Advertisement

Monographs of 99mTc Pharmaceuticals

  • I. Zolle
  • P. O. Bremer
  • Gy. Jánoki
Chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Ahlgren L, Ivarsson S, Johansson L, Mattsson S, Nosslin B (1985) Excretion of radionuclides in human breast milk after administration of radiopharmaceuticals. J Nucl Med 26:1085–1090PubMedGoogle Scholar
  2. Ancri D, Lonchampt M, Basset J (1977) The effect of tin on the tissue distribution of Tc-99m sodium pertechnetate. Radiology 124:445–450PubMedGoogle Scholar
  3. Andros G, Harper PV, Lathrop KA, McCardle RJ (1965) Pertechnetate-99m localization in man with application to thyroid scanning and the study of thyroid physiology. J Clin Endocrinol Metab 25:1067–1076PubMedGoogle Scholar
  4. Callahan RJ, Froelich JW, McKusick KA, Leppo J, Strauss WH (1982) A modified method for the in vivo labeling of red blood cells with Tc-99m: concise communication. J Nucl Med 23:315–318PubMedGoogle Scholar
  5. Council of Europe (2005 a) Sodium pertechnetate Tc-99m injection (fission), monograph 124. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  6. Council of Europe (2005b) Sodium pertechnetate Tc-99m injection, monograph 283. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  7. Council of Europe (2004) Preparations for parenteral use, monograph 520. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  8. Dayton DA, Maher FT, Elveback LR (1969) Renal clearance of technetium (99mTc) as pertechnetate. Mayo Clin Proc 44:549–551PubMedGoogle Scholar
  9. Hammermaier A, Reich E, Bögl W (1986) Chemical, radiochemical, and radionuclidic purity of eluates from different commercial fission 99Mo/99mTc-generators. Eur J Nucl Med 12:41–46PubMedGoogle Scholar
  10. Harper PV, Beck R, Charleston D, Lathrop KA (1964) Optimization of scanning method using 99mTc. Nucleonics 22:50–54Google Scholar
  11. Harper PV, Lathrop KA, Gottschalk A (1966) Pharmacodynamics of some technetium-99m preparations. In: Andrews GA, Knisely RM, Wagner HN Jr (eds) Radioactive Pharmaceuticals. AEC Symposium Series Conf 651111 1966, pp 335–357Google Scholar
  12. Hays MT (1973) 99mTc-pertechnetate transport in man: absorption after subcutaneous and oral administration; secretion into saliva and gastric juice. J Nucl Med 14:331–335PubMedGoogle Scholar
  13. Hays MT, Berman M (1977) Pertechnetate distribution in man after intravenous infusion: a compartmental model. J Nucl Med 18:898–904PubMedGoogle Scholar
  14. Hladik III WB, Ponto JA, Lentle BC, Laven DL (1987) Iatrogenic alterations in the biodistribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 189–219Google Scholar
  15. International Commission on Radiological Protection (1987a) Pertechnetate. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 197–200Google Scholar
  16. International Commission on Radiological Protection (1987b) Technetium-labelled erythrocytes. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 209–210Google Scholar
  17. Jhingram SG, Johnson PC (1973) Radionuclide angiography in the diagnosis of cerebrovascular disease. J Nucl Med 14:265–268Google Scholar
  18. Johannsen B, Narasimhan DVS eds (1992) Preparation of kits for 99mTc-radiopharmaceuticals. International Atomic Energy Agency: IAEA-TECDOC-649Google Scholar
  19. Kusic Z, Becker DV, Saenger EL, Paras P, Gartside P, Wessler T, Spaventi S (1990) Comparison of technetium-99m and iodine-123 imaging of thyroid nodules: correlation with pathological findings. J Nucl Med 31:393–399PubMedGoogle Scholar
  20. Lin SM, Winchell HS (1972) A “kit” method for the preparation of a technetium-tin(II) colloid and a study of its properties. J Nucl Med 13:58–65PubMedGoogle Scholar
  21. Lin SM, Winchell HS, Shipley BA (1971) Use of Fe(II) or Sn(II) alone for technetium labelling of albumin. J Nucl Med 12:204–211PubMedGoogle Scholar
  22. Loberg MD (1979) Radiotracer distribution by active transport: the implications of nonlinear kinetics. In: Colombetti LG (ed) Principles of radiopharmacology, vol. III. CRC Press, Boca Raton, pp 43–59Google Scholar
  23. McAfee JG, Fueger GF, Stern HS, Wagner Jr, HN, Migita T (1964) 99mTc-pertechnetate for brain scanning. J Nucl Med 5:811–827PubMedGoogle Scholar
  24. Montelibano EB, Ford DR, Sayle BA (1979) Altered Tc-99m pertechnetate distribution in a thyroid scan after Tc-99m pyrophosphate administration. Clin Nucl Med 4:277–278PubMedGoogle Scholar
  25. Oldendorf WH, Sisson WB, Iisaka Y (1970) Compartmental redistribution of 99mTc-pertechnetate in the presence of perchlorate ion and its relation to plasma protein binding. J Nucl Med 11:85–88PubMedGoogle Scholar
  26. Porter WC, Dees SM, Freitas JE, Dworkin HJ (1983) Acid-citrate-dextrose compared with heparin in the preparation of in vivo/in vitro technetium-99m red blood cells. J Nucl Med 24:383–387PubMedGoogle Scholar
  27. Prince JR, Bancroft S, Dukstein WG (1980) Pharmacokinetics of pertechnetate administered after pretreatment with 400 mg of potassium perchlorate: concise communication. J Nucl Med 21:763–766PubMedGoogle Scholar
  28. Quinn JL (1965) 99mTc-pertechnetate for brain scanning. Radiology 84:354–355PubMedGoogle Scholar
  29. Steigman J, Eckelman WC (1992) The chemistry of technetium in medicine. Nuclear Science Series, NAS-NS-3204 National Academy Press, Washington, D.C.Google Scholar
  30. Steigman J, Richards P (1974) Chemistry of technetium 99m. Sem Nucl Med 4:269–279Google Scholar
  31. Steigman J, Meinken G, Richards P (1975) The reduction of pertechnetate-99 by stannous chloride-I. The stoichiometry of the reaction in HC1, in a citrate buffer and in a DTPA buffer. Int J Appl Radiat Isot 26:601–609Google Scholar
  32. United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc-99m pertechnetate injection (sodium). United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1861Google Scholar
  33. Welch MJ, Adatepe M, Potchen EJ (1969) An analysis of technetium (99mTcO4) kinetics: the effect of perchlorate and iodide pretreatment. Int J Appl Radiat Isot 20:437–445PubMedGoogle Scholar
  34. Wolff J, Maurey JR (1962) Thyroid iodide transport. III. Comparison of iodide with anions of periodic group VIIA. Biochim Biophys Acta 57:422–426PubMedGoogle Scholar

References

  1. Benjamin PP (1969) A rapid and efficient method of preparing 99mTc-human serum albumin: its clinical applications. Int J Appl Radiat Isot 20: 187–194PubMedGoogle Scholar
  2. Benjamin PP, Rejali A, Friedell H (1970) Electrolytic complexation of 99mTc at constant current: its application in nuclear medicine. J Nucl Med 11:147–154PubMedGoogle Scholar
  3. Berger HJ, Matthay RA, Pytlik L, Gottschalk A, Zaret BL (1979) First-pass radionuclide assessment of right and left ventricular performance in patients with cardiac and pulmonary disease. Semin Nucl Med 9:275–295PubMedGoogle Scholar
  4. Callahan RJ, McKusick KA, Lamson III M, Castronovo FP, Potsaid MS (1976) Technetium-99m-human serum albumin: Evaluation of a commercially produced kit. J Nucl Med 17:47–49PubMedGoogle Scholar
  5. Council of Europe (1992) Guide for the preparation, use and quality assurance of blood components. Council of Europe, StrasbourgGoogle Scholar
  6. Council of Europe (2004a) Human albumin injection, monograph 255. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  7. Council of Europe (2004b) Human plasma for separation, monograph 853. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  8. Council of Europe (2005) Technetium 99mTc albumin injection. European pharmacopeia 5.0, monograph 640. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  9. Deutsch ME, Redmond ML (1972) Unitary freeze-dried kits for preparation of technetium-labeled human serum albumin. J Nucl Med 13 (Abstr):426–427Google Scholar
  10. Dworkin HJ, Gutkowski RF (1971) Rapid closed system production of 99mTc-albumin using electrolysis. J Nucl Med 12:562–565PubMedGoogle Scholar
  11. Eckelman WC, Meinken G, Richards P (1971) 99mTc-Human serum albumin. J Nucl Med 12:707–710PubMedGoogle Scholar
  12. Herbert RJT, Hibbard BM, Sheppard MA (1969) Metabolic behaviour and radiation dosimetry of 99mTc-albumin in pregnancy. J Nucl Med 10:224–232PubMedGoogle Scholar
  13. Hibbard BM, Herbert RJT (1960) Fetal radiation dose following administration of radio-iodinated albumin. Clin Sci 19:337–344PubMedGoogle Scholar
  14. International Commission on Radiological Protection (1987) Technetium-labelled albumin (HSA). In: Annals of the ICRR Radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, p 173Google Scholar
  15. Lamson III M, Callahan RJ, Castronovo FP, McKusick KA, Potsaid MS (1974) A rapid index of free activity in preparations of 99mTc-albumin. J Nucl Med 15:1061–1062PubMedGoogle Scholar
  16. Lin SM, Winchell HS, Shipley BA (1971) Use of Fe(II) or Sn(II) alone for technetium labelling of albumin. J Nucl Med 12:204–211PubMedGoogle Scholar
  17. McAfee JG, Fueger GF, Baggish MS, Holzman GB, Zolle I (1964) 99mTc labeled serum albumin for scintillation scanning of the placenta. J Nucl Med 5:936–946PubMedGoogle Scholar
  18. Narasimhan DVS, Mani RS (1975) Electrolytic preparation of 99mTc-human serum albumin using tin electrodes. Radiochim Radioanal Lett 20:307–316Google Scholar
  19. Persson RBR, Liden K (1969) 99mTc-labelled human serum albumin: a study of the labelling procedure. Int J Appl Radiat Isot 20:241–248PubMedGoogle Scholar
  20. Philippe L, Mena I, Sarcourt J, French WJ (1988) Evaluation of valvular regurgitation by factor analysis of first-pass angiography. J Nucl Med 29:159–167PubMedGoogle Scholar
  21. Steigman J, Meinken G, Richards P (1975) The reduction of pertechnetate-99 by stannous chloride I. The stoichiometry of the reaction in HCl, in a citrate buffer and in a DTPA buffer. Int J Appl Radiat Isot 26:601–609Google Scholar
  22. Stern HS, Zolle I, McAfee JG (1965) Preparation of 99mTc-labelled serum albumin. Int J Appl Radiat Isot 16:283–288PubMedGoogle Scholar
  23. Stern HS, McAfee JG, Zolle I (1966) Technetium-99m-albumin. In: Andrews GA, Knisely RM, Wagner HN Jr (eds) Radioactive pharmaceuticals. AEC symposium series no. 6(CONF-651111), Oak Ridge, Tenn., pp 359–382Google Scholar
  24. Strauss HW, Zaret BL, Hurley PJ, Natarajan TK, Pitt P (1971) A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Am J Cardiol 28:575–580PubMedGoogle Scholar
  25. Takeda Y, Reeve EB (1963) Studies of the metabolism and distribution of albumin with autologous 131I-albumin in healthy men. J Lab Clin Med 61:183–202PubMedGoogle Scholar
  26. United States Pharmacopeial Convention (2005) Official Monographs: Technetium Tc 99m albumin injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1849Google Scholar
  27. Williams MJ, Deegan T (1971) The process involved in the binding of technetium-99m to human serum albumin. Int J Appl Radiat Isot 22:767–774PubMedGoogle Scholar
  28. World Health Organization (1994) Requirements for the collection, processing and quality control of blood, blood components and plasma derivatives, requirements for biological substances No. 27, WHO, Technical Report Series No. 840Google Scholar
  29. Zolle I, Oniciu L, Höfer R (1973) Contribution to the study of the mechanism of labelling human serum albumin (HSA) with Technetium-99m. Int J Appl Radiat Isot 24:621–626PubMedGoogle Scholar

References

  1. Agnew JE (1991) Characterizing lung aerosol penetration. J Aerosol Med 4:237–250Google Scholar
  2. Bell WR, Simon TL (1976) A comparative analysis of pulmonary perfusion scans with pulmonary angiograms: From a national cooperative study. Am Heart J 92:700–706PubMedGoogle Scholar
  3. Chandra R, Shannon J, Braunstein P, Durlov OL (1973) Clinical evaluation of an instant kit for preparation of 99mTc-MAA for lung scanning. J Nucl Med 14:702–705PubMedGoogle Scholar
  4. Council of Europe (1992) Guide for the preparation, use and quality assurance of blood components. Council of Europe, StrasbourgGoogle Scholar
  5. Davis MD, Taube RA (1979) Re: toxicity and safety factors associated with lung perfusion studies with radiolabeled particles (letter to the editor). J Nucl Med 20:1099Google Scholar
  6. Dibos PE (1995) Deep venous thrombosis. In: Wagner HN Jr, Szabo S, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 872–880Google Scholar
  7. Council of Europe (2004a) Human albumin injection, monograph 255. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  8. Council of Europe (2004b) Human plasma for separation, monograph 853. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  9. Council of Europe (2005) Technetium 99mTc macrosalb injection. European pharmacopeia 5.0, monograph no 296. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  10. Gottschalk A, Juni JE, Sostman HD, Coleman RE, Thrall J, McKusick KA, Froelich JW, Alavi A (1993 a) Ventilation-perfusion scintigraphy in the PIOPED study. Part I. Data collection and tabulation. J Nucl Med 34:1109–1118PubMedGoogle Scholar
  11. Gottschalk A, Sostman HD, Coleman RE, Juni JE, Thrall J, McKusick KA, Froelich JW, Alavi A (1993 b) Ventilation-perfusion scintigraphy in the PIOPED study. Part II. Evaluation of the scintigraphic criteria and interpretations. J Nucl Med 34:1119–1126PubMedGoogle Scholar
  12. Heck LL, Duley JW Jr (1974) Statistical considerations in lung imaging with Tc-99m-albumin particles. Radiology 113:675–679PubMedGoogle Scholar
  13. Heyman S (1979) Toxicity and safety factors associated with lung perfusion studies with radiolabeled particles (letter to the editor). J Nucl Med 20:1098–1099PubMedGoogle Scholar
  14. International Commission on Radiological Protection (1987) Technetium-labelled macroaggregated albumin. In: Annals of the ICRP. Radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 223–224Google Scholar
  15. Malone LA, Malone JF, Ennis JT (1983) Kinetics of technetium 99m-labelled macroaggregated albumin in humans. Br J Radiol 56:109–112PubMedGoogle Scholar
  16. Monroe LA, Thompson WL, Anderton NS, Burdine JA (1974) Evaluation of an improved 99mTc-stannous aggregated albumin preparation for lung scanning. J Nucl Med 15:192–194PubMedGoogle Scholar
  17. Robbins PJ, Feller PA, Nishiyama H (1976) Evaluation and dosimetry of a 99mTc-Sn-MAA lung imaging agent in humans. Health Phys 30:173–176PubMedGoogle Scholar
  18. Saenger EL, Buncher CR, Specker BL, McDvitt RA (1985) Determination of clinical efficacy: nuclear medicine as applied to lung scanning. J Nucl Med 26:793–806PubMedGoogle Scholar
  19. Subramanian G, Arnold RW, Thomas FD, McAfee JG (1972) Evaluation of an instant 99mTc-labeled lung scanning agent. J Nucl Med 13 (Abstr):790Google Scholar
  20. Taplin GV, Chopra SK (1978) Lung perfusion-inhalation scintigraphy in obstructive airway disease and pulmonary embolism. Radiol Clin N Am 16:491–513PubMedGoogle Scholar
  21. Taplin GV, MacDonald NS (1971) Radiochemistry of macroaggregated albumin and newer lung scanning agents. Sem Nucl Med 1:132–152Google Scholar
  22. Taplin GV, Johnson DE, Dore EK, Kaplan HS (1964a) Suspensions of radio albumin aggregates for photoscanning the liver, spleen, lung and other organs. J Nucl Med 5:259–275PubMedGoogle Scholar
  23. Taplin GV, Johnson DE, Dore EK, Kaplan HS (1964b) Lung photoscans with macroaggregates of human serum radioalbumin. Health Phys 10:1219–1227PubMedGoogle Scholar
  24. Tow DE, Wagner HN Jr (1967) Recovery of pulmonary arterial blood flow in patients with pulmonary embolism. N Engl J Med 276:1053–1059PubMedGoogle Scholar
  25. Tow DE, Wagner HN Jr, Lopez-Majano V, Smith E, Migita T (1966) Validity of measuring regional pulmonary arterial blood flow with macroaggregates of human serum albumin. Am J Roent-genol 96:664–676Google Scholar
  26. United States Pharmacopeial Convention (2005) Official Monographs: Technetium Tc 99m albumin aggregated injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1850Google Scholar
  27. Vincent WR, Goldberg SJ, Desilets D (1968) Fatality immediately following rapid infusion of macroaggregates of 99mTc-albumin (MAA) for lung scan. Radiology 91:1181–1184Google Scholar
  28. Vlahos L, MacDonald AF, Causer DA (1976) Combination of isotope venography and lung scanning. Br J Radiol 49:840–851PubMedGoogle Scholar
  29. Wagner HN Jr (1995) Regional ventilation and perfusion. In: Wagner HN Jr, Szabo S, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 887–895Google Scholar
  30. Wagner HN Jr, Sabiston DC Jr, Iio M, McAfee JG, Langan JK (1964a) Regional pulmonary blood flow in man by radioisotope scanning. JAMA 187:601–603PubMedGoogle Scholar
  31. Wagner HN Jr, Sabiston DC Jr, McAfee JG, Tow DE, Stern HS (1964b) Diagnosis of massive pulmonary embolism in man by radioisotope scanning. N Engl J Med 271:377–384PubMedGoogle Scholar
  32. Wagner HN Jr, Lopez-Majano V, Langan JK, Joshi RC (1968) Radioactive xenon in the differential diagnosis of pulmonary embolism. Radiology 91:1168–1174PubMedGoogle Scholar
  33. World Health Organization (1994) Requirements for the collection, processing and quality control of blood, blood components and plasma derivatives, requirements for biological substances No. 27, Technical Report Series No. 840Google Scholar

References

  1. Allen DR, Ferens JM, Cheney FW, Nelp WB (1978) Critical evaluation of acute cardiopulmonary toxicity of microspheres. J Nucl Med 19:1204–1208Google Scholar
  2. Alm A (1975) Radioactively labelled microspheres in regional cerebral blood flow determinations. A study on monkeys with 15-and 35-µm spheres. Acta Physiol Scand 95:60–65PubMedGoogle Scholar
  3. Bergmann H, Böck F, Brenner H, Höfer R (1973) Quantitative evaluation of arterio-venous shunts in brain tumours. In: Medical radioisotope scintigraphy 1972, vol. II, International Atomic Energy Agency, Vienna, p 487Google Scholar
  4. Blau M, Wicks R, Thomas SR, Lathrop KA (1982) MIRD dose estimate report no. 10. Radiation absorbed dose from albumin microspheres labelled with technetium-99m. J Nucl Med 23:915–917PubMedGoogle Scholar
  5. Bolles TF, Kubiatowicz DO, Evans RL, Grotenhuis IM, Nora JC (1973) Tc-99m-labelled albumin (human) microspheres (15–30 micron). Their preparation, properties and uses. In: Radiopharmaceuticals and labelled compounds, vol. 1. International Atomic Energy Agency, Vienna, p 151–167Google Scholar
  6. Council of Europe (1992) Guide for the preparation, use and quality assurance of blood components. StrasbourgGoogle Scholar
  7. Council of Europe (2004a) Human albumin injection, monograph 255. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  8. Council of Europe (2004b) Human plasma for separation, monograph 853. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  9. Council of Europe (2005) Technetium 99mTc microspheres injection. European pharmacopeia 5.0, monograph no 570. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  10. Davis MA, Taube RA (1978) Pulmonary perfusion imaging: acute toxicity and safety factors as a function of particle size. J Nucl Med 19:1209–1213Google Scholar
  11. Fortuin NJ, Kaihara S, Becker LC, Pitt B (1971) Regional myocardial blood flow in the dog studied with radioactive microspheres. Cardiovasc Res 5:331–336PubMedGoogle Scholar
  12. Harding LK, Horsfield K, Singhal SS, Cumming G (1973) The proportion of lung vessels blocked by albumin microspheres. J Nucl Med 14:579–581PubMedGoogle Scholar
  13. Heck LL, Duley JW Jr (1974) Statistical considerations in lung imaging with Tc-99m-albumin particles. Radiology 113:675–679PubMedGoogle Scholar
  14. Heyman S (1979) Toxicity and safety factors associated with lung perfusion studies with radiolabeled particles. J Nucl Med 20:1098–1099PubMedGoogle Scholar
  15. International Commission on Radiological Protection (1987) Technetiurn-labelled albumin microspheres (1987) In: Annals of the ICRP, Radiation dose to patients from radiopharmaceuticals, Bio-kinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 227–228Google Scholar
  16. Krejcarek GE, Bradford KL, Bolles TF (1974) Instant labelling human serum albumin micro-spheres. J Nucl Med 15 (Abstr):509Google Scholar
  17. Littenberg RL (1975) Anaphylactoid reaction to human albumin microspheres. J Nucl Med 16:236–237PubMedGoogle Scholar
  18. Martin LG, Larose JH, Sybers RG, Tyras DH, Symbas PN (1973) Myocardial perfusion imaging with Tc-99 m-albumin microspheres. Radiology 107:367–370PubMedGoogle Scholar
  19. Mayron LW, Kaplan E (1975) A comparison of four techniques for labelling albumin microspheres with technetium-99m. Int J Nucl Med Biol 2:74–80PubMedGoogle Scholar
  20. Mishkin FS, Brashear RE (1971) Pulmonary and systemic blood pressure responses to large doses of albumin microspheres. J Nucl Med 12:251–252PubMedGoogle Scholar
  21. Rhodes BA (1971) Low probability of allergic reaction to albumin microspheres. J Nucl Med 12:649–650PubMedGoogle Scholar
  22. Rhodes BA, Zolle I, Buchanan JW, Wagner HN Jr (1969) Radioactive albumin microspheres for studies of the pulmonary circulation. Radiology 92:1453–1460PubMedGoogle Scholar
  23. Rhodes BA, Stern HS, Buchanan JW, Zolle I, Wagner HN Jr (1971) Lung scanning with Tc-99m-microspheres. Radiology 99:613–621Google Scholar
  24. Rhodes BA, Greyson ND, Siegel ME, Giargiana FA Jr, White RI Jr, Williams GM, Wagner HN Jr (1973) The distribution of radioactive microspheres after intra-arterial injection in the legs of patients with peripheral vascular disease. Am J Roentgenol Radium Ther Nucl Med 118:820–826PubMedGoogle Scholar
  25. Stang PC, Roelands JF, Cohen P (1975) Immunologic relationships of human serum albumin, macro aggregated albumin and albumin microspheres. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, p 292Google Scholar
  26. Strauss HW, Hurley PJ, Rhodes BA, Wagner HN Jr (1969) Quantification of right-to-left transpul-monary shunts in man. J Lab Clin Med 74:597–607PubMedGoogle Scholar
  27. Wagner HN Jr, Stern HS, Rhodes BA, Reba RC, Hosain F, Zolle I (1968) Design and development of new radiopharmaceuticals. In: Medical radioisotope scintigraphy, vol. II. IAEA Vienna, pp 3–24Google Scholar
  28. Wagner HN Jr, Rhodes BA, Sasaki Y, Ryan JP (1969) Studies of the circulation with radioactive microspheres. Invest Radiol 4:374–386PubMedGoogle Scholar
  29. Weller DA (1975) Toxicity of particles on intracoronary injection. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, p 370Google Scholar
  30. Weller DA, Adolph RJ, Wellman HN, Carrol RG, Kim O (1972) Myocardial perfusion scintigraphy after intracoronary injection of Tc-99m-labeled human albumin microspheres. Toxicity and efficacy for detecting myocardial infarction in dogs, preliminary results in man. Circulation 46:963–975PubMedGoogle Scholar
  31. World Health Organization (1994) Requirements for the collection, processing and quality control of blood, blood components and plasma derivatives, requirements for biological substances No. 27. WHO Technical Report Series No. 840Google Scholar
  32. Zolle I, Kropf G (1982) Factors affecting the trapping and clearance of microspheres. In: Anghilieri L (ed) General processes of radiotracer localization, vol. 2. CRC Press, Boca Raton, pp 15–38Google Scholar
  33. Zolle I, Rhodes BA, Wagner HN Jr (1970) Preparation of metabolizable radioactive human serum albumin microspheres for studies of the circulation. Int J Appl Rad Isot 21:155–167Google Scholar

References

  1. Adams FG, Horton PW, Selim SM (1980) Clinical comparison of three liver scanning agents. Eur J Nucl Med 5:237–239PubMedGoogle Scholar
  2. Atkins HL, Cloutier RJ, Lathrop KA et al (1975) Studies of the reticuloendothelial system (RES). III. Blockade of the RES in man. J Nucl Med 16:108A–108BGoogle Scholar
  3. Colombetti LG (1974) 99mTc-Sn-colloid for liver dynamic studies. Radiobiol Radiother 15:47–53Google Scholar
  4. Council of Europe (2005) Technetium 99mTc tin colloid injection. European pharmacopeia 5.0, monograph no 689. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  5. Hladik WB, III, Gregorio N, Braun TL, Stathis VJ, Ponto JA (1987a) Radiopharmaceutical information and consultation services. In: Hladik WB, III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, p 392Google Scholar
  6. Hladik WB, III, Ponto JA, Lentle BC, Laven DL (1987b) Iatrogenic alterations in the biodistribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB, III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 189–219Google Scholar
  7. Hodges R (1987) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: theoretical considerations. In: Hladik WB, III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 165–188Google Scholar
  8. Höfer R, Egert H (1963) Radiogoldverteilung im Knochenmark [in German]. Bull Schweiz Akad Med Wiss 19:36–46Google Scholar
  9. Höfer R, Ogris E, Pfeiffer G (1964) Kolloidspeicherung im Knochenmark bei Bluterkrankungen. Wien Z Inn Med 45:330–335Google Scholar
  10. International Commission on Radiological Protection (1987) Technetium-labeled colloids. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 179–183Google Scholar
  11. International Commission on Radiological Protection (1991) In: Annals of the ICRP, radiological protection in biomedical research, ICRP Publication 62, vol 22, no 3. Pergamon, Oxford, pp 25–28Google Scholar
  12. Klingensmith WC III, Tsan MF, Wagner HN Jr (1976) Factors affecting the uptake of 99mTc-sulfur colloid by the lung and kidney. J Nucl Med 17:681PubMedGoogle Scholar
  13. Lin MS, Winchell HS (1972) A “kit” method for the preparation of a technetium-tin(II) colloid and a study of its properties. J Nucl Med 13:58–65PubMedGoogle Scholar
  14. Marciniak M (1981) Bivalent tin metabolism and toxicity after intravenous injection in rats. Acta Physiol Pol 32:2Google Scholar
  15. Nelp WB (1975) An evaluation of colloids for RES function studies. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, pp 349–355Google Scholar
  16. Nelp WB, Bower RE (1969) The quantitative distribution of the erythron and the RE cell in the bone marrow organ of man. Blood 34:276–280PubMedGoogle Scholar
  17. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289Google Scholar
  18. Schuind F, Schoutens A, Verhas M, Verschaeren A (1984) Uptake of colloids by bone is dependent on bone blood flow. Eur J Nucl Med 9:461–463PubMedGoogle Scholar
  19. Subramanian G, McAfee JG (1970) Stannous oxide colloid labeled with 99mTc or 113In for bone marrow imaging. J Nucl Med 11:365–366Google Scholar
  20. Vetter H, Falkner R, Neumayr A (1954) The disappearance rate of colloidal radiogold form the circulation and its application to the estimation of liver blood flow in normal and cirrhotic patients. J Clin Invest 33:1594PubMedGoogle Scholar
  21. Whateley TL, Steele G (1985) Particle size and surface charge studies of a tin colloid radiopharmaceutical for liver scintigraphy. Eur J Nucl Med 19:353–357Google Scholar

References

  1. Adams FG, Horton PW, Selim SM (1980) Clinical comparison of three liver scanning agents. Eur J Nucl Med 5:237–239PubMedGoogle Scholar
  2. Alavi A (1982) Detection of gastrointestinal bleeding with 99mTc-sulfur colloid. Semin Nucl Med 12:126–138PubMedGoogle Scholar
  3. Council of Europe (2005a) Technetium 99mTc colloidal rhenium sulphide injection. European pharmacopeia 5.0, monograph, no 126. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  4. Council of Europe (2005b) Technetium 99mTc sulfur colloid injection. European pharmacopeia 5.0, monograph, no 131. Council of Europe, Maisonneuve, Sainte-RuffineGoogle Scholar
  5. Haney TA, Ascanio I, Gigliotti JA, Gusmano EA, Bruno GA (1971) Physical and biological properties of a 99mTc-sulfur colloid preparation containing disodium edetate. J Nucl Med 12:64–68PubMedGoogle Scholar
  6. Hladik WB III, Gregorio N, Braun TL, Stathis VJ, Ponto JA (1987a) Radiopharmaceutical information and consultation services. In: Hladik WB, III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, p 392Google Scholar
  7. Hladik WB III, Ponto JA, Lentle BC, Laven DL (1987b) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 189–219Google Scholar
  8. Hodges R (1987) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: theoretical considerations. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 165–188Google Scholar
  9. Höfer R, Egert H (1963) Radiogoldverteilung im Knochenmark [in German]. Bull Schweiz Akad Med Wiss 19:36–46Google Scholar
  10. Höfer R, Ogris E, Pfeiffer G (1964) Kolloidspeicherung im Knochenmark bei Bluterkrankungen [in German]. Wien Z Inn Med 45:330–335Google Scholar
  11. International Commission on Radiological Protection (1987a) Technetium-labelled colloids (1987) In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 179–183Google Scholar
  12. International Commission on Radiological Protection (1987b) Technetium-labelled non-absorb able markers (1987) In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 225–226Google Scholar
  13. International Commission on Radiological Protection (1991) In: Annals of the ICRP, Radiological protection in biomedical research, ICRP Publication 62, vol 22, no 3. Pergamon, Oxford, pp 25–28Google Scholar
  14. Klingensmith WC III, Tsan MF, Wagner HN Jr (1976) Factors affecting the uptake of 99mTc-sulfur colloid by the lung and kidney. J Nucl Med 17:681PubMedGoogle Scholar
  15. Larson SM, Nelp WB (1966) Radiopharmacology of a simplified technetium-99m-colloid preparation for photos canning. J Nucl Med 7:817–826PubMedGoogle Scholar
  16. Nelp WB (1975) An evaluation of colloids for RES function studies. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, pp 349–355Google Scholar
  17. Nelp WB, Bower RE (1969) The quantitative distribution of the erythron and the RE cell in the bone marrow organ of man. Blood 34:276–280PubMedGoogle Scholar
  18. Patton, DP, Garcia, EN, Webber, MM (1966) Simplified preparation of technetium-99m-sulfide colloid for liver scanning. Am J Roentgenol Radium Ther Nucl Med 97:880PubMedGoogle Scholar
  19. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289Google Scholar
  20. Schuind F, Schoutens A, Verhas M, Verschaeren A (1984) Uptake of colloids by bone is dependent on bone blood flow. Eur J Nucl Med 9:461–463PubMedGoogle Scholar
  21. Stacher G, Bergmann H (1992) Scintigraphic quantitation of gastrointestinal motor activity and transport: oesophagus and stomach. Eur J Nucl Med 19:815–823PubMedGoogle Scholar
  22. Stern HS, McAfee JG, Subramanian G (1966) Preparation, distribution and utilization of tech netium-99m-sulfur colloid. J Nucl Med 7:665–675PubMedGoogle Scholar
  23. United States Pharmacopeial Convention (2005) United States Pharmacopeia (USP) 28 official monographs: Technetium Tc 99m sulfur colloid injection. United States Pharmacopeial Convention, Rockville, Md, p 1865Google Scholar
  24. Vetter H, Falkner R, Neumayr A (1954) The disappearance rate of colloidal radiogold form the circulation and its application to the estimation of liver blood flow in normal and cirrhotic patients. J Clin Invest 33:1594PubMedGoogle Scholar
  25. Wagner HN Jr, Iio M (1964) Studies of the reticuloendothelial system (RES). III. Blockade of the RES in man. J Clin Invest 42:1525–1532Google Scholar
  26. Warbick-Cerone A, Phythian JR (1982) The role of endocytosis in the localization of radiotracers. In: Anghileri LJ (ed) General processes of radiotracer localization, vol 1. CRC Press, Boca Raton, p 173Google Scholar

References

  1. Chia HL (1986) Particulate radiopharmaceuticals in nuclear medicine. In: Cox PH (ed) Radiopharmacy and radiopharmacology yearbook II. Grime and Stratton, New YorkGoogle Scholar
  2. Hladik WB III, Gregorio N, Braun TL, Stathis VJ, Ponto JA (1987a) Radiopharmaceutical information and consultation services. In: Hladik WB, III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, p 392Google Scholar
  3. Hladik WB III, Ponto JA, Lentle BC, Laven DL (1987b) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 189–219Google Scholar
  4. Hodges R (1987) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: theoretical considerations. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 165–188Google Scholar
  5. Honda T, Kazem I, Croll MN, Brady LW (1970) Instant labeling of macro-and microaggregated albumin with 99mTc. J Nucl Med 11:580–585PubMedGoogle Scholar
  6. Iio M, Wagner HN Jr, Scheffel U, Jabbour B (1963) Studies of the reticuloendothelial system (RES). I. Measurement of the phagocytic capacity of the RES in man and dog. J Clin Invest 42:417–426PubMedGoogle Scholar
  7. International Commission on Radiological Protection (1987) Technetium-labelled colloids. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 179–183Google Scholar
  8. International Commission on Radiological Protection (1991) ICRP Publication 62. In: Annals of the ICRP, radiological protection in biomedical research, vol 22, no 3. Pergamon, Oxford pp 25–28Google Scholar
  9. Kitani K, Taplin GV (1972) Biliary excretion of 99mTc-albumin micro aggregate degradation products (a method for measuring Kupffer cell digestive function?). J Nucl Med 13:260–264PubMedGoogle Scholar
  10. McAfee JG, Ause RG, Wagner HN Jr (1975) Diagnostic value of scintillation scanning of the liver. Arch Intern Med 116:95–110Google Scholar
  11. Nelp WB (1975) An evaluation of colloids for RES function studies. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, pp 349–355Google Scholar
  12. Nelp WB, Bower RE (1969) The quantitative distribution of the erythron and the RE cell in the bone marrow organ of man. Blood 34:276–280PubMedGoogle Scholar
  13. Palmer DI, Rifkind D, Brown DW (1971) 131I-labeled colloidal serum albumin in the study of reticuloendothelial system function. III. Phagocytosis and catabolism compared in normal, leukemia, and immunos up pressed human subjects. J Infect Dis 123:465–469PubMedGoogle Scholar
  14. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289Google Scholar
  15. Reske SN, Vyska K, Feinendegen LE (1981) In vivo assessment of phagocytic properties of Kupffer cells. J Nucl Med 22:405PubMedGoogle Scholar
  16. Schuind F, Schoutens A, Verhas M, Verschaeren A (1984) Uptake of colloids by bone is dependent on bone blood flow. Eur J Nucl Med 9:461–463PubMedGoogle Scholar
  17. Shaldon S, Chiandussi L, Guevara L, Caesar J, Sherlock S (1961) The estimation of hepatic blood flow and intrahepatic shunted blood flow by colloidal he at-denatured human serum albumin labeled with 131I. J Clin Invest 40:1346–1354PubMedGoogle Scholar
  18. Taplin GV, Dore EK, Johnson DE (1964) Hepatic blood flow and reticuloendothelial system studies with radio colloids. In: Kniseley RM et al (eds) Dynamic clinical studies with radio isotopes. US Atomic Energy Commission, Division of Technical Information, TID 7678, pp 285–317Google Scholar
  19. Taplin GV, Johnson DE, Dore EK, Kaplan HS (1964) Suspensions of radioalbumin aggregates for photoscanning the liver, spleen, lung and other organs. J Nucl Med 5:259–275PubMedGoogle Scholar
  20. United States Pharmacopeial Convention (2005) United States Pharmacopeia (USP) 28 official monographs: Technetium Tc 99m albumin colloid injection. United States Pharmacopeial Convention, Rockville, Md, p 1851Google Scholar
  21. Wagner HN Jr, Iio M, Hornick RB (1963) Studies of the reticuloendothelial system (RES). II. Changes in the phagocytic capacity of the RES in patients with certain infections. J Clin Invest 42:427–434PubMedGoogle Scholar
  22. Yamada H, Johnson DE, Griswold ML et al (1969) Radioalbumin microagg re gates for reticuloendothelial organ scanning and function assessment. J Nucl Med 10:453–454Google Scholar

References

  1. Agnew JE, Bateman JR, Watts M, Paramananda V, Pavia D, Clarke SW (1981) The importance of aerosol penetration for lung mucociliary clearance studies. Chest 80(Suppl):843–846PubMedGoogle Scholar
  2. Angelberger P, Zolle I, Strigl A, Kohn H, Mostbeck A, Fiedler W (1985) A dry aerosol of 99mTc-albumin-millimicrospheres for lung ventilation scintigraphy, In: Cox PH, Limouris G, Woldring MG (eds) Progress in radiopharmacology, vol 4. Martinus Nijhoff, The Hague, pp 73–86Google Scholar
  3. Hladik WB, III, Ponto JA, Lentle BC, Laven DL (1987b) Iatrogenic alterations in the biodistribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 189–219Google Scholar
  4. Iio M, Wagner HN Jr, Scheffel U, Jabbour B (1963) Studies of the reticuloendothelial system (RES). I. Measurement of the phagocytic capacity of the RES in man and dog. J Clin Invest 42:417–426PubMedGoogle Scholar
  5. International Commission on Radiological Protection (1987a) Technetium-labelled colloids (1987) In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4, Pergamon, Oxford, pp 179–183Google Scholar
  6. International Commission on Radiological Protection (1987b) Technetium-labelled aerosols (1987) In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 217–219Google Scholar
  7. International Commission on Radiological Protection (1991) In: Annals of the ICRP, radiological protection in biomedical research, ICRP Publication 62, vol 22, no 3, Pergamon, Oxford, pp 25–28Google Scholar
  8. Kitani K, Taplin GV (1972) Biliary excretion of 99mTc-albumin micro aggregate degradation products (a method for measuring Kupffer cell digestive function?). J Nucl Med 13:260–264PubMedGoogle Scholar
  9. Köhn H, Klech H, Angelberger P, Strigl A, Zolle I, Kummer F, Mostbeck A (1985) Dry aerosol of monodisperse millimicrospheres for ventilation imaging: production, delivery system, and clinical results in comparison with 81mKr and 127Xe. Eur J Nucl Med 10:411–416PubMedGoogle Scholar
  10. McAfee JG, Ause RG, Wagner HN Jr (1975) Diagnostic value of scintillation scanning of the liver. Arch Intern Med 116:95–110Google Scholar
  11. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Uladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp. 268–289Google Scholar
  12. Reske SN, Vyska K, Feinendegen LE (1981) In vivo assessment of phagocytic properties of Kupffer cells. J Nucl Med 22:405PubMedGoogle Scholar
  13. Santolicandro A, Giuntini C (1979) Patterns of deposition of labelled monodispersed aerosols in obstructive lung disease. J Nucl Med All Sci 23:115Google Scholar
  14. Scheffel U, Rhodes BA, Natarajan TK, Wagner HN Jr (1972) Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 13:498–503PubMedGoogle Scholar
  15. Szabo Z, Vbsberg H, Segall M, Feinendegen LE (1984) Messung der mittleren Retentionszeiten 99mTc-makierter HSA-Millimikrosphären in der Leber — Klinische Ergebnisse bei Patienten mit operiertem Mammakarzinom [in German]. Nucl Med 23:171–176Google Scholar
  16. Villa M, Pretti O, Mosca R, Plassio G, Pasqualini R (1976) Preparation and evaluation of tin-albumin mill imicro spheres for labelling with Tc-99m. J Nucl Biol Med 20:168–171PubMedGoogle Scholar
  17. Weiss T, Dorow P, Fdix R, Schmutzler H (1981) Pulmonales Aero sol verteilungs muster und regionale mukoziliäre Clearance bei Patienten mit chronisch obstruktiver Atemwegserkrankung und small airways disease [in German]. Atemw Lungenkrkh 7:172–178Google Scholar
  18. Wetterfors J, Gullberg R, Lilhedahl SO, Birke G, Olhage B (1960) Role of the stomach in albumin breakdown. Acta Med Scand 168:347PubMedGoogle Scholar
  19. Zolle I, Bergmann H, Höfer R (1973) Millimicrospheres zur Funktionsprüfung des retikuloen-dothelialen Systems (RES) In: Teil, Fdlinger K, Höfer R (eds) Radioaktive Isotope in Klinik und Forschung, Band 10,2. Urban & Schwa rzenb erg, München-Berlin, 446–453Google Scholar
  20. Zolle I, Hosain F, Rhodes BA, Wagner HN Jr (1970) Human serum albumin millimicrospheres for studies of the reticuloendothdial system. J Nucl Med 11:379Google Scholar

References

  1. Alazraki N, Eshima D, Eshima LA, Herda SC, Murray DR, Vansant JP, Taylor AT (1997) Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer and other potential cancers. Semin Nucl Med 27:55–67PubMedGoogle Scholar
  2. Bergqvist L, Strand SE, Hafström L, Jönsson P-E (1984) Lymphoscintigraphy in patients with malignant melanoma: a quantitative and qualitative evaluation of its usefulness. Eur J Nucl Med 9:129–135PubMedGoogle Scholar
  3. Cox CE, Pendas S, Cox JM, Joseph E, Shons AR, Yeatman T, Ku NN, Lyman GH, Berman C, Haddad F, Reintgen DS (1998) Guidelines for sentinel lymph node detection. Ann Surg 227:645–653PubMedGoogle Scholar
  4. De Schrijver M, Streule K, Senekowitsch R, Fridrich R (1987) Scintigraphy of inflammation with nanometer-si zed colloidal tracers. Nucl Med Commun 8:895–908PubMedGoogle Scholar
  5. Ege GN (1976) Internal mammary lymphoscintigraphy — the rationale, technique, interpretation and clinical application: a review based on 848 cases. Radiology 118:101–107PubMedGoogle Scholar
  6. Ege GN (1983) Lymphoscintigraphy — techniques and applications in the management of breast carcinoma. Semin Nucl Med 13:26–34PubMedGoogle Scholar
  7. Kaplan WD, Davis MA, Rose CM (1979) A comparison of two technetium-99m-labeled radiopharmaceuticals for lymphoscintigraphy. J Nucl Med 20:933–937PubMedGoogle Scholar
  8. Kaplan WD, Piez CW, Gelman RS, Laffin SM, Rosenbaum EM, Jennings CA, McCormick CA, Harris JR, Henderson IC, Atkins HL (1985) Clinical comparison of two radiocolloids for internal mammary lymphoscintigraphy. J Nucl Med 26:1382–1385PubMedGoogle Scholar
  9. Keshtgar MRS, Waddington WA, Lakhani SR, Ell PJ (1999) The sentinel node surgical oncology. Springer, Berlin Heidelberg New York, and Eur J Nucl Med 26:57–67Google Scholar
  10. Larson SM, Nelp WB (1966) Radiopharmacology of a simplified technetium-99m-colloid preparation for photo scanning. J Nucl Med 7:817–826PubMedGoogle Scholar
  11. Lofferer O, Mostbeck A, Partsch H (1974) Lymphtransportstörung beim dicken Bein — Isotopen-lymphographische Ergebnisse [in German]. Z. Hautkr. 49(14): 615–622PubMedGoogle Scholar
  12. Mostbeck A, Kahn P, Partsch H (1984) Quantitative Lymphographie beim Lymphödem. In: Bollinger A, Partsch H (eds) Initiale Lymphstrombahn [in German]. Georg Thieme, Stuttgart, pp 116–122Google Scholar
  13. Nagai K, Ito Y, Otsuka N, Muranaka A (1982) Deposition of small 99mTc-labeled colloids in bone marrow and lymph nodes. Eur J Nucl Med 7:66–70PubMedGoogle Scholar
  14. Nitz DW P, Heidenreich P (eds) (1999) Sentinel-Lymphknoten In: Der Nuklearmediziner [in German]. Demeter, MunichGoogle Scholar
  15. Pattern DP, Garcia EN, Webber MM (1966) Simplified preparation of technetium-99m-sulfide colloid for liver scanning. Am J Roentgenol Radium Ther Nucl Med 97:880Google Scholar
  16. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289Google Scholar
  17. Strand S-E, Persson BRR (1979) Quantitative lymphoscintigraphy I: basic concepts for optimal uptake of radiocolloids in the parasternal lymph nodes of rabbits. J Nucl Med 20:1038–1046PubMedGoogle Scholar

References

  1. Alazraki N, Eshima D, Eshima LA, Herda SC, Murray DR, Vansant JP, Taylor AT (1997) Lympho-scintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer and other potential cancers. Semin Nucl Med 27:55–67PubMedGoogle Scholar
  2. Chia HL (1986) Participate radiopharmaceuticals in nuclear medicine. In: Cox PH (ed) Radiopharmacy and Radiopharmacology yearbook II. Grune and Stratton, New YorkGoogle Scholar
  3. Cox CE, Pendas S, Cox JM, Joseph E, Shons AR, Yeatman T, Ku NN, Lyman GH, Berman C, Haddad F, Reintgen DS (1998) Guidelines for sentinel lymph node detection. Ann Surg 227:645–653PubMedGoogle Scholar
  4. De Schrijver M, Streule K, Senekowitsch R, Fridrich R (1987) Scintigraphy of inflammation with nanometer-sized colloidal tracers. Nucl Med Commun 8:895–908PubMedGoogle Scholar
  5. Ege GN (1976) Internal mammary lymphoscintigraphy — the rationale, technique, interpretation and clinical application: a review based on 848 cases. Radiology 118:101–107PubMedGoogle Scholar
  6. Ege GN (1983) Lymphoscintigraphy — techniques and applications in the management of breast carcinoma. Semin Nucl Med 13:26–34PubMedGoogle Scholar
  7. Froehlich JW (ed) (1985) Nuclear medicine in inflammatory diseases. In: Nuclear medicine annual. Raven, New York, pp 23–72Google Scholar
  8. Haney TA, Ascanio I, Gigliotti JA, Gusmano EA, Bruno GA (1971) Physical and biological properties of a 99mTc-sulfur colloid preparation containing disodium edetate. J Nucl Med 12:64–68PubMedGoogle Scholar
  9. Höfer R, Ogris E, Pfeiffer G (1964) Kolloidspeicherung im Knochenmark bei Bluterkrankungen [in German]. Wien Z Inn Med 45:330–335Google Scholar
  10. Hotze A, Mahlstedt J, Wolf F (1984) Knochenmarkszintigraphie: Methode, Indikationen, Ergebnisse [in German]. Giebeler, DarmstadtGoogle Scholar
  11. Iio M, Wagner HN Jr, Scheffel U, Jabbour B (1963) Studies of the reticuloendothelial system (RES). I. Measurement of the phagocytic capacity of the RES in man and dog. J Clin Invest 42:417–426PubMedGoogle Scholar
  12. International Commission on Radiological Protection (1987) Technetium-labeled colloids. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 179–183Google Scholar
  13. International Commission on Radiological Protection (1991) ICRP Publication 62. In: Annals of the ICRP, radiological protection in biomedical research, vol. 22, no. 3. Pergamon, Oxford, pp 25–28Google Scholar
  14. Kaplan WD, Davis MA, Rose CM (1979) A comparison of two technetium-99m-labeled radiopharmaceuticals for lymphoscintigraphy. J Nucl Med 20:933–937PubMedGoogle Scholar
  15. Kaplan WD, Piez CW, Gelman RS, Laffin SM, Rosenbaum EM, Jennings CA, McCormick CA, Harris JR, Henderson IC, Atkins HL (1985) Clinical comparison of two radiocolloids for internal mammary lymphoscintigraphy. J Nucl Med 26:1382–1385PubMedGoogle Scholar
  16. Lofferer O, Mostbeck A, Partsch H (1974) Lymphtransportstörung beim dicken Bein — Isotopen-lymphographische Ergebnisse. Z Hautkr 49:615–622PubMedGoogle Scholar
  17. McAfee JG, Subramanian G, Aburano T, Thomas FD, Fernandes P, Gagne G, Lyons B, Zapf-Longo C (1982) A new formulation of Tc-99m minimicro-aggregated albumin for marrow imaging: comparison with other colloids, In-Ill and Fe-59. J Nucl Med 23:21–28PubMedGoogle Scholar
  18. Mostbeck A, Kahn P, Partsch H (1984) Quantitative Lymphographie beim Lymphödem. In: Bollinger A, Partsch H (eds) Initiale Lymphstrombahn [in German]. Georg Thieme, Stuttgart, pp 116–122Google Scholar
  19. Munz DL (1984a) Knochenmarkszintigraphie: Grundlagen und klinische Ergebnisse [in German]. Der Nuklearmediziner 7:251–268Google Scholar
  20. Munz DL (1984b) The scintigraphic bone marrow status in adult man: a new classification. In: Schmidt HAE, Adam WE (eds) Nuklearmedizin. Darstellung von Metabolismen und Organ-Funktionen. Schattauer, Stuttgart, p 640Google Scholar
  21. Nagai K, Ito Y, Otsuka N, Muranaka A (1982) Deposition of small 99mTc-labeled colloids in bone marrow and lymph nodes. Eur J Nucl Med 7:66–70PubMedGoogle Scholar
  22. Nitz DWP, Heidenreich P (1999) Sentinel-Lymphknoten. In: Der Nuklearmediziner. Demeter, MunichGoogle Scholar
  23. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. Hladik WB III, Saha GB, Study KT (eds) In: Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289Google Scholar
  24. Saha GB (1987) Normal bio distribution of diagnostic radiopharmaceuticals. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 6–7Google Scholar
  25. SolcoNanocoll (1992) Product monograph of the kit for the preparation of Tc-99m nanocolloid, issued by Sorin Biomedica, ItalyGoogle Scholar
  26. Strand S-E, Persson BRR (1979) Quantitative lymphoscintigraphy I: basic concepts for optimal uptake of radiocolloids in the parasternal lymph nodes of rabbits. J Nucl Med 20:1038–1046PubMedGoogle Scholar
  27. Vorne M, Lantto T, Paakkinen S, Salo S, Soini I (1989) Clinical comparison of 99mTc-HM-PAO labeled leukocytes and 99mTc-nanocolloid in the detection of inflammation. Acta Radiol 30:633–637PubMedGoogle Scholar
  28. Wagner HN Jr, Iio M, Hornick RB (1963) Studies of the reticuloendothelial system (RES). II. Changes in the phagocytic capacity of the RES in patients with certain infections. J Clin Invest 42:427–434PubMedGoogle Scholar

References

  1. Berman DS, Kiat H, Friedman JD, Wang FP, Van Train K, Matzev L, Maddahi J, Germane. G (1993) Separate acquisitions rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol 22:1455–1464PubMedGoogle Scholar
  2. Borges-Neto S, Coleman RE, Jones RH (1990) Perfusion and function at rest and treadmill exercise using technetium-99m-sestamibi: comparison of one-and two-day protocols in normal volunteers. J Nucl Med 31:1128–1132PubMedGoogle Scholar
  3. Bristol-Myers Squibb (2001) Product Information. Cardiolite Kit for the preparation of technetium Tc-99m sestamibi for injection. Bristol-Myers Squibb Medical Imaging, Billerica, Mass.Google Scholar
  4. Bull U, Kleinhans E, Reske SN (1996) Herz-Kreisiauf-System. In: Bull U, Schicha H, Biersack H-J, Knapp WH, Reiners C, Schober O (eds) Nuklearmedizin [in German]. Georg Thieme, Stuttgart, pp 203–246Google Scholar
  5. Coakley AJ (1991) Parathyroid localization — how and when? Eur J Nucl Med 18:151–152PubMedGoogle Scholar
  6. European Commission (1999) Radiation protection 109, guidance on diagnostic reference levels (DRLs) for medical exposures. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  7. Council of Europe (2005) Technetium [99mTc] sestamibi injection solution, European pharmacopeia monograph 1926. Maisonneuve, Sainte-RuffineGoogle Scholar
  8. Hesse B, Tägli K, Cuocolo A et al (2005) EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 32:855–897PubMedGoogle Scholar
  9. Hung JC, Wilson ME, Brown ML, Gibbons RJ (1991) Rapid preparation and quality control method for technetium-99m-2-methoxy isobutyl isonitrile (technetium-99m-sestamibi). J Nucl Med 32:2162–2168PubMedGoogle Scholar
  10. Imbriaco M, Del Vecchio S, Riccardi A, Pace L, Di Salle F, Di Gennaro F, Salvatore M, Sodano A (2001) Scintimammography with 99mTc-MIBI versus dynamic MRI for non-invasive characterization of breast masses. Eur J Nucl Med 28:56–63PubMedGoogle Scholar
  11. International Commission on Radiological Protection (1991) Technetium-labelled MIBI. In: Annals of the ICRP, radiological protection in biomedical research. ICRP Publication 62, vol. 22, no. 3, Pergamon, pp 21–24Google Scholar
  12. Maisey MN, Lowry A, Bischof-Delaloye A, Fridrich R, Inglese E, Khalil M, van der Schoot J (1990) European multicenter comparison of thallium-201 and technetium-99m-methoxyisobutyl isonitrile in ischemic heart disease. Eur J Nucl Med 16:869–872PubMedGoogle Scholar
  13. Marcass C, Marzullo P, Oarodi O, Sambuceti G, L’Abbate A (1990) A new method of noninvasive quantitation of segmental myocardial wall thickening using technetium-99m 2-methoxy-isobutyl-isonitrile scintigraphy: results in normal subjects. J Nucl Med 31:173–177Google Scholar
  14. Maublant JC, Gachon P, Moins N (1988) Hexakis (2-methoxy isobutylisonitrile) technetium-99m and thallium-201 chloride: uptake and release in cultured myocardial cells. J Nucl Med 29:48–54PubMedGoogle Scholar
  15. McBiles M, Lambert AT, Cote MG, Kim SY (1995) Sestamibi parathyroid imaging. Sem Nucl Med 25:221–234Google Scholar
  16. Palmedo H, Biersack HJ, Lastoria S, Maublant J, Prats E, Stegner HE, Bourgeois P, Hustinx R, Hil-son AJW, Bischof-Delaloye A (1998) Scintimammography with technetium-99m methoxyisobu-tyl isonitrile: results of a prospective European multicenter trial. Eur J Nucl Med 25:375–385PubMedGoogle Scholar
  17. Palmedo H, Grünwald F, Bender H, Schomburg A, Mallmann P, Krebs D, Biersack HJ (1996) Scintimammography with technetium-99m methoxyisobutylisonitrile: comparison with mammography and magnetic resonance imaging. Eur J Nucl Med 23:940–946PubMedGoogle Scholar
  18. Patel M, Sadek S, Jahan S, Owunwanne A (1995) A miniaturized rapid paper chromatographic procedure for quality control of technetium-99m sestamibi. Eur J Nucl Med 22:1416–1419PubMedGoogle Scholar
  19. Piwnica-Worms D, Kronauge JF, Delmon L, Holman BL, Marsh JD, Jones AG (1990) Effect of metabolic inhibition on technetium-99m-MIBI kinetics in cultured chick myocardial cells. J Nucl Med 31:464–472PubMedGoogle Scholar
  20. Sporn V, Perez Balino N, Holman BL, Sosa Liprandi A, Masoli O, Mitta A, Camin LL, Castiglia S, McKusick KA (1988) Simultaneous measurement of ventricular function and myocardial perfusion using the technetium-99m isonitriles. Clin Nucl Med 13:77–81PubMedGoogle Scholar
  21. Taillefer R, Boucher Y, Potvin C, Lambert R (1992) Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study). J Nucl Med 33:1801–1807PubMedGoogle Scholar
  22. Tatum JL, Jesse RL, Kontos MC, Nicholson CS, Schmidt KL, Roberts CS, Ornato JP (1997) Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 29: 116–125PubMedGoogle Scholar
  23. United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m sestamibi injection. United States Pharmacopeia, p 1863Google Scholar
  24. Van Duzee BF, Bugaj JE (1981) The effect of total technetium concentration on the performance of a skeletal imaging agent. Clin Nucl Med 6(Suppl):P148Google Scholar
  25. Villanueva-Meyer J, Mena I, Narahara KA (1990) Simultaneous assessment of left ventricular wall motion and myocardial perfusion with technetium-99m-methoxyisobutyl isonitrile at stress and rest in patients with angina: comparison with thallium-201 SPECT. J Nucl Med 31:457–463PubMedGoogle Scholar
  26. Wackers FJTh, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, Boucher CA, Picard M, Holman BL, Fridrich R, Inglese E, Delaloye B, Bischof-Delaloye A, Camin L, McKusick K (1989) Technetium-9 9m hexakis 2-methoxy isobutyl isonitrile: Human bio distribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 30:301–311PubMedGoogle Scholar
  27. Wei JP, Burke GJ, Mansberger AR Jr (1992) Prospective evaluation of the efficacy of technetium-99m-sestamibi and iodine-123 radionuclide imaging of abnormal parathyroid glands. Surgery 112:1111–1117PubMedGoogle Scholar

References

  1. Cuocolo A, Nicolai E, Pace L, Nappi A, Sullo P, Cardei S, Argenziano L, Ell PJ, Salvatore M (1996) Technetium-99m-labeled tetrofosmin myocardial tomography in patients with coronary artery disease: comparison between adenosine and dynamic exercise stress testing. J Nucl Cardiol 3:194–203PubMedGoogle Scholar
  2. Deutsch E, Glavan KA, Sodd VJ, Nishiyama H, Ferguson DL, Lukes SJ (1981) Cationic Tc-99m complexes as potential myocardial imaging agents. J Nucl Med 22:897–907PubMedGoogle Scholar
  3. Deutsch E, Ketring AR, Libson K, Vanderheyden J-L, Hirth WJ (1989) The Noah’s ark experiment: species dependent biodistributions of cationic 99mTc complexes. Int J Rad Appl Instrum 16:191–232Google Scholar
  4. European Commission (1999) Radiation protection 109, guidance on diagnostic reference levels (DRLs) for medical exposures. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  5. He Z-X, Iskandrian AS, Gupta NC, Verani MS (1997) Assessing coronary artery disease with dipyridamole technetium-99m-tetrofosmin SPECT: a multicenter trial. J Nucl Med 38:44–48PubMedGoogle Scholar
  6. Heo J, Cave V, Wasserleben V, Iskandrian AS (1994) Planar and tomographic imaging with technetium 99m-labeled tetrofosmin: correlation with thallium 201 and coronary angiography. J Nucl Cardiol 1:317–324PubMedGoogle Scholar
  7. Hesse B, Tagli K, Cuocolo A et al (2005) EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 32:855–897PubMedGoogle Scholar
  8. Higley B, Smith FW, Smith T, Gemmell HG, Gupta PD, Gvozdanocic DV, Graham D, Hinge D, Davidson J, Lahiri A (1993) Technetium-99m-l,2-bis[bis(2-ethoxyethyl)phosphino]ethane: human bio distribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med 34:30–38PubMedGoogle Scholar
  9. International Commission on Radiological Protection (1991) Technetium-labeled MIBI In: Annals of the ICRP, Radiological protection in biomedical research. ICRP publication 62, vol. 22, no. 3. Pergamon, Oxford, pp 21–24Google Scholar
  10. Jain D, Wackers FJT, Mattera J, McMahon M, Sinusas AJ, Zaret BL (1993) Biokinetics of technetium-99m-tetrofosmin: myocardial perfusion imaging agent: implications for a one-day imaging protocol. J Nucl Med 34:1254–1259PubMedGoogle Scholar
  11. Kelly JD, Forster AM, Higley B, Archer CM, Booker FS, Canning LR, Chiu KW, Edwards B, Gill HK, McPartlin M, Nagle KR, Latham IA, Pickett RD, Storey AE, Webbon PM (1993) Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med 34:222–227PubMedGoogle Scholar
  12. Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, Hirai J-I, Saga T, Yamamoto S, Tonami N (1997) Quantitative rest technetium-99m tetrofosmin imaging in predicting functional recovery after revascularization: comparison with rest-re distribution thallium-201. J. Am Coll Cardiol 29:1226–1233PubMedGoogle Scholar
  13. Nycomed Amersham (1998) Product monograph for the Myoview kit for the preparation of technetium Tc-99m tetrofosmin for injection. Nycomed Amersham, Buckinghamshire.Google Scholar
  14. Platts EA, North TL, Pickett RD, Kelly JD (1995) Mechanism of uptake of technetium-tetrofosmin. I: uptake into isolated adult rat ventricular myocytes and subcellular localization. J Nucl Cardiol 2:317–326PubMedGoogle Scholar
  15. Sridhara b, Sochor H, Rigo P, Braat SH, Itti R, Marrinez-Duncker D, Cload P, Lahiri A (1994) Myocridial single-photon emission computed tomographic imaging with technetium-99m tetrofosmin: stress-rest imaging with same-day and separate-day rest imaging. J Nucl Cardiol 1:128–143.Google Scholar
  16. Takahashi N, Reinhardt CP, Marcel R, Leppo JA (1996) Myocardial uptake of 99mTc-tetrofosmin, sestamibi, and 201Tl in a model of acute coronary reperfusion. Circulation 94:2605–2613.PubMedGoogle Scholar
  17. Tatum JL, Jesse RL, Kontos MC, Nicholsol CS, Schmidt KL, Roberts CS, Ornato JP (1997) Comprehensice strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 29:116–125PubMedGoogle Scholar
  18. United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m tetrofosmin injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1865Google Scholar
  19. Van Hemert FJ, van Eck-Smit BLF, Schimmel KJM (2001) A rapid and stable ITLC procedure for the determination of the radiochemical purity of 99mTc tetrofosmin. Nucl Med Commun 22:641–644.PubMedGoogle Scholar
  20. Yoshioka J, Hasegawa S, Yamaguchi H, Tokita N, Paul AK, Xiuli M (1999) Left ventricular volumes and ejection fraction calculated from quantitative electrocardiographic-gated 99mTc-tetrofosmin myocardial SPECT. J Nucl Med 40:1693–1698.PubMedGoogle Scholar

References

  1. Administration of Radioactive Substances Advisory Committee (1993) Technetium-labeled exame-tazime (HMPAO) (1993) In: Notes for guidance on the administration of radioactive substances to persons for purposes of diagnosis, treatment or research, Appendix 1, Part A, pp 22–30; and Administration of Radioactive Substances Advisory Committee — ARSAC. 13(a) ibidem: Investigations — Children and young persons (1993) In: Notes for guidance on the administration of radioactive substances to persons for purposes of diagnosis, treatment or research, Appendix 1, Part D, pp 34–35Google Scholar
  2. Amersham Healthcare (1995) Product information for the Ceretec kit for the preparation of tech-netium Tc-99m exametazime injection. Amersham Healthcare, UKGoogle Scholar
  3. Andersen AR, Friberg HH, Schmidt JF, Hasselbalch SG (1988) Quantitative measurements of cerebral blood flow using SPECT and 99mTc-D,L-HMPAO compared to xenon-133. J Cereb Blood Flow Metab 8(Suppl 1):S69–S81PubMedGoogle Scholar
  4. Asenbaum S, Reinprecht A, Briicke T, Wenger S, Podreka I, Deecke L (1985) A study of acetazolamide-induced changes in cerebral blood flow using 99mTc-HM-PAO SPECT in patients with cerebrovascular disease. Neuroradiology 27:509–516Google Scholar
  5. Ballinger JR, Reid RH, Gulenchyn KY (1988) Radiochemical purity of [99mTc]HM-PAO. J Nucl Med 29:572–573 (letter)PubMedGoogle Scholar
  6. Dormehl, IC, Oliver DW, Langen, K-J, Hugo N, Croft SA (1997) Technetium-99m-HMPAO, technetium-99m-ECD and iodine-123-IMP cerebral blood flow measurements with pharmacological interventions in primates. J Nucl Med 38:1897–1901PubMedGoogle Scholar
  7. Ell PJ, DC Costa, ID Cullum, PH Jarritt, D Lui (1987) Ceretec rCBF atlas: the clinical application of rCBF imaging by SPECT: Amersham International, UKGoogle Scholar
  8. Council of Europe (2005) Technetium 99mTc exametazime injection. In: European Pharmacopeia 5.0, monograph no 1925. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1214Google Scholar
  9. Heiss W-D (1983) Flow thresholds for functional and morphological damage of brain tissue. Stroke 14:329–331PubMedGoogle Scholar
  10. Heiss W-D, Herholz K, Podreka I, Neubauer I, Pietrzyk U (1990) Comparison of 99mTc-HM-PAO SPECT with 18F-fluoromethane PET in cerebrovascular disease. J Cereb Blood Flow Metab 10:687–697PubMedGoogle Scholar
  11. Holm S, Andersen AR, Vorstrup S, Lassen NA, Paulson OB, Holmes RA (1985) Dynamic SPECT of the brain using a lipophilic technetium-99m complex, PnAO. J Nucl Med 26:1129–1134PubMedGoogle Scholar
  12. Holman BL, Johnson KA, Gerada B, Carvalho PA, Satlin A (1992) The scintigraphic appearance of Alzheimer’s disease: A prospective study using technetium-99m-HM-PAO SPECT. J Nucl Med 33:181–185PubMedGoogle Scholar
  13. Holmes RA, Chaplin SB, Royston KG, Hoffmann TJ, Volkert WA (1985) Cerebral uptake and retention of 99mTc-hexamethyl-propyleneamine oxime (99mTc-HM-PAO). J Nucl Med Commun 6:443–447Google Scholar
  14. International Commission on Radiological Protection (1991) Technetiurn-labelled HM-PAO (Ceretec) In: Annals of the ICRP, Radiological protection in biomedical research, ICRP publication 62, vol. 22., no. 3. Pergamon, Oxford, pp 11–13Google Scholar
  15. Lassen NA (1966) The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet 2:1113–1115PubMedGoogle Scholar
  16. Lassen NA, Andersen AR (1988) Technetium-99m compounds for measurement of cerebral blood flow [reply]. J Nucl Med 29:1664–1465Google Scholar
  17. Lassen NA, Sperling B (1993) Hyperfixation of HM-PAO in subactute ischemic stroke leading to spuriously high estimates of cerebral blood flow by SPECT. Stroke 24:193–194PubMedGoogle Scholar
  18. Lassen NA, Andersen AR, Friberg H, Neirinckx RD (1987) Technetium-99m-HM-PAO as a tracer of cerebral blood flow distribution: A kinetic analysis. J Cereb Blood Flow Metab 7(Suppl 1):S535Google Scholar
  19. Lassen NA, Andersen AR, Friberg L, Paulson OB (1988) The retention of 99mTc-D,L-HM-PAO in the human brain after intracarotid bolus injection: A kinetic analysis. J Cereb Blood Flow Metab 8(Suppl 1):S13–S22PubMedGoogle Scholar
  20. Leonard JP, Nowotnik DP, Neirinckx RD (1986) Technetium-99m D,L-HM-PAO: a new radiophar-maceutical for imaging regional brain perfusion using SPECT — a comparison with iodine-123 HIPDM. J Nucl Med 27:1819–1823PubMedGoogle Scholar
  21. Meyer JY, Thomson D, Mena I, Marcus CS (1990) Lacrimal gland dosimtery for the brain imaging agent 99mTc-HMPAO. J Nucl Med 31:1237–1239Google Scholar
  22. Moretti JL, Defer G, Cinotti L, Cesaro P, Degos JD, Vigneron N, Ducassou D, Holman BL (1990) “Luxury perfusion” with 99mTc-HM-PAO and 123I-IMP SPECT imaging during the subacute phase of stroke. Eur. J Nucl Med 16:17–22PubMedGoogle Scholar
  23. Murase K, Tanada S, Fujita H, Sakaki S, Hamamoto K (1992) Kinetic behavior of Tc-99m HM-PAO in the human brain and quantification of cerebral blood flow using dynamic SPECT. J Nucl Med 33:135–143PubMedGoogle Scholar
  24. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Mariott JA, Chaplin SB (1987) Technetium-99m D,L-HM-PAO: a new radio-pharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 28:191–202PubMedGoogle Scholar
  25. Neirinckx RD, Burke JF, Harrison RC, Forster AM, Andersen AR, Lassen NA (1988) The retention mechanism of technetium-99m-HMPAO: intracellular reaction with glutathione. J Cereb Blood Flow Metab 8(Suppl 1):S4–S12PubMedGoogle Scholar
  26. Podreka I, Suess E, Goldenberg G, Brücke T, Müller C, Lang W, Neirinckx RD, Deecke L (1987) Initial experience with technetium-99m-HM-PAO brain SPECT. J Nucl Med 28:1657–1666PubMedGoogle Scholar
  27. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–270, 272–289Google Scholar
  28. Sharp PF, Smith FW, Gemmel HG, Lyall D, Evans NTS, Gvozdanovic D, Davidson J, Tyrrell DA, Pickett RD, Neirinckx RD (1986) Technetium-99m HM-PAO stereoisomers as potential agents for imaging regional cerebral blood flow: Human volunteer studies. J Nucl Med 27:171–177PubMedGoogle Scholar
  29. Troutner DE, Volkert WA, Hoffmann TJ, Holmes RA (1984) A neutral lipophilic complex of 99mTc with a multidentate amine oxime. Int J Appl Radiat Isot 35:467–470PubMedGoogle Scholar
  30. United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m exametazime injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1855Google Scholar

References

  1. Brass LM, Walovitch RC, Joseph JL, Leveille J, Marchand L, Hellman RS, Tikovsky RS, Masdeu JC, Hall KM, Van Heertum RL (1994) The role of single photon emission computed tomography brain imaging with 99mTc-bicisate in the localization and definition of mechanism of ischemic stroke. J Cereb Blood Flow Metab 14(Suppl 1):S91–S98PubMedGoogle Scholar
  2. Cheesman EH, Blanchette MA, Ganey MV, Maheu LJ, Miller SJ, Watson AD (1988) Technetium-99m ECD: Ester-derivatized diaminedithiol Tc complexes for imaging brain perfusion. J Nucl Med (Abstr) 29:788Google Scholar
  3. Devous MD, Payne JK, Lowe JL, Leroy RF (1993) Comparison of technetium-99m-ECD to xenon-133 SPECT in normal controls and in patients with mild to moderate regional cerebral blood flow abnormalities. J Nucl Med 34:754–761PubMedGoogle Scholar
  4. Dormehl, IC, Oliver DW, Langen, K-J, Hugo N, Croft SA (1997) Technetium-99m-HMPAO, technetium-99m-ECD and iodine-123-IMP cerebral blood flow measurements with pharmacological interventions in primates. J Nucl Med 38:1897–1901PubMedGoogle Scholar
  5. DuPont Merck Pharmaceutical (1995) Product monograph Neurolite, issued by DuPont Merck Pharmaceutical, Wilmington, Del.Google Scholar
  6. Friberg L, Andersen AR, Lassen NA, Holm S, Dam M, (1994) Retention of 99mTc-bicisate in the human brain after intracarotid injection. J Cereb Blood Flow Metab 14(Suppl 1):S19–S27PubMedGoogle Scholar
  7. Holman BL, Hellman RS, Goldsmith SJ, Mean IG, Leveille J, Gherardi PG, Moretti JL, Bischof-Delaloye A, Hill TC, Rigo PM, Van Heertum RL, Ell PJ, Büll U, DeRoo MC, Morgan RA (1989) Bio-distribution, dosimetry and clinical evaluation of Tc-99m ethyl cysteinate dimer (ECD) in normal subjects and in patients with chronic cerebral infarction. J Nucl Med 30:1018–1024PubMedGoogle Scholar
  8. International Commission on Radiological Protection (1991) Technetium-labeled HM-PAO (Ceretec) In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol. 22, no. 3. Pergamon, Oxford, pp 11–13Google Scholar
  9. Lassen NA, Sperling B (1994) 99mTc-Bicisate reliably images CBF in chronic brain diseases but fails to show reflow hyperemia in subacute stroke: report of a multicenter trial of 105 cases comparing 133-Xe and 99mTc-bicisate (ECD, Neurolite) measured by SPECT on the same day. J Cereb Blood Flow Metab 14(Suppl 1):S44–S48PubMedGoogle Scholar
  10. Leveille J, Demonceau G, DeRoo MC, Rigo PM, Talliefer R, Morgan RA, Kupranick D, Walovitch RC (1989) Characterisation of technetium-99m-L,L-ECD for brain perfusion imaging. Part 2: biodistribution and brain imaging in humans. J Nucl Med 30:1902–1910PubMedGoogle Scholar
  11. Moretti JL, Defer G, Cinotti L, Cesaro P, Degos JD, Vigneron N, Ducassou D, Holman BL (1990) “Luxury perfusion” with 99mTc-HM-PAO and 123I-IMP SPECT imaging during the subacute phase of stroke. Eur. J Nucl Med 16:17–22PubMedGoogle Scholar
  12. Tsuchida T, Yonekura Y, Sadato N, Iwasaki Y, Tamaki N, Konishi J, Fujita T, Matoba N, Nishizawa S, Magata Y (1992) Brain perfusion SPECT with [Tc-99]-L,L-ethyl cysteinate dimer (ECD) in comparison with regional cerebral blood flow measured by PET: underestimation in the high flow range. J Nucl Med 33 (Abstr):966Google Scholar
  13. United States Pharmacopeial Convention (2005) USP 28 official monographs, technetium-Tc99m bicisate injection, United States pharmacopeia. United States Pharmacopeial Convention, p 1853Google Scholar
  14. Vallabhajosula S, Zimmermann RE, Picard M, Stritzke P, Mena I, Hellman RS, Tikovsky RS, Stabin MG, Morgan RA, Goldsmith SJ (1989) Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med 30:599–604PubMedGoogle Scholar
  15. Verbeke K, Boonen C, Verbruggen AM (1997) Usefulness of residual fractions of L,L-ethylcystei-nate dimer (Neurolite) for the preparation of 99mTc-L,L-ethylcysteinate dimer. Nucl Med Commun 18:535–539PubMedGoogle Scholar
  16. Walovitch RC, Makuch J, Knapik G, Watson AD, Williams SJ (1988) Brain retention of 99mTc-ECD is related to in vivo metabolism. J Nucl Med 29 (Abstr):747Google Scholar
  17. Walovitch RC, Hill TC, Garrity ST, Cheesman EH, Burgess BA, O’Leary DH, Watson AD, Ganey MV, Morgan RA, Williams SJ (1989) Characterisation of 99mTc-L,L-ECD for brain perfusion imaging. Part 1: pharmacology of 99mTc-L, L-ECD in non-human primates. J Nucl Med 30:1892–1901PubMedGoogle Scholar
  18. Walovitch RC, Franceschi M, Picard M, Cheesman EH, Hall KM, Makuch J, Watson MW, Zimmerman RE, Watson AD, Ganey MV, Williams SJ, Holman BL (1991) Metabolism of 99mTc-L,L-ethyl cysteinate dimer in healthy volunteers. Neuropharmacology 30:283–292PubMedGoogle Scholar

References

  1. Arndt JW, van der Stays Veer A, Blok D, Griffoen G, Verspaget HW, Lamers CB, Pauwels EK (1993) Prospective comparative study of technetium-99m-WBCs and indium-111-granulocytes for the examination of patients with inflammatory bowel disease. J Nucl Med 34:1052–1057PubMedGoogle Scholar
  2. Bowring CS (1986) Imaging and quantitative scanning. In: Lewis SM, Baily RJ (eds) Radionuclides in hematology. Churchill Livingstone, Edinburgh, pp 151–172Google Scholar
  3. Council of Europe (2005) Technetium 99mTc exametazime injection. In: European pharmacopeia 5.0, monograph no 1925. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1214Google Scholar
  4. Danpure HJ, Osman S, Carroll MJ (1988) The development of a clinical protocol for the radiolabelling of mixed leukocytes with 99mTc-hexamethylpropyleneamine oxime. Nucl Med Commun 9:465–475PubMedGoogle Scholar
  5. Devillers A, Moisan A, Jean S, Arvieux C, Bourguet P (1995) Technetium-99m hexamethylpropylene amine oxime leukocyte scintigraphy for the diagnosis of bone and joint infections: a retrospective study in 116 patients. Eur J Nucl Med 22:302–307PubMedGoogle Scholar
  6. GE Healthcare (2005) Product information for the Ceretec kit for the preparation of technetium Tc-99m exametazime injection. GE Healthcare, UKGoogle Scholar
  7. International Commission on Radiological Protection (1987) Technetium-labelled white blood cells (leukocytes). In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, bio-kinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 231–232Google Scholar
  8. International Commission on Radiological Protection (1991) Technetium-labelled white blood cells (leukocytes). In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol. 22, no. 3. Pergamon, Oxford, pp 25–28Google Scholar
  9. Kelbaek H, Fogh J, Gjorup T, Bfllow K, Vestergaard B (1985) Scintigraphic demonstration of subcutaneous abscesses with 99mTc-labelled leukocytes. Eur J Nucl Med 10:302–303PubMedGoogle Scholar
  10. Lantto EH, Lantto TJ, and Vorne M (1991) Fast diagnosis of abdominal infections and inflammations with technetium-99m-HMPAO labeled leukocytes. J. Nucl Med 32:2029–2034PubMedGoogle Scholar
  11. Lantto T, Kaukonen J-P, Kokkola A, Laitinen R, Vorne M (1992) Tc-99m HMPAO labeled leukocytes superior to bone scan in the detection of osteomyelitis in children. Clin Nucl Med 17:7–10PubMedGoogle Scholar
  12. Mortelmans L, Malbrain S, Stuyck J, De Backker C, Heynen MJ, Boogaerts M, De Roo M, Verbruggen A (1989) In vitro and in vivo evaluation of granulocyte labelling with (99mTc)D,L-HMPAO. J Nucl Med 30:2022–2028PubMedGoogle Scholar
  13. Peters AM, Danpure HJ, Osman S, Hawker RJ, Henderson BL, Hodgson HJ, Kelly JD, Neirinckx RD, Lavender JP (1986) Clinical experience with 99mTc-HMPAO for labeling leukocytes and imaging inflammation. Lancet 25:946–949Google Scholar
  14. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289Google Scholar
  15. Roddie ME, Peters AM, Danpure HJ, Osman S, Henderson BL, Lavender PJ, Carrol MJ, Neirinckx RD, Kelly JD (1988) Inflammation: imaging with Tc-99m HMPAO-labelled leukocytes. Radiology 166:767–772PubMedGoogle Scholar
  16. Segall GM, Lang HV, Chaovapong W (1994) In vitro evaluation of white blood cell labelling with 99mTc-radiopharmaceuticals. Nucl Med Commun 15:845–849PubMedGoogle Scholar
  17. Skretting A, Benestad HB, Sundrehagen H (1988) Whole-body distribution of 99mTc labelled autologous human granulocytes and radiation dose to cells and organs. Eur J Nucl Med 14:1–7PubMedGoogle Scholar
  18. United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m exametazime injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1855Google Scholar

References

  1. Ancri D, Lonchampt M, Basset J (1977) The effect of tin on the tissue distribution of Tc-99m sodium pertechnetate. Radiology 124:445–450PubMedGoogle Scholar
  2. Bevan JA, Tofe AJ, Benedict JJ, Francis MD, Barnett BL (1980) Tc-99m HMDP (hydroxymethylene diphosphonate): a radiopharmaceutical for skeletal and acute myocardial infarct imaging. II. Comparison of Tc-99m hydroxymethylene diphosphonate (HMDP) with other technetium-labeled bone imaging agents in a canine model. J Nucl Med 21:967–970PubMedGoogle Scholar
  3. Bonte FJ, Parkey RW, Graham KD, Moore J, Stokely EM (1974) A new method for radionuclide imaging of myocardial infarcts. Radiology 110:473–474PubMedGoogle Scholar
  4. Buja LM, Tofe AJ, Kulkarni PV et al (1977) Sites and mechanisms of localization of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J Clin Invest 60:724–740PubMedGoogle Scholar
  5. Chacko AK, Gordon DH, Bennett JM et al (1977) Myocardial imaging with Tc-99m pyrophosphate in patients on Adriamycin treatment for neoplasia. J Nucl Med 18:680–683PubMedGoogle Scholar
  6. Cis International (1985a) Product information for the TCK-7 kit (AngioCis) for the preparation of technetium Tc-99m (Sn) pyrophosphate (PYP). Cis International, FranceGoogle Scholar
  7. Cis International (1985b) Product information for the TCK-11 kit (HematoCis) for the preparation of technetium Tc-99m red blood cells (RBC). Cis International, FranceGoogle Scholar
  8. Cohen Y, Perez R, Henry R, Panneciere C (1972) Use of technetium 99m-labelled sodium pyrophosphate in skeletal scintigraphy. C R Acad Sci Hebd Seances Acad Sci D 275:1719–1721PubMedGoogle Scholar
  9. Council of Europe (2005) Technetium 99mTc tin pyrophosphate injection. In: European pharmacopeia, monograph 129. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1230Google Scholar
  10. Cowley MJ, Mantle JA, Rogers WJ et al (1977) Technetium stannous pyrophosphate myocardial scintigraphy: reliability and limitations in assessment of acute myocardial infarction. Circulation 56:192–198PubMedGoogle Scholar
  11. Crawford JA, Gumerman LW (1978) Alteration of body distribution of 99mTc-pyrophosphate by radiographic contrast material. Clin Nucl Med 3:305–307PubMedGoogle Scholar
  12. Davis MA, Holman BL, Carmel AN (1976) Evaluation of radiopharmaceuticals sequestered by acutely damaged myocardium. J Nucl Med 17:911–917PubMedGoogle Scholar
  13. Eckelman WC, Volkert WA (1982) In vivo chemistry of 99mTc-chelates. Int J Appl Radiat Isot 33:945–951PubMedGoogle Scholar
  14. Fletcher JW, Solaric Georges E, Henry RE, Donato RM (1973) Evaluation of 99mTc-pyrophosphate as a bone imaging agent. Radiology 467–469Google Scholar
  15. Hegge FN, Hamilton GW, Larson SM et al (1978) Cardiac chamber imaging: a comparison of red blood cells labelled with Tc-99m in vitro and in vivo. J Nucl Med 19:129–134PubMedGoogle Scholar
  16. Henne W, Pixberg H-U, Pfannenstiel P (1975) Technetiumpolyphosphat und Technetiumdipho-sphonat — Eine vergleichende Untersuchung [in German]. Nucl Med 14:83–90Google Scholar
  17. Hladik WB, Nigg KK, Rhodes BA (1982) Drug-induced changes in the biologic distribution of radiopharmaceuticals. Sem Nucl Med 12:184–218Google Scholar
  18. Hladik WB, Ponto JA, Lentle BC, Laven DL (1987) Iatrogenic alterations in the biodistribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 193–202Google Scholar
  19. International Commission on Radiological Protection (1987a) Technetium-labelled phosphates and phosphonates. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 213–215Google Scholar
  20. International Commission on Radiological Protection (1987b) Technetium-labelled erythrocytes. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 209–210Google Scholar
  21. International Commission on Radiological Protection (1991) Technetium-labelled denatured erythrocytes. In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol 22, no 3. Pergamon, Oxford, pp 25–28Google Scholar
  22. Kelly RJ, Chilton HM, Hackshaw BT, Ball JD, Watson NE, Kahl FR, Cowan RJ (1979) Comparison of Tc-99m pyrophosphate and Tc-99m methylene diphosphonate in acute myocardial infarction: concise communication. J Nucl Med 20:402–406PubMedGoogle Scholar
  23. Kornberg A (1962) On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions. In: Kasha M and Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 251–264Google Scholar
  24. Kowalsky RJ, Dalton DR (1981) Technical problems associated with the production of technetium [99mTc] tin(II) pyrophophate kits. Am J Hosp Pharm 38:1722–1726PubMedGoogle Scholar
  25. Krishnamurthy GT, Huebotter RJ, Walsh CF, Taylor JR, Kehr MD, Tubis M, Blahd WH (1975) Kinetics of 99mTc-labeled pyrophosphate and polyphosphate in man. J Nucl Med 16:109–115PubMedGoogle Scholar
  26. Krogsgaard OW (1976) Radiochemical purity of various Tc-99m-labelled bone scanning agents. Eur J Nucl Med 1:15–17PubMedGoogle Scholar
  27. Kuntz D, Rain JD, Lemaire V, Sainte-Croix A, Ryckewaert A (1975) Diagnostic value of bone scintigraphy with technetium pyrophosphate. Study of 250 patients. Rev Rhum Mai Osteoartic 42:19–24Google Scholar
  28. Mallinckrodt Medical (1993) Product information for TechneScan PYP for the preparation of (Sn) pyrophosphate (PYP) injection solution. Mallinckrodt Medical, The NetherlandsGoogle Scholar
  29. Pavel DG, Zimmer AM, Patterson VN (1977) In vivo labeling of red blood cells with 99mTc: a new approach to blood pool visualization. J Nucl Med 18:305–308PubMedGoogle Scholar
  30. Porter WC, Dees SM, Freitas JE, Dworkin HJ (1983) Acid-citrate-dextrose compared with heparin in the preparation of in vivo/in vitro technetium-99m red blood cells. J Nucl Med 24:383–387PubMedGoogle Scholar
  31. Rampon S, Bussiere JL, Prin P, Sauvezie B, Leroy V, Missioux D et al (1974) 250 studies of bone radioisotope scanning by tin pyrophosphate labeled with technetium 99m. Analytical and clinical study. Rev Rhum Mai Osteoartic 4:745–751Google Scholar
  32. Rudd TG, Allen DR, Hartnett DE (1977) Tc-99m methylene diphosphonate versus Tc-99m pyrophosphate: biologic and clinical comparison. J Nucl Med 18:872–876PubMedGoogle Scholar
  33. Russell CD, and Cash AG (1979) Complexes of technetium with pyrophosphate, etidronate, and medronate. J Nucl Med 20:532–537PubMedGoogle Scholar
  34. Russell RGG, Mühlbauer RC, Bisaz S et al (1970) The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyro-parathyroidectomized rats. Calcif Tissue Res 6:183–196PubMedGoogle Scholar
  35. Saha GB, Boyd CM (1978) Plasma protein-binding of 99mTc-pyrophosphate. Int. J Nucl Med Biol 5:236–239PubMedGoogle Scholar
  36. Srivastava SC, Meinken G, Smith TD, Richards P (1977) Problems associated with stannous 99mTc-radiopharmaceuticals. Int J Appl Radiat Isot 28:83–95PubMedGoogle Scholar
  37. Subramanian G, McAfee JG, Bell EG, Blair RJ, Mara RE, Relston PH (1972) 99mTc-labeled polyphos-phates as skeletal imaging agent. Radiology 102:701–704PubMedGoogle Scholar
  38. Subramanian G, McAfee JG, Blair RJ, Kallfelz FA, Thomas FD (1975) Technetium-99m methylene diphosphonate — a superior agent for skeletal imaging: comparison with other technetium complexes. J Nucl Med 16:744–755PubMedGoogle Scholar
  39. Tatum JL, Burke TS, Hirsch JI et al (1983) Pitfall to modified in vivo method of technetium-99m red blood cell labeling — iodinated contrast media. Clin J Nucl Med 8:585–587Google Scholar
  40. Thrall JH, Freitas JE, Swanson D, Rogers WL, Clare JM, Brown ML, Pitt B (1978) Clinical comparison of cardiac blood pool visualization with technetium 99m red blood cells labeled in vivo and with technetium 99m human serum albumin. J Nucl Med 19:796–803PubMedGoogle Scholar
  41. United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m pyrophosphate injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1862Google Scholar
  42. Weber DA, Makler PT Jr, Watson EE, Coffey JL, Thomas SR, London J (1989) Radiation absorbed dose from technetium-99m-labeled bone imaging agents: MIRD dose estimate report no 13. J Nucl Med 30:1117–1122PubMedGoogle Scholar
  43. Willerson JT, Parkey RW, Bonte FJ, et al. (1975) Technetium-99m stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology. Circulation 51:1046–1052PubMedGoogle Scholar
  44. Willerson JT, Parkey RW, Buja LM et al (1977) Are 99mTc-stannous pyrophosphate myocardial scintigrams clinically useful? Clin Nucl Med 2:137–145Google Scholar
  45. Zaret BL, Di Cola VC, Donabedian RK, Puri S, Wolfson S, Freedman GS, Cohen LS (1976) Dual radionuclide study of myocardial infarction: relationships between myocardial uptake of potassium-43, technetium-99m stannous pyrophosphate, regional myocardial blood flow and creatine phosphokinase depletion. Circulation 53:422–428PubMedGoogle Scholar
  46. Zimmer AM, Pavel DG, Karesh SM (1979) Technical parameters of in vivo red blood cell labelling with technetium-99m. Nuklearmedizin 18:241–245PubMedGoogle Scholar

References

  1. Ackerhalt RE, Blau M, Bakshi S, Sondel JA (1974) A comparative study of three 99mTc-labeled phosphorus compounds and 18F-fluoride for skeletal imaging. J Nucl Med 15:1153–1157PubMedGoogle Scholar
  2. Ancri D, Lonchampt M, Basset J (1977) The effect of tin on the tissue distribution of Tc-99m sodium pertechnetate. Radiology 124:445–450PubMedGoogle Scholar
  3. Bevan JA, Tofe AJ, Benedict JJ, Francis MD, Barnett BL (1980) Tc-99m HMDP (hydroxymethylene diphosphonate): a radiopharmaceutical for skeletal and acute myocardial infarct imaging. I. Synthesis and distribution in animals. J Nucl Med 21:961–966PubMedGoogle Scholar
  4. Buell U, Kleinhans E, Zorn-Bopp E, Reuschel W, Muenzing W, Moser EA, Seiderer M (1982) A comparison of bone imaging with Tc-99m DPD and Tc-99m MDP: concise communication. J Nucl Med 23:214–217PubMedGoogle Scholar
  5. Byun HH, Rodman SG, Chung KE (1976) Soft tissue concentration of Tc-99m phosphates associated with injection of iron dextran complex. J Nucl Med 17:374–375PubMedGoogle Scholar
  6. Callahan RJ, Froelich JW, McKusick KA, Leppo J, Strauss WH (1982) A modified method for the in vivo labeling of red blood cells with Tc-99m: concise communication. J Nucl Med 23:315–318PubMedGoogle Scholar
  7. Castronovo FP, Callahan RJ (1972) New bone scanning agent: 99mTc-labeled 1-hydroxyethylidene-L;L-disodium phosphonate. J Nucl Med 13:823–827PubMedGoogle Scholar
  8. Chaudhuri TK (1976) The effect of aluminium and pH on altered body distribution of Tc-99m EHDP. Int J Nucl Med Biol 3:37PubMedGoogle Scholar
  9. Conklin JJ, Alderson PO, Zizic TM et al (1983) Comparison of bone scan and radiograph sensitivity in the detection of steroid-induced ischemic necrosis of bones. Radiology 147:221–226PubMedGoogle Scholar
  10. Council of Europe (2005) Technetium 99mTc medronate injection. In: European Pharmacopeia 5.0, monograph no 641. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1219Google Scholar
  11. Davis MA, Jones AG (1976) Comparison of 99mTc-labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med 6:19–31PubMedGoogle Scholar
  12. Domstad PA, Coupal JJ, Kim EE, Blake JS, DeLand FH (1980) 99mTc-hydroxy methane diphosphonate: a new bone imaging agent with a low tin content. RadiologyGoogle Scholar
  13. Dunson GL, Stevenson JS, Cole CM, Mellor MK, Hosain F (1973) Preparation and comparison of technetium-99m diphosphonate, polyphosphate and pyrophosphate in nuclear bone imaging radiopharmaceuticals. Drug Intell Clin Pharm 7:470–474Google Scholar
  14. Fogelman I (1982) Diphosphonate bone scanning agents — current concepts. Eur J Nucl Med 7:506–509PubMedGoogle Scholar
  15. Fogelman I, Pearson DW, Bessent RG, Tofe AJ, Francis MD (1981) A comparison of skeletal uptakes of three diphosphonates by whole-body retention: concise communication. J Nucl Med 22:880–883PubMedGoogle Scholar
  16. Francis MD, Ferguson DL, Tofe AJ, Bevan JA, Michaels SE (1980) Comparative evaluation of three diphosphonates: in vitro adsorption (C14-labeled) and in vivo osteogenic uptake (Tc-99m complexed). J Nucl Med 21:1185–1189PubMedGoogle Scholar
  17. Genant HK, Bautovich GJ, Singh M (1974) Bone seeking radio nucl ides: An in-vivo study of factors affecting skeletal uptake. Radiology 113:373–382PubMedGoogle Scholar
  18. Godart G, Durez M, Bevilaqua M, Abramovici J, Robience Y (1986) Technetium-99 m MDP vs tech-netium-99m diearboxypropane diphosphonate. A clinical comparison in various pathologic conditions. Clin Nucl Med 11:92–97PubMedGoogle Scholar
  19. Gray WR, Hickey D, Parkey RW, Bonte FJ, Roan P, Willerson JT (1979) In: Parkey RW, Bonte FJ, Buja LM, Willerson JT (eds) Qualitative blood pool imaging in clinical nuclear cardiology. Appleton-Century-Crofts, NY, pp 297–308Google Scholar
  20. Hale TI, Jucker A, Vgenopoulos K, Sauter B, Wacheck W, Bors L (1981) Clinical experience with a new bone seeking 99mTc-radiopharmaceutical. Nucl Compact 12:54–55Google Scholar
  21. Hladik WB, Nigg KK, Rhodes BA (1982) Drug-induced changes in the biologic distribution of radiopharmaceuticals. Semin Nucl Med 12:184–218PubMedGoogle Scholar
  22. Hladik WB, Ponto JA, Lentle BC, Laven DL (1987) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 193–202Google Scholar
  23. Hughes SPF, Jeyasingh K, Lavender PJ (1975) Phosphate compounds in bone scanning. J Bone Joint Surg (Br) 57:214–216Google Scholar
  24. International Commission on Radiological Protection (1987a) Technetium-labelled phosphates and phosphonates. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 213–215Google Scholar
  25. International Commission on Radiological Protection (1987b) Technetium-labelled erythrocytes. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 209–210Google Scholar
  26. International Commission on Radiological Protection (1991) Technetium-labelled erythrocytes. In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol 22, no 3. Pergamon, Oxford, pp 25–28Google Scholar
  27. International Commission on Radiological Protection (1998) Technetium-labelled phosphates and phosphonates (1998) In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, addendum to ICRP 53, publication 80, vol 28, no 3. Pergamon, Oxford, p 75Google Scholar
  28. Jones AG, Francis MD, Davis MA (1976) Bone scanning: radionuclide reaction mechanism. Semin Nucl Med 6:3–18PubMedGoogle Scholar
  29. Krishnamurthy GT, Tubis M, Endow JS, Singhi V, Walsh CF, Blahd WH (1974) Clinical comparison of the kinetics of 99mTc-labeled polyphosphate and diphosphonate. J Nucl Med 15:848–855PubMedGoogle Scholar
  30. Krogsgaard OW (1976) Radiochemical purity of various Tc-99m-labeled bone scanning agents. Eur J Nucl Med 1:15–17PubMedGoogle Scholar
  31. McAfee JG (1987) Radionuclide imaging in metabolic and systemic skeletal diseases. Semin Nucl Med 17:334–349PubMedGoogle Scholar
  32. McRae J, Hambright P, Valk P, Bearden AJ (1976) Chemistry of Tc-99m tracers. II. In vitro conversion of tagged HEDP and pyrophosphate (bone seekers) into gluconate (renal agent). Effects of Ca and Fe(II) on in vivo distribution. J Nucl Med 17:208–211PubMedGoogle Scholar
  33. Pauwels EKJ, Blom J, Camps JAJ, Hermans J, Rijke AM (1983) A comparison between the efficacy of 99mTc-MDP, 99mTc-DPD, 99mTc-HDP for the detection of bone metastases. Eur J Nucl Med 8:118–122PubMedGoogle Scholar
  34. Pendergrass HP, Postsaid MS, Castronovo FP (1973) The clinical use of Tc-99m diphosphonate (HEDSPA). Radiol 107(3): 557–562Google Scholar
  35. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 271–274Google Scholar
  36. Porter WC, Dees SM, Freitas JE, Dworkin HJ (1983) Acid-citrate-dextrose compared with heparin in the preparation of in vivo/in vitro technetium-99m red blood cells. J Nucl Med 24:383–387PubMedGoogle Scholar
  37. Russell CD, Cash AG (1979) Complexes of technetium with pyrophosphate, etidronate, and medronate. J Nucl Med 20:532–537PubMedGoogle Scholar
  38. Saha GB (1987) Normal biodistribution of diagnostic radiopharmaceuticals. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 3–19Google Scholar
  39. Saha GB (1998) Fundamentals of radiopharmacy, 4th edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  40. Saha GB, Boyd CM (1979) A study of protein-binding of 99mTc-methylene diphosphonate in plasma. Int J Nud Med Biol 6:201–206Google Scholar
  41. Sahni M, Guenther HL, Fleish H, Collin P, Martin J (1993) Biphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest 91:2004–2011PubMedGoogle Scholar
  42. Schroth H-J, Hausinger F, Garth H, Oberhausen E (1984) Comparison of the kinetics of methylene diphosphonate (MDP) and dicarboxypropane diphosphonic acid (DPD), two radio-diagnostics for bone scintigraphy. Eur J Nucl Med 9:529–532PubMedGoogle Scholar
  43. Schwarz A, Kloss G (1981) Technetium-99m DPD — a new skeletal imaging agent. J Nucl Med 22 (Abstr):7Google Scholar
  44. Schwarz A, Oberhausen E, Schroth HJ, Hale TJ (1991) Teceos. Scientific information on the labeling unit technetium-99m-3,3-diphosphono-l,2-propanedicarboxylic acid. Behring Diagnostika, Marburg, GermanyGoogle Scholar
  45. Srivastava SC, Meinken G, Smith TD, Richards P (1977) Problems associated with stannous 99mTc-radiopharmaceuticals. Int J Appl Radiat Isot 28:83–95PubMedGoogle Scholar
  46. Subramanian G, McAfee JG, Blair RJ, Mehter A, Connor T (1972) 99mTc-EHDP: a potential radio-pharmaceutical for skeletal imaging. J Nucl Med 13:947–950PubMedGoogle Scholar
  47. Subramanian G, McAfee JG, Blair RJ, Kallfelz FA, Thomas FD (1975a) Technetium-99m methylene diphosphonate — a superior agent for skeletal imaging: comparison with other technetium complexes. J Nucl Med 16:744–755PubMedGoogle Scholar
  48. Subramanian G, McAfee JG, Blair RJ (1975b) An evaluation of 99mTc-labeled phosphate compounds as bone imaging agents. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, pp 319–328Google Scholar
  49. Tofe AJ, Francis MD (1972) In vitro optimization and organ distribution studies in animals with the bone scanning agent 99mTc-Sn-EHDP. J Nucl Med 13(Abstr):472Google Scholar
  50. Tofe AJ, Francis MD (1976) In vitro stabilization of a low tin bone imaging kit. J Nucl Med 16:414–422Google Scholar
  51. Tofe AJ, Bevan JA, Fawzi MB, Francis MD, Silberstein EB, Alexander GA, Gunderson DE, Blair K (1980) Gentisic acid: a new stabilizer for low tin skeletal imaging agents: concise communication. J Nucl Med 21:366–370PubMedGoogle Scholar
  52. United States Pharmacopeial Convention (2005) United States pharmacopeia USP 28 official monographs: technetium Tc-99m medronate injection, technetium Tc-99m oxidronate injection, technetium Tc-99m etidronate injection. United States Pharmacopeial Convention, Rockville, Md.Google Scholar
  53. Van Duzee BF, Bugaj JE (1981) The effect of total technetium concentration on the performance of a skeletal imaging agent. Clin Nucl Med 6(Suppl):148Google Scholar
  54. Wang TST, Fawwaz RA, Johnson LJ, Mojdehi GE, Johnson PM (1980) Bone-seeking properties of Tc-99m carbonyl diphosphonic acid, dihydroxy-methylene diphosphonic acid, and monohydroxy-methylene diphosphonic acid: concise communication. J Nucl Med 21:767–770PubMedGoogle Scholar
  55. Weber DA, Makler PT Jr, Watson EE, Coffey JL, Thomas SR, London J (1989) Radiation absorbed dose from technetium-99m-labeled bone imaging agents: MIRD dose estimate report no 13. J Nucl Med 30:1117–1122PubMedGoogle Scholar
  56. Yano Y, McRae J, Van Dyke DC, Anger HO (1973) Technetium-99m-labeled stannous ethane-1-hydroxy-1-diphosphonate: a new bone scanning agent. J Nucl Med 14:73–78PubMedGoogle Scholar
  57. Zimmer AM, Pavel DG (1978) Experimental investigations of the possible cause of liver appearance during bone scanning. Radiology 126:813–816PubMedGoogle Scholar
  58. Zimmer AM, Pavel DG, Karesh SM (1979) Technical parameters of in vivo red blood cell labeling with Technetium-99m. Nuklearmedizin 18:241–245PubMedGoogle Scholar

References

  1. Arnold RW, Subramanian G., McAfee JG, Blair RJ, Thomas FD (1975) Comparison of 99mTc complexes for renal imaging. J Nucl Med 16:357–367PubMedGoogle Scholar
  2. Bingham JB, and Maisey MN (1978) An evaluation of the use of 99mTc-dimercaptosuccinic acid (DMSA) as a static renal imaging agent. Br J Radiol 51:599–607PubMedGoogle Scholar
  3. Clarke SEM, Lazarus CR, Wraight P, Sampson C, Maisey MN (1988) Pentavalent 99mTc-DMSA, 131I-MIBG, and 99mTc-MDP. An evaluation of three imaging techniques in patients with medullary carcinoma of the thyroid. J Nucl Med 29:33–38PubMedGoogle Scholar
  4. Council of Europe (2005) Technetium [99mTc] succimer injection. European pharmacopeia monograph no. 643. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1229Google Scholar
  5. Enlander D, Weber PM, dos Remedios LV (1974) Renal cortical imaging in 35 patients: superior quality with 99mTc-DMSA. J Nucl Med 15:743–749PubMedGoogle Scholar
  6. Handmaker H, Young BW, Lowenstein JM (1975) Clinical experience with 99mTc-DMSA (dimercaptosuccinic acid), a new renal imaging agent. J Nucl Med 16:28–32PubMedGoogle Scholar
  7. Hovinga TKK, dejong PE, Piers DA, Beekhuis H, van-der Hem GK, de Zeeuw D (1989) Diagnostic use of angiotensin-converting enzyme inhibitors in radioisotope evaluation of unilateral renal artery stenosis. J Nucl Med 30:605–614Google Scholar
  8. Ikeda I, Inoue O, Kurata, K (1976) Chemical and biological studies on 99mTc-DMSA-II: effect of Sn(II) on the formation of various Tc-DMSA complexes. Int J Appl Radiat Isot 27:681–688PubMedGoogle Scholar
  9. Ikeda I, Inoue O, Kurata K (1977a) Chemical and biological studies on 99mTc-DMSA-I: formation of complex by four different methods. Int. J Nucl Med Biol. 4:56–65PubMedGoogle Scholar
  10. Ikeda I, Inoue O, Kurata K (1977b) Preparation of various 99mTc-dimercaptosuccinate complexes and their evaluation as radiotracers. J Nud Med 18:1222–1229Google Scholar
  11. International Commission on Radiological Protection (1987) Technetium-DMSA. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no.1–4. Pergamon, Oxford, pp 185–186Google Scholar
  12. Johannsen B, Spies H, Syhre R (1979) Studies on complexation of 99mTc with dimercaptosuccinic acids with regard to organ specificity of 99mTc-radiopharmaceuticals. Eur J Nucl Med 4:148Google Scholar
  13. Kopecky RT, McAfee JG, Thomas FD, Anderson HR Jr, Hellwig B, Roskopf M, Patchin D (1990) Enalaprilat-enhanced renography in a rat model of renovascular hypertension. J Nucl Med 31:501–507PubMedGoogle Scholar
  14. Lange MJ de, Piers DA, Kosterink JGW, van Luijk WHJ, Meijer S, de Zeeuw D, van-der Hem GJ (1989) Renal handling of technetium-99m-DMSA: evidence for glomerular filtration and peritubular uptake. J Nucl Med 30:1219–1223PubMedGoogle Scholar
  15. Lee HB, Blaufox MD (1985) Mechanism of renal concentration of technetium-99m glucoheptonate. J Nