an aid in assessing Tc-99m imaging agents. Structural characterization and solution behavior of complexes with thioether-bearing amino acids as tridentate ligands. Inorg Chem 44:5437–5446PubMedCrossRefGoogle Scholar
  28. Karagiorgou O, Patsis G, Pelecanou M, Raptopoulou CP, Terzis A, Siatra-Papastaikoudi T, Alberto R, Pirmettis I, Papadopoulos M (2005) S-(2-(2′-pyridyl)ethyl)cysteamine and S(2-(2′-pyridyl)ethyl)-D, L-homocysteine as ligands for the “fac-M(CO)3+” (M = Re,99mTc) Core Inorg Chem 44:4118–4120Google Scholar
  29. Kunze S, Zobi T, Kurz P, Spingler B, Alberto R (2004) Vitamin B12 as a ligand for technetium and rhenium complexes. Angew Chem Int Edit 43:5025–5029CrossRefGoogle Scholar
  30. La Bella R, Garcia-Garayoa E, Bahler M, Blauenstein P, Schibli R, Conrath P, Tourwe D, Schubiger PA (2002a) A Tc-99m(I)-postlabeled high affinity bombesin analogue as a potential tumor imaging agent. Bioconjugate Chem 13:599–604CrossRefGoogle Scholar
  31. La Bella R, Garcia-Garayoa E, Langer M, Blauenstein P, Beck-Sickinger AG, Schubiger PA (2002b) In vitro and in vivo evaluation of a Tc-99m(I)-labeled bombesin analogue for imaging of gastrin releasing peptide receptor-positive tumors. Nucl Med Biol 29:553–560PubMedCrossRefGoogle Scholar
  32. Langer M, La Bella R, Garcia-Garayoa E, Beck-Sickinger AG (2001) Tc-99m-labeled neuropeptide Y analogues as potential tumor imaging agents. Bioconjugate Chem 12:1028–1034CrossRefGoogle Scholar
  33. Lazarova N, Babich J, Valliant J, Schaffer P, James S, Zubieta J (2005) Thiol-and thioether-based bifunctional chelates for the [M(CO)3+ core (MTc, Re). Inorg Chem 44:6763–6770PubMedCrossRefGoogle Scholar
  34. Lipowska M, Cini R, Tamasi G, Xu XL, Taylor AT, Marzilli LG (2004) Complexes having the fac-[M(CO)3]+ core (M = Tc,Re) useful in radiopharmaceuticals: X-ray and NMR structural characterization and density functional calculations of species containing two sp3 N donors and one sp3 O donor. Inorg Chem 43:7774–7783PubMedCrossRefGoogle Scholar
  35. Luyt LG, Bigott HM, Welch MJ, Katzenellenbogen JA (2003) 7 alpha-and 17 alpha-substituted estrogens containing tridentate tricarbonyl rhenium/technetium complexes: Synthesis of estrogen receptor imaging agents and evaluation using MicroPET with technetium-94m. Bioorg Med Chem 11:4977–4989PubMedCrossRefGoogle Scholar
  36. Mandal SK, Ho DM, Qing LG, Orchin M (1998) The preparation and crystal structure of (dppe) (CO)3Re-OC(O)O-Re(CO)3(dppe). Polyhedron 17:607–611CrossRefGoogle Scholar
  37. Marmion ME, Alberto R, Bugaj J, Chinen L, Schmidt M, Srinivasan A (1999) Preparation and biodistribution of [99mTc(CO)3His0,Tyr3]octreotate. J Labelled Compd Radiopharm 42:S231–S233Google Scholar
  38. Müller C, Hofmann U, Schubiger AP, Schibli R (2004) Organometallic 99mTc-technetium(I)-and Re-rhenium(I) folate derivatives for potential use in nuclear medicine. J Organomet Chem 289:4712–4721CrossRefGoogle Scholar
  39. Mundwiler S, Candreia L, Hafliger P, Ortner K, Alberto R (2004) Preparation of no-carrier-added technetium-99m complexes via metal-assisted cleavage from a solid phase. Bioconjugate Chem 15:195–202CrossRefGoogle Scholar
  40. Mundwiler S, Kundig M, Ortner K, Alberto R (2004) A new 2+1 mixed ligand concept based on 99mTc (OH2)3(CO)3+: a basic study. Dalton Transactions 1320–1328Google Scholar
  41. Mundwiler S, Waibel R, Spingler B, Kunze S, Alberto R (2005) Picolylamine-methylphosphonic acid esters as tridentate ligands for the labeling of alcohols with the fac-M(CO)3+ core (M=Tc-99m, Re): synthesis and biodistribution of model compounds and of a Tc-99m-labeled cobinamide. Nucl Med Biol 32:473–484PubMedCrossRefGoogle Scholar
  42. Murray A, Simms MS, Scholfield DP, Vincent RM, Denton G, Bishop MC, Price MR, Perkins AC (2001) Production and characterization of Re-188-C595 antibody for radioimmunotherapy of transitional cell bladder cancer. J Nucl Med 42:726–732PubMedGoogle Scholar
  43. Park SH, Seifert S, Pietzsch HJ (2006) Novel and efficient preparation of precursor Re-[188Re (H2O)3(CO)3]+ for the labeling of biomolecules. Bioconjugate Chem 17:223–225CrossRefGoogle Scholar
  44. Pietzsch HJ, Gupta A, Reisgys M, Drews A, Seifert S, Syhre R, Spies H, Alberto R, Abram U, Schubiger PA, Johannsen B (2000) Chemical and biological characterization of technetium(I) and rhenium(I) tricarbonyl complexes with dithioether ligands serving as linkers for coupling the Tc(CO)3 and Re(CO)3 moieties to biologically active molecules. Bioconjugate Chem 11:414–424CrossRefGoogle Scholar
  45. Schibli R, Katti KV, Higginbotham C, Volkert WA, Alberto R (1999) In vitro and in vivo evaluation of bidentate, water-soluble phosphine ligands as anchor groups for the organometallic fac-[99mTc(CO)3]+core. Nucl Med Biol 26:711–716PubMedCrossRefGoogle Scholar
  46. Schibli R, La Bella R, Alberto R, Garcia-Garayoa E, Ortner K, Abram U, Schubiger PA (2000) Influence of the denticity of ligand systems on the in vitro and in vivo behavior of Tc-99m(I)-tricar-bonyl complexes: a hint for the future functionalization of biomolecules. Bioconjugate Chem 11:345–351CrossRefGoogle Scholar
  47. Schibli R, Schwarzbach R, Alberto R, Ortner K, Schmalle H, Dumas C, Egli A, Schubiger AP (2002) Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [188Re(H2O)3(CO)3]+ and synthesis of tailor-made bifunctional ligand systems. Bioconjugate Chem 13:750–756CrossRefGoogle Scholar
  48. Smith CJ, Sieckman GL, Owen NK, Hayes DL, Mazuru DG, Kannan R, Volkert WA, Hoffman TJ (2003a) Radiochemical investigations of gastrin-releasing peptide receptor-specific 99mTc(X)(CO)3-Dpr-Ser-Ser-Ser-Gln-Trp-Ala-Val-Gly-His-Leu-Met-(NH2) in PC-3, tumor-bearing, rodent models: syntheses, radiolabeling, and in vitro/in vivo studies where Dpr = 2,3-diaminopropionic acid and XH2O or P(CH2OH)3. Cancer Res 63:4082–4088PubMedGoogle Scholar
  49. Smith CJ, Sieckman GL, Owen NK, Hayes DL, Mazuru D, Volkert WA, Hoffman TJ (2003b) Radio-chemical investigations of 188Re(H2O)(CO)3-diaminopropionic acid-SSS-bombesin(7–14)NH2: syntheses, radiolabeling and in vitro/In vivo GRP receptor targeting studies. Anticancer Res 23:63–70PubMedGoogle Scholar
  50. Sogbein OO, Merdy P, Morel P, Valliant JF (2004) Preparation of Re(I)-and Tc-99m(I)-metallocar-boranes in water under weakly basic reaction conditions. Inorg Chem 43:3032–3034PubMedCrossRefGoogle Scholar
  51. Sogbein OO, Green AEC, Schaffer P, Chankalal R, Lee E, Healy BD, Morel P, Valliant JF (2005a) Synthesis of ortho-and meta-Re(I)-metallocarboranes in water. Inorg Chem 44:9574–9584PubMedCrossRefGoogle Scholar
  52. Sogbein OO, Green AEC, Valliant JF (2005b) Aqueous fluoride and the preparation of 99mTc(CO)3(OH2)3+ and Tc-99m-carborane complexes. Inorg Chem 44:9585–9591PubMedCrossRefGoogle Scholar
  53. Maresca KP (2003) Bifunctional single amino acid chelates (SAAC) as synthons for the solid phase synthesis of Tc(I) and Re(I) radiopharmaceuticals. J Nucl Med 44:48P–48PGoogle Scholar
  54. Staveren DR van, Benny PD, Waibel R, Kurz P, Pak JK, Alberto R (2005) I-functionalized cysteine: powerful ligands for the labelling of bioactive molecules with triaquatricarbonyltechnetium-99m 99mTc(CO)3(H2O)3+. Helv Chim Acta 88:447–460CrossRefGoogle Scholar
  55. Staveren DR van, Mundwiler S, Hoffmanns U, Pak JK, Spingler B, Metzler-Nolte N, Alberto R (2004) Conjugation of a novel histidine derivative to biomolecules and labelling with 99mTc(CO)3(H2O)3+. Org Biomol Chem 2:2593–2603PubMedCrossRefGoogle Scholar
  56. Staveren DR van, Waibel R, Mundwiler S, Schubiger PA, Alberto R (2004) Conjugates of vitamin B12 with N-epsilon-functionalized histidine for labeling with [99mTc(OH2)3(CO)3]+: synthesis and biodistribution studies in tumor bearing mice. J Organomet Chem 689:4803–4810CrossRefGoogle Scholar
  57. Stephenson KA, Banerjee SR, Besanger T, Sogbein OO, Levadala MK, McFarlane N, Lemon JA, Boreham DR, Maresca KP, Brennan JD, Babich JW, Zubieta J, Valliant JF (2004) Bridging the gap between in vitro and in vivo imaging: isostructural Re and Tc-99m complexes for correlateing fluorescence and radioimaging studies. J Am Chem Soc 126:8598–8599PubMedCrossRefGoogle Scholar
  58. Stephenson KA, Valliant JF, Zubieta J, Banerjee SR, Levadala MK, Taggart L, Ryan L, McFarlane N, Boreham DR, Babich JW, Stephenson KA, Zubieta J, Banerjee SR, Levadala MK, Taggart L, Ryan L, McFarlane N, Boreham DR, Maresca KP, Babich JW, Valliant JF (2004) A new strategy, for the preparation of peptide-targeted radiopharmaceuticals based on ion of peptide-targeted an Fmoc-lysine-derived single amino acid chelate (SAAC). Automated solid-phase synthesis, NMR characterization, and in vitro screening of fMLF(SAAC)G and fMLF (SAAC-Re(CO)3)+G. Bio-conjugate Chem 15:128–136Google Scholar
  59. Stichelberger A, Waibel R, Dumas C, Schubiger PA, Schibli R (2003) Versatile synthetic approach to new bifunctional chelating agents tailor made for labeling with the fac-[M(CO)3]+ core (M = Tc, 99mTc, Re): synthesis, in vitro, and in vivo behavior of the model complex [M(APPA)(CO)3] (appa[(5-amino-pentyl)-pyridin-2-yl-methyl-amino]-acetic acid). Nucl Med Biol 30:465–470PubMedCrossRefGoogle Scholar
  60. Tait JF, Smith C, Gibson DF (2002) Development of annexin V mutants suitable for labeling with Tc(I)-carbonyl complex. Bioconjugate Chem 13:1119–1123CrossRefGoogle Scholar
  61. Waibel R, Novak-Hofer I, Schibli R, Blauenstein P, Garcia-Garayoa E, Schwarzbach R, Zimmer-mann K, Pellikka R, Gasser O, Blanc A, Bruhlmeier M, Schubiger PA (2000) Radiopharmaceuticals for targeted tumor diagnosis and therapy. Chimia 54:683–688Google Scholar
  62. Waibel R, Stichelberger R, Alberto R, Schubiger PA, Chester KA, Begent RHJ (2000) Site-directed labelling of single chain antibodies with 99(m)technetium and (188)rhenium. Eur J Nucl Med 27:15Google Scholar
  63. Wald J, Alberto R, Ortner K, Candreia L (2001) Aqueous one-pot synthesis of derivatized cyclo-pentadienyl-tricarbonyl complexes of Tc-99m with an in situ CO source: application to a serotonergic receptor ligand. Angew Chem Int Edit 40:3062–3066CrossRefGoogle Scholar
  64. Wei LH, Babich J, Zubieta J (2005) Bifunctional chelates with mixed aromatic and aliphatic amine donors for labeling of biomolecules with the [Tc(CO)3]+ and [Re(CO)3]+-cores. Inorg Chim Acta 358:3691–3700CrossRefGoogle Scholar
  65. Wenzel M (1992) Tc-99m Labeling of cymantrene-analogs with different substituents — a new approach to Tc-99m radiodiagnostics. J Labelled Compd Radiopharm 31:641–650CrossRefGoogle Scholar
  66. Wenzel M, Saidi M (1993) Esters of Tc-99m labeled cytectrenecarboxylic acid with alcohols of cyclic amines as cerebral radiodiagniostic agents. J Labelled Compd Radiopharm 33:77–80CrossRefGoogle Scholar
  67. Wenzel M, Klinge C (1994) Tc-99m-labeled estradiol derivatives — synthesis, organ distribution and tumour affinity. J Labelled Compd Radiopharm 34:981–987CrossRefGoogle Scholar
  68. Wester HJ (2003) Carbohydrated peptides. Cancer Biother Radiopharml 8:277–277Google Scholar
  69. Wester HJ, Schottelius M, Schwaiger M (2001) 99mTc(CO)3-labeled carbohydrated SSTR-ligands: synthesis, internalization kinetics and biodistribution on a rat pancreatic tumor model. J Nucl Med 42:115P–115PGoogle Scholar
  70. Willuda J, Honegger A, Waibel R, Schubiger AP, Stahel R, Zangemeister-Wittke U, Pluckthun A (1999) High thermal stability is essential for tumour targeting of antibody fragments: Engineering of a humanized anti-epitelial glycoprotein-2 (epitelial cell adhesion molecule) single-chain Fv fragment. Cancer Res 59:5758–5767PubMedGoogle Scholar
  71. Willuda J, Kubetzko S, Waibel R, Schubiger PA, Zangemeister-Wittke U, Pluckthun A (2001) Tumour targeting of mono-, di-, and tetravalent Anti-pl85(HER-2) miniantibodies multimerized by self-associating peptides. J Biol Chem 276:14385–14392PubMedGoogle Scholar
  72. Wust F, Carlson KE, Katzenellenbogen JA, Spies H, Johannsen B (1998) Synthesis and binding affinities of new 17 alpha-substituted estradiol-rhenium “n+1” mixed-ligand and thioethercarbonyl complexes. Steroids 63:665–671PubMedCrossRefGoogle Scholar
  73. Wust F, Skaddan MB, Leibnitz P, Spies H, Katzenellenbogen JA, Johannsen B (1999) Synthesis of novel progestin-rhenium conjugates as potential ligands for the progesterone receptor. Bioorg Med Chem 7:1827–1835PubMedCrossRefGoogle Scholar


  1. Abrams MJ, Juweid M, tenKate CI et al (1990) Technetium-99m-human polyclonal IgG radiola-belled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med 31:2022–2028PubMedGoogle Scholar
  2. Alberto R, Schibli R, Schubiger PA et al (1999) First application of fac-[99mTc(OH2)3(CO)3]+ in bioorganometallic chemistry: design, structure, and in vitro affinity of a 5-HT1A receptor ligand labelled with 99mTc. J Am Chem Soc 121:6076–6077CrossRefGoogle Scholar
  3. Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger PA (2001) Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc 123:3135–3136PubMedCrossRefGoogle Scholar
  4. Aloj L, Morelli G (2004) Design, synthesis and preclinical evaluation of radiolabeled peptides for diagnosis and therapy. Curr Pharm Design 10:3009–3031CrossRefGoogle Scholar
  5. Aprile C, Marinone G, Saponaro R et al (1995) Cardiac and pleuropulmonary AL amyloid imaging with technetium-99m labelled aprotinin. Eur J Nucl Med 22:1393–1401PubMedCrossRefGoogle Scholar
  6. Babich JW, Coco WG, Barrow S et al (2000) 99mTc-labelled chemotactic peptides: influence of coligand on distibution of molecular species and infection imaging properties. Synthesis and structural characterization of model complexes with the [Re(η 2-HNNC5H4N) (η 1-NNC5H4N)] core. Inorg Chim Acta 309:123–136CrossRefGoogle Scholar
  7. Babich JW, Graham W, Femia FJ et al (2001) 6-Mercaptomethylpyridine-3-carboxylic acid (MEMNIC): a new reagent for peptide labelling with Tc-99m. Inorg Chim Acta 323:23–36CrossRefGoogle Scholar
  8. Ballinger JR (2002) The influence of carrier on 99mTc radiopharmaceuticals. Q J Nucl Med 46: 224–232PubMedGoogle Scholar
  9. Bangard M, Behe M, Guhlke S et al (2000) Detection of somastotatin receptor-positive tumors using the new 99mTc-tricine-HYNIC-d-Phe1-Tyr3-octreotide: first results in patients and comparison with 111In-DTPA-d-Phe1-octreotide. Eur J Nucl Med 27:628–637PubMedCrossRefGoogle Scholar
  10. Baraldi PG, Romagnoli R, Duatti A et al (2000) Synthesis of hybrid distamycin-cysteine labelled with 99mTc: a model for a novel class of cancer imaging agents. Bioorg Med Chem Lett 10:1397–1400PubMedCrossRefGoogle Scholar
  11. Becker W, Emmrich F, Horneff G et al (1990) Imaging rheumatoid arthritis specifically with tech-netium 99m CD4-specific (T-helper lymphocytes) antibodies. Eur J Nucl Med 17:156–159PubMedCrossRefGoogle Scholar
  12. Bernard J, Ortner K, Spingler B et al (2003) Aqueous synthesis of derivatized cyclopentadienyl complexes of technetium and rhenium directed toward radiopharmaceutical application. Inorg Chem 42:1014–1022PubMedCrossRefGoogle Scholar
  13. Blankenberg FG, Mandl S, Cao YA et al (2004) Tumor imaging using a standardized radiolabelled adapter protein docked to vascular endothelial growth factor. J Nucl Med 45:1373–1380PubMedGoogle Scholar
  14. Blum JE, Handmaker H, Rinne NA (1999) The utility of a somatostatin-type receptor binding pep-tide radiopharmaceutical (P829) in the evaluation of solitary pulmonary nodules. Chest 115:224–232PubMedCrossRefGoogle Scholar
  15. Boersma HH, Kietselaer BLJH, Stolk LML et al (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050PubMedGoogle Scholar
  16. Bolzati C, Boschi A, Duatti A et al (2000) Geometrically controlled selective formation of nitrido technetium(V) asymmetrical heterocomplexes with bidentate ligands. J Am Chem Soc 122:4510–4511CrossRefGoogle Scholar
  17. Bolzati C, Boschi A, Uccelli L et al (2002) Chemistry of the strong electrophilic metal fragment [99mTc(N)(PXP)]2+ (PXP = diphosphine ligand). A novel tool for the selective labelling of small molecules. J Am Chem Soc 124:11468–11479PubMedCrossRefGoogle Scholar
  18. Bolzati C, Mahmood A, Malago E et al (2003) The [Tc-99m(N)(PNP)]2+ metal fragment: a technetium-nitrido synthon for use with biologically active molecules the N-(2-methoxyphenyl)piperazyl-cysteine analogues as examples. Bioconjug Chem 14:1231–1242PubMedCrossRefGoogle Scholar
  19. Bolzati C, Benini E, Cazzola E et al (2004) Synthesis, characterization, and biological evaluation of neutral nitrido technetium(V) mixed ligand complexes containing dithiolates and aminodiphosphines. A novel system for linking technetium to biomolecules Bioconjug Chem 15:628–637PubMedCrossRefGoogle Scholar
  20. Borkowski S, Dinkelborg L (2006) Aptamers for in vivo imaging. In: Klussmann S (ed) The aptamer handbook. Wiley, WeinheimGoogle Scholar
  21. Boschi A, Bolzati C, Benini E et al (2001) A novel approach to the high-specific-activity labelling of small peptides with the technetium-99m fragment [99mTc(N)(PXP)]2+ (PXP = diphosphine ligand). Bioconjug Chem 12:1035–1042PubMedCrossRefGoogle Scholar
  22. Boschi A, Uccelli L, Duatti A et al (2003) Asymmetrical nitrido Tc-99m heterocomplexes as potential imaging agents for benzodiazepine receptors. Bioconjug Chem 14:1279–1288PubMedCrossRefGoogle Scholar
  23. Boschi A, Duatti A, Uccelli L (2005) Development of technetium-99m and rhenium-188 radiopharmaceuticals containing a terminal metal-nitrido multiple bond for diagnosis and therapy. Top Curr Chem 252:85–115Google Scholar
  24. Callahan RJ, Dragotakes SC, Barrow SA et al (2001) A phase I clinical trial of the DAT ligand Tc-99m-O(15)O5T. J Nucl Med 42(Suppl):1125Google Scholar
  25. Capala J, Barth RF, Bailey MQ et al (1997) Radiolabelling of epidermal growth factor with 99mTc and in vivo localization following intracerebral injection into normal and glioma-bearing rats. Bioconjug Chem 8:289–295PubMedCrossRefGoogle Scholar
  26. Caveliers V, Goodbody AE, Tran LL et al (2001) Evaluation of Tc-99m-RP128 as a potential inflammation imaging agent: human dosimetry and first clinical results. J Nucl Med 2001 42:154–161PubMedGoogle Scholar
  27. Cesati RR, Tamagnan G, Baldwin RM et al (2002) Synthesis of cyclopentadienyltricarbonyl rhenium phenyltropanes by double ligand transfer: organometallic ligands for the dopamine transporter. Bioconjug Chem 13:29–39PubMedCrossRefGoogle Scholar
  28. Chianelli M, Signore A, Fritzberg AR et al (1997) The development of technetium-99m-labelled in-terleukin-2: a new radiopharmaceutical for the in vivo detection of mononuclear cell infiltrates in immune-mediated diseases. Nucl Med Biol 24:579–586PubMedCrossRefGoogle Scholar
  29. Claessens RAMJ, Boerman OC, Koenders EB et al (1996) Technetium-99m labelled hydrazinonicotinamido human non-specific polyclonal immunoglobulin G for detection of infectious foci: a comparison with two other technetium-labelled immunoglobulin preparations. Eur J Nucl Med 23:414–421PubMedCrossRefGoogle Scholar
  30. Colnot DR, Roos JC, de Bree R et al (2003) Safety, biodistribution, pharmacokinetics, and immunogenicity of 99mTc-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with squamous cell carcinoma of the head and the neck. Cancer Immunol Immunother 52:576–582PubMedCrossRefGoogle Scholar
  31. Cyr JE, Pearson DA, Manchanda R et al (1999) Characterization and radiolabelling chemistry of Tc-99m depreotide: a somatostatin receptor binding tumor imaging agent. J Nucl Med 40(Suppl):321Google Scholar
  32. Dams ETM, Nijhof MW, Boerman OC et al (2000) Scintigraphic evaluation of experimental chronic osteomyelitis. J Nucl Med 41:896–902PubMedGoogle Scholar
  33. Decristoforo C, Mather SJ (1999a) 99m-Technetium-labelled peptide-HYNIC conjugates: effects of lipophilicity and stability on biodistribution. Nucl Med Biol 26:389–396PubMedCrossRefGoogle Scholar
  34. Decristoforo C, Mather SJ (1999b) Technetium-99m somatostatin analogues: effect of labelling methods and peptide sequence. Eur J Nucl Med 26:869–876PubMedCrossRefGoogle Scholar
  35. Decristoforo C, Melendez-Alafort L, Sosabowski JK et al (2000) 99mTc-HYNIC-[Tyr3]-octreotide for imaging somastotatin-receptor-positive tumors: preclinical evaluation and comparison with 111In-octreotide. J Nucl Med 41:1114–1119PubMedGoogle Scholar
  36. Drews A, Pietzsch HJ, Syhre R et al (2002) Synthesis and biological evaluation of technetium(III) mixed-ligand complexes with high affinity for the cerebral 5-HT1A receptor and the alpha1-adrenergic receptor. Nucl Med Biol 29:389–398PubMedCrossRefGoogle Scholar
  37. Duatti A (2004) In vivo Imaging of oligonucleotides with nuclear tomography. Curr Drug Targets 5:753–760PubMedCrossRefGoogle Scholar
  38. Eberle AN, Mild G, Froidevaux S (2004) Receptor-mediated tumor targeting with radiopeptides. Part 1. General concepts and methods: applications to somatostatin receptor-expressing tumors. J Rec Sig Trans 24:319–455CrossRefGoogle Scholar
  39. Edwards DS, Liu S, Harris AR et al (1999a) 99mTc-labelling of hydrazones of a hydrazinonicotin-amide conjugated cyclic peptide. Bioconjug Chem 10:803–807PubMedCrossRefGoogle Scholar
  40. Edwards DS, Liu S, Ziegler MC et al (1999b) RP463: a stabilized technetium-99m complex of a hydrazinonicotinamide-derivatized chemotactic peptide for infection imaging. Bioconjug Chem 10:884–891PubMedCrossRefGoogle Scholar
  41. Egli A, Alberto R, Tannahill L et al (1999) Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J Nucl Med 40:1913–1917PubMedGoogle Scholar
  42. Fichna J, Janecka A (2003) Synthesis of target-specific radiolabelled peptides for diagnostic imaging. Bioconjug Chem 14:3–17PubMedCrossRefGoogle Scholar
  43. Francis RJ, Mather SJ, Chester K et al (2004) Radiolabelling of glycosylated MFE-23 CPG2 fusion protein (MFECP1) with Tc-99m for quantitation of tumour antibody-enzyme localisation in antibody-directed enzyme pro-drug therapy (ADEPT). Eur J Nucl Med Mol Imaging 31:1090–1096PubMedGoogle Scholar
  44. Gabriel M, Decristoforo C, Maina T et al (2004) 99mTc-N4-[Tyr3]octreotate versus 99mTc-EDDA/ HYNIC-[Tyr3]octreotide: an intrapatient comparison of two novel technetium-99m labelled tracers for somatostatin receptor scintigraphy. Cancer Biother Radiopharm 19:73–79PubMedCrossRefGoogle Scholar
  45. Gali H, Hoffman TJ, Sieckman GL et al (2001) Synthesis, characterization, and labelling with Tc-99m/Re-188 of peptide conjugates containing a dithia-bisphosphine chelating agent. Bioconjug Chem 12:354–363PubMedCrossRefGoogle Scholar
  46. Giblin MF, Veerendra B, Smith CJ (2005) Radiometallation of receptor-specific peptides for diagnosis and treatment of human cancer. In Vivo 19:9–30PubMedGoogle Scholar
  47. Goel A, Baranowska-Kortylewicz J, Hinrichs SH et al (2001) 99mTc-labelled divalent and tetravalent CC49 single-chain fv’s: novel imaging agents for rapid in vivo localization of human colon carcinoma. J Nucl Med 42:1519–1527PubMedGoogle Scholar
  48. Guggenberg von E, Mikolajczak R, Janota B et al (2004) Radiopharmaceutical development of a freeze-dried kit formulation for the preparation of [Tc-99m-EDDA-HYNIC-D-Phe(1),Tyr(3)]-octreotide, a somatostatin analog for tumor diagnosis. J Pharm Sciences 93:2497–2506CrossRefGoogle Scholar
  49. Harris TD, Sworin M, Williams N et al (1999) Synthesis of stable hydrazones of a hydrazinonicotinyl-modified peptide for the preparation of 99mTc-labelled radiopharmaceuticals. Bioconjug Chem 10:808PubMedCrossRefGoogle Scholar
  50. Heimbold I, Drews A, Syhre R et al (2002 a) A novel technetium-99m radioligand for the 5-HT1A receptor derived from desmethyl-WAY-100635 (DWAY). Eur J Nucl Med 29:82–87CrossRefGoogle Scholar
  51. Heimbold I, Drews A, Kretzschmar M et al (2002 b) Synthesis, biological and autoradiographic evaluation of a novel Tc-99m radioligand derived from WAY 100635 with high affinity for the 5-HT1A receptor and the alpha1-adrenergic receptor. Nucl Med Biol 29:375–387PubMedCrossRefGoogle Scholar
  52. Hnatowich DJ, Nakamura K (2004) Antisense targeting in cell culture with radiolabelled DNAs — a brief review of recent progress. Ann of Nucl Med 18:363–368CrossRefGoogle Scholar
  53. Horn RK, Katzenellenbogen JA (1997) Technetium-99m-labelled receptor-specific small-molecule radiopharmaceuticals: recent developments and encouraging results. Nucl Med Biol 24:485–498CrossRefGoogle Scholar
  54. Iwasaki T, Iwasaki I, Aihara Y et al (2001) Immunoscintigraphy of aortic dissection with 99mTc-labelled murine anti-smooth muscle myosin monoclonal antibody in rats. J Nucl Med 42:130–137PubMedGoogle Scholar
  55. Jamar F, Houssiau FA, Devogelaer JP et al (2002) Scintigraphy using a technetium 99m-labelled anti-E-selectin Fab fragment in rheumatoid arthritis. Rheumatology 41:53–61PubMedCrossRefGoogle Scholar
  56. Jeong JM, Hong MK, Lee J et al (2004) Tc-99m-neolactosylated human serum albumin for imaging the hepatic asialoglycoprotein receptor. Bioconjug Chem 15:850–855PubMedCrossRefGoogle Scholar
  57. Johannsen B, Pietzsch HJ (2002a) Development of technetium-99m-based CNS receptor ligands: have there been any advances? Eur J Nucl Med Mol Imaging 29:263PubMedCrossRefGoogle Scholar
  58. Johannsen B, Pietzsch H-J (2002b) Bioactivity of small technetium complexes In: Nicolini M., Mazzi U (eds) Technetium, rhenium and other metals in chemistry and nuclear medicine. SG Editoriali, Padova, Italy, pp 273–283Google Scholar
  59. Jurisson SS, Lydon JD (1999) Potential technetium small molecule radiopharmaceuticals. Chem Rev 99:2205–2218PubMedCrossRefGoogle Scholar
  60. Kara G (2004) A novel mechanism for guanidino succinic acid (GSA) and technetium-99m-GSA, a novel agent for muscarinic acetylcholine receptor imaging. Eur J Nucl Med Mol Imaging 31(Suppl): 359–359Google Scholar
  61. Kinne RW, Becker W, Koscheck T et al (1995) Rat adjuvant arthritis: imaging with technetium-99m-anti-CD4 fab fragments. J Nucl Med 36:2268–2275PubMedGoogle Scholar
  62. Kobayashi H, Sakahara H, Saga T et al (1993) A human/mouse chimeric monoclonal antibody against CA125 for radioimmunoimaging of ovarian cancer. Cancer Immunol Immunother 37:143–149PubMedCrossRefGoogle Scholar
  63. Kokudo N, Vera DR, Makuuchi M (2003) Clinical application of TcGSA. Nucl Med Biol 30:845–849PubMedCrossRefGoogle Scholar
  64. Rung MP, Stevenson DA, Plössl K et al (1997) [Tc-99m]TRODAT-l: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med 24:372–380Google Scholar
  65. Kushner SA, McElgin WT, Rung MP et al (1999) Kinetic modeling of [Tc-99m]TRODAT-1: a dopamine transporter imaging agent. J Nucl Med 40:150–158PubMedGoogle Scholar
  66. Lahorte CMM, Vanderheyden JL, Steinmetz N et al (2004) Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med 31:887–919CrossRefGoogle Scholar
  67. Langer M, Beck-Sickinger AG (2001) Peptides as carrier for tumor diagnosis and treatment. Curr Med Chem Anticancer Agents 1:71–93PubMedCrossRefGoogle Scholar
  68. Le Bideau F, Salmain M, Top S et al (2001) New and efficient routes to bio molecules substituted with cyclopentadienyltricarbonylrhenium and-technetium derivatives. Chem Eur J 7:2289–2294CrossRefGoogle Scholar
  69. Leon A, Rey A, Mallo L et al (2002) Novel mixed ligand technetium complexes as 5-HT1A receptor imaging agents. Nucl Med Biol 29:217–226PubMedCrossRefGoogle Scholar
  70. Lin KS, Luu A, Baidoo KE et al (2005) A new high affinity technetium-99m-bombesin analogue with low abdominal accumulation. Bioconjug Chem 16:43–50PubMedCrossRefGoogle Scholar
  71. Liu G, Mangera K, Liu N et al (2002) Tumor pretargeting in mice using 99mTc-labelled morpholino, a DNA analog. J Nucl Med 43:384–391PubMedGoogle Scholar
  72. Liu GZ, He J, Dou SP et al (2004) Pretargeting in tumored mice with radiolabeled morpholino oligomer showing low kidney uptake. Eur J Nucl Med Mol Imaging 31:417–424PubMedCrossRefGoogle Scholar
  73. Liu S, Edwards DS (1999) Tc-99m-labelled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99:2235–2268PubMedCrossRefGoogle Scholar
  74. Liu S, Edwards DS, Ziegler MC et al (2001) Tc-99m-Labelling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors. Bioconjug Chem 12:624–629PubMedCrossRefGoogle Scholar
  75. Liu S, Edwards DS (2002) Fundamentals of receptor-based diagnostic metalloradiopharmaceuticals. In: Topics in current chemistry: contrast agents II, optical, ultrasound, x-ray and radiopharmaceutical imaging. Springer, Berlin Heidelberg New York, pp 259–278Google Scholar
  76. Lupetti A, Welling MM, Mazzi U et al (2002) Technetium-99m labelled fluconazole and antimicrobial peptides for imaging of Candida albicans and Aspergillus fumigatus infections. Eur J Nucl Med Mol Imaging 29:674–679PubMedCrossRefGoogle Scholar
  77. Maecke HR (2005) Radiolabelled peptides in nuclear oncology: influence of peptide structure and labelling strategy on pharmacology. Ernst Schering Res Found Workshop 49:43–79PubMedGoogle Scholar
  78. Maina T, Nock B, Nikolopoulou A et al (2002) 99mTc-Demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somastotatin receptor-positive tumors: synthesis and preclinical results. Eur J Nucl Med 29:742–753CrossRefGoogle Scholar
  79. Meenakshi A, Ganesh V, Suresh Kumar R et al (2003) Radioimmuno targetting technetium-labeled anti-epidermal growth factor receptor monoclonal antibodies in experimental tumor models. Q J Nucl Med 47:139–144PubMedGoogle Scholar
  80. Mochizuki T, Kuge Y, Zhao S et al (2003) Detection of apoptotic tumour response in vivo after a single dose of chemotherapy with 99mTc-annexin V. J Nucl Med 44:92–97PubMedGoogle Scholar
  81. Mu M, Rung MP, Plössl K et al (1999) Quantitation of Tc-TRODAT in human plasma samples by a simple extraction method. J Labelled Comp Radiopharm 42:213–215Google Scholar
  82. Mull ES, Sattigeri VJ, Rodriguez AL et al (2002) Aryl cyclopentadienyl tricarbonyl rhenium complexes: novel ligands for the estrogen receptor with potential use as estrogen radiopharmaceuticals. Bioorg Med Chem 10:1381–1398PubMedCrossRefGoogle Scholar
  83. Nikolopoulou A, Maina T, Sotiriou P et al (2006) Tetraamine-modified octreotide and octreotate: labelling with Tc-99m and preclinical comparison in AR4-2J cells and AR4-2J tumor-bearing mice. J Peptide Science 12:124–131CrossRefGoogle Scholar
  84. Nock BA, Maina T, Yannoukakos D et al (1999) Glutathione-mediated metabolism of technetium-99m SNS/S mixed ligand complexes: a proposed mechanism of brain retention. J Med Chem 42:1066–1075PubMedCrossRefGoogle Scholar
  85. Nock B, Nikolopoulou A, Chiotellis E et al (2003) 99mTc-Demobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur J Nucl Med Mol Imaging 30:247–258PubMedCrossRefGoogle Scholar
  86. Okarvi SM (2004) Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev 24:357–397PubMedCrossRefGoogle Scholar
  87. Ono M, Arano Y, Mukai T et al (2000) Control of radioactivity pharmacokinetics of 99mTc-HYNIC-labelled polypeptides derivatized with ternary ligand complexes. Bioconjug Chem 13:491–501CrossRefGoogle Scholar
  88. Pak JK, Alberto R (2001) Coordination reactions of glucose derivatives with the [Tc(CO)3]+ moiety for radiopharmaceutical application. J Labelled Comp Radiopharm 44:498–500Google Scholar
  89. Papagiannopoulou D, Pirmettis I, Tsoukalas C et al (2002) Oxotechnetium 99mTc0[SN(R)S][S] complexes as potential 5-HT1A receptor imaging agents. Nucl Med Biol 29:825–832PubMedCrossRefGoogle Scholar
  90. Pasqualini R, Comazzi V, Bellande E et al (1992) A new efficient method for the preparation of Tc-99m-radiopharmaceuticals containing the TCN multiple bond. J Appl Radiat Isot 43:1329–1333CrossRefGoogle Scholar
  91. Pasqualini R, Duatti A, Bellande E et al (1994) Bis(dithiocarbamato)-nitrido Tc-99m-radiopharma-ceuticals — a class of neutral myocardial imaging agents. J Nucl Med 35:334–341PubMedGoogle Scholar
  92. Pieri P, Fischman AJ, Ahmad M et al (1991) Cardiac blood-pool scintigraphy in rats and hamsters: comparison of five radiopharmaceuticals and three pinhole collimator apertures. J Nucl Med 32:851–855PubMedGoogle Scholar
  93. Pietzsch HJ, Gupta A, Syhre R et al (2001a) Mixed-ligand technetium(III) complexes with tetra-dentate/monodentate NS3/isocyanide coordination: a new nonpolar technetium chelate systemfor the design of neutral and lipophilic complexes stable in vivo. Bioconjug Chem 12:538–544PubMedCrossRefGoogle Scholar
  94. Pietzsch HJ, Tisato F, Refosco F et al (2001b) Synthesis and characterization of novel trigonal biyramidal technetium(III) mixed-ligand complexes with SES/S/P coordination (E=O, N(CH3), S). Inorg Chem 40:59–64PubMedCrossRefGoogle Scholar
  95. Pietzsch HJ, Seifert S, Syhre R et al (2003) Synthesis, characterization, and biological evaluation of technetium(III) complexes with tridentate/bidentate S,E,S/P,S coordination (E=O, N(CH3), S): a novel approach to robust technetium chelates suitable for linking the metal to biomolecules. Bioconjug Chem 14:136–143PubMedCrossRefGoogle Scholar
  96. Postema EJ, Raemaekers JMM, Oyen WJG et al (2003) Final results of the phase I radioimmunotherapy trial using 186Re-Epratuzumab for the treatment of patients with non-Hodgkin’s lymphoma. Clin Cancer Res 9:3995s–4002sPubMedGoogle Scholar
  97. Qin GM, Zhang YX, Cao W et al (2005) Molecular imaging of atherosclerotic plaques with technetium-99m-labelled antisense oligonucleotides. Eur J Nucl Med Mol Imaging 32:6–14PubMedCrossRefGoogle Scholar
  98. Ranadive GN, Rosenzweig HS, Epperly MW et al (1993) A new method of technetium-99m labelling of monoclonal antibodies through sugar residues. A study with TAG-72 specific CC-49 antibody. Nucl Med Biol 20:719–726PubMedCrossRefGoogle Scholar
  99. Refosco F, Bolzati C, Duatti A et al (2000) Mixed ligand Tc-and Re-nitrido complexes for radiolabelling bioactive molecules. Recent Res Devel Inorganic Chem 2:89–98Google Scholar
  100. Reilly RM (1993) Immunoscintigraphy of tumors using tc-99m-labelled monoclonal-antibodies — a review. Nucl Med Commun 14:347–359PubMedGoogle Scholar
  101. Rennen HJJM, Boerman OC, Oyen WJG et al (2001) Specific and rapid scintigraphic detection of infection with Tc-99m-labeled interleukin-8. J Nucl Med 42:117–123PubMedGoogle Scholar
  102. Rennen HJJM, Boerman OC, Oyen WJG et al (2003 a) Kinetics of 99mTc-labelled interleukin-8 in experimental inflammation and infection. J Nucl Med 44:1502–1509PubMedGoogle Scholar
  103. Rennen HJ, Oyen WJ, Cain SA et al (2003 b) Tc-99m-labelled C5a and C5a des Arg74 for infection imaging. Nucl Med Biol 30:267–272PubMedCrossRefGoogle Scholar
  104. Rennen HJJM, Frielink C, Brandt E et al (2004) Relationship between neutrophil-binding affinity and suitability for infection imaging: comparison of 99mTc-labelled NAP-2 (CXCL-7) and 3C-terminally truncated isoforms. J Nucl Med 45:1217–1223PubMedGoogle Scholar
  105. Rose DJ, Maresca KP, Nicholson T et al (1998) Synthesis and characterization of organohydrazino-complexes of technetium, rhenium and molybdenum with the ·M(η1-HXNNR)(η2-HyNNR)× core and their relationship to radiolabelled organohydrazine-derivatized chemotactic peptides with diagnostic applications. Inorg Chem 37:2701–2716PubMedCrossRefGoogle Scholar
  106. Saidi M, Kothari K, Pillai MRA et al (2001) Cyclopentadienyl 99m-technetium tricarbonyl piperidin conjugate: biodistribution and imaging studies. J Labelled Cpd Radiopharm 44:603–618CrossRefGoogle Scholar
  107. Saidi M, Seifert S, Kretzschmar M et al (2004) Cyclopentadienyl tricarbonyl complexes of 99m-Tc for the in vivo imaging of the serotonin 5-HT1A receptor in the brain. J Organomet Chem 689:4739–4744CrossRefGoogle Scholar
  108. Samnick S, Scheuer C, Munks S et al (2004) Technetium-99m labelled l-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4-(2-mercapto-2-methylpropylamino)-pipe ridine and iodine-123 metaiodobenzylguanidine for studying cardiac adrenergic function: a comparison of the uptake characteristics in vascular smooth muscle cells and neonatal cardiac myocytes, and an investigation in rats. Nucl Med Biol 31:511–522PubMedCrossRefGoogle Scholar
  109. Schaadt BK, Hendel HW, Gimsing P et al (2003) 99mTc-aprotinin scintigraphy in amyloidosis. J Nucl Med 44:177–183PubMedGoogle Scholar
  110. Schechter NR, Yang DJ, Azhdarinia et al (2003) Assessment of epidermal growth factor receptor with 99m-Tc-ethylenedicysteine-C225 monoclonal antibody. Anticancer Drugs 14:49–56PubMedCrossRefGoogle Scholar
  111. Schwarz A, Steinstrasser A, Bosslet K (1988) A simple procedure of Tc-99m labelling for monoclonal-antibodies. Eur J Nucl Med 14:C8–C8Google Scholar
  112. Schwartz DA, Abrams MJ, Hauser MM et al (1991) Preparation of hydrazino-modified proteins and their use for the synthesis of Tc-99m-protein conjugates. Bioconjug Chem 2:333–336PubMedCrossRefGoogle Scholar
  113. Schwochau K (2000) Technetium chemistry and radiopharmaceutical applications. Wiley, New YorkGoogle Scholar
  114. Seifert S, Drews A, Gupta A et al (2000) Stability studies on 99m-technetium(III) complexes with tridentate/monodentate thiol ligands and phosphine (“3+1+1” complexes). Appl Radiat Isot 53:431–438PubMedCrossRefGoogle Scholar
  115. Seifert S, Gupta A, Syhre R et al (2001) Ligand-exchange reaction of labile “3+1” Tc-99m(V) complexes with SH group-containing proteins. Int J Appl Radiat Isot 54:637–644CrossRefGoogle Scholar
  116. Seifert S, Künstler JU, Schiller E (2004) Novel procedures for preparing 99mTc(III) complexes with tetradentate/monodentate coordination of varying lipophilicity and adaptation to 188Re analogues. Bioconjug Chem 15: 856–863PubMedCrossRefGoogle Scholar
  117. Sharma SD, Cai HZ, Yang W et al (2000) Melanocortin receptor-1 specific Tc-99m-metallopeptides for targeting melanoma. J Nucl Med 41:1021SGoogle Scholar
  118. Signore A (1995) Receptor ligands. Q J Nucl Med 39:83–85PubMedGoogle Scholar
  119. Signore A, Annovazzi A, Chianelli M et al (2001) Peptide radiopharmaceuticals for diagnosis and therapy. Eur J Nucl Med 28:1555–1565PubMedCrossRefGoogle Scholar
  120. Signore A, Annovazzi A, Barone R et al (2004) 99mTc-interleukin-2 scintigraphy as a potential tool for evaluating tumor-infiltrating lymphocytes in melanoma lesions: a validation study. J Nucl Med 45:1647–1652PubMedGoogle Scholar
  121. Simms MS, Perkins AC, Price MR et al (2001) 99mTechnetium-C595 radioimmunoscintigraphy: a potential staging tool for bladder cancer. BJU Int 88:686–691PubMedCrossRefGoogle Scholar
  122. Spies H, Pietzsch HJ, Johannsen B (1999) The “n+1” mixed-ligand approach in the design of specific technetium radiopharmaceuticals: potentials and problems. In: Nicolini M, Mazzi U (eds) Tc, Re and other metals in chemistry and nuclear medicine, vol. 5. SG Editoriali, Padova, Italy, pp 101–108Google Scholar
  123. Spradau TW, Edwards WB, Anderson CJ et al (1999) Synthesis and biological evaluation of Tc-99m-cyclopentadienyltricarbonyltechnetium-labelled octreotide. J Nucl Med Biol 26:1–7CrossRefGoogle Scholar
  124. Stadalnik RC, Vera DR (2001) The evolution of 99mTc-NGA as a clinically useful receptor-binding radiopharmaceutical. Nucl Med Biol 28:499–503PubMedCrossRefGoogle Scholar
  125. Steffens MG, Oosterwijk E, Kranenborg MHGC et al (1999) In vivo and in vitro characterization of three 99mTc-labeled monoclonal antibody G250 preparations. J Nucl Med 40:829–836PubMedGoogle Scholar
  126. Stroomer JWG, Roos JC, Sproll M et al (2000) Safety and biodistribution of 99mTechnetium-labeled anti-CD44v6 monoclonal antibody BIWA 1 in head and neck cancer patients. Clin Cancer Res 6:3046–3055PubMedGoogle Scholar
  127. Su ZF, Liu G, Gupta S et al (2002) In vitro and in vivo evaluation of a technetium-99m-labelled cyclic RGD petide as a specific marker of α v β 3 integrin for tumor imaging. Bioconjug Chem 13:561–570PubMedCrossRefGoogle Scholar
  128. Syhre R, Seifert S, Spies H, et al (1998) Stability versus reactivity of “3+1” mixed-ligand technetium-99m complexes in vitro and in vivo. Eur J Nucl Med 25:793–796PubMedCrossRefGoogle Scholar
  129. Taillefer R, Boucher L, Lambert R et al (1995) Technetium-99m antimyosin antibody (3–48) myocardial imaging: human biodistribution, safety and clinical results in detection of acute myocardial infarction. Eur J Nucl Med 22:453–464PubMedCrossRefGoogle Scholar
  130. Tait JF, Brown DS, Gibson DF et al (2000) Development and characterization of annexin V mutants with endogenous chelation sites for 99mTc. Bioconjug Chem 11:918–925PubMedCrossRefGoogle Scholar
  131. Tait JF, Smith C, Gibson DF (2002) Development of annexin V mutants suitable for labelling with Tc(I)-carbonyl complex. Bioconjug Chem 13:1119–1123PubMedCrossRefGoogle Scholar
  132. Tang Y, Scollard D, Chen P et al (2005) Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [Tc-99m]-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl Med Commun 26:427–432PubMedCrossRefGoogle Scholar
  133. Thakur ML, DeFulvio J, Richard MD et al (1991) Tc-99m labelled monoclonal-antibodies — evaluation of reducing agents. Nucl Med Biology 18:227–233Google Scholar
  134. Tisato F, Refosco F, Porchia M, et al (2004) The crucial role of the diphosphine heteroatom X in the stereochemistry and stabilization of the substitution-inert [M(N)(PXP)](2+) metal fragments (MTc, Re; PXPdiphosphine ligand). Inorg Chem 43:8617–8625PubMedCrossRefGoogle Scholar
  135. Tokita N, Hasegawa S, Murayama K et al (2003) 99m-Tc-HYNIC-annexin V imaging to evaluate inflammation and apoptosis in rats with autoimmune myocarditis. Eur J Nucl Med Mol Imaging 30:232–238PubMedCrossRefGoogle Scholar
  136. Usman N, Blatt LRM (2000) Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J Clin Invest 106:1197–1202PubMedCrossRefGoogle Scholar
  137. Vallabhajosula S, Moyer BR, Lister-James J et al (1996) Preclinical evaluation of technetium-99m-labelled somatostatin receptor-binding peptides. J Nucl Med 37:1016–1022PubMedGoogle Scholar
  138. Vanderheyden JL, Verbeke K, Kieffer D et al (2002) Product development and formulation of 99mTc NYNIC-rh-annexin V. In: Nicolini M, Mazzi U (eds) Tc, Re and other metals in chemistry and nuclear medicine, vol. 6. SG Editoriali, Padova, Italy, pp 335–338Google Scholar
  139. Verbeke K, Hjelstuen O, Debrock E et al (1995) Comparative evaluation of 99mTc-HYNIC-HSA and 99Tcm-MAG3-HSA as possible blood pool agents. Nucl Med Comm 16:942–957Google Scholar
  140. Virgolini I, Leimer M, Handmaker H et al (1998) Somatostatin receptor subtype specific and in vivo binding of a novel tumor tracer, 99mTc-P829. Cancer Res 58:1850–1859PubMedGoogle Scholar
  141. Waibel R, Alberto R, Willuda J et al (1999) Stable one-step technetium-99m labelling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nature Biotechnol 17:897–901CrossRefGoogle Scholar
  142. Wald J, Alberto R, Ortner K et al (2001) Aqueous one-pot synthesis of derivatized cyclopentadienyl-tricarbonyl complexes of Tc-99m with an in situ CO source: application to a serotonergic receptor ligand. Angew Chem Int Ed 40:3062–3066CrossRefGoogle Scholar
  143. Welling MM, Paulusma-Annema A, Baiter HS et al (2000) Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammation. Eur J Nucl Med 27:292–301PubMedCrossRefGoogle Scholar
  144. Welling MM, Mongera S, Lupetti A et al (2002) Radiochemical and biological characteristics of 99m Tc-UBI 29–41 for imaging of bacterial infections. Nucl Med Biol 29:413–422PubMedCrossRefGoogle Scholar
  145. Welling MM, Korsak A, Gorska B et al (2005) Kit with technetium-99m labelled antimicrobial pep-tide UBI 29–41 for specific infection detection. J Labelled Comp Radiopharm 48:683–691CrossRefGoogle Scholar
  146. Wenzel M, Klinge C (1994) Tc-99m-labelled estradiol derivatives — synthesis, organ distribution and tumor affinity. J Labelled Cpd Radiopharm 34:981–987CrossRefGoogle Scholar
  147. Willuda J, Kubetzko S, Waibel R et al (2001) Tumor targeting of mono-, di-, and tetravalent anti-pl85HER-2 miniantibodies multimerized by self-associating peptides. J Biol Chem 17:14385–14392Google Scholar
  148. Wong E, Bennett S, Lawrence B et al (2001) Tuftsin receptor-binding peptide labeled with technetium: chemistry and preliminary in vitro receptor-binding study. Inorg Chem 40:5695–5700PubMedCrossRefGoogle Scholar
  149. Younes CK, Boisgard R, Tavitian B (2002) Labelled oligonucleotides as radiopharmaceuticals: pitfalls, problems and perspectives. Curr Pharm Des 8:1451–1466PubMedCrossRefGoogle Scholar
  150. Zinn KR, Kelpke S, Chaudhuri TR et al (2000) Imaging Tc-99m-Labeled FGF-1 targeting in rats. Nucl Med Biol 27:407–414PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • U. Mazzi
    • 1
  • R. Schibli
    • 2
  • H. -J. Pietzsch
    • 3
  • J. -U. Künstler
    • 3
  • H. Spies
    • 3
  1. 1.University of PadovaPadovaItaly
  2. 2.Center for Radiopharmaceutical Science, OIPA Paul Scherrer InstituteETH ZÜrichVilligen PSISwitzerland
  3. 3.Research Centre RossendorfInstitute of RadiopharmacyDresdenGermany

Personalised recommendations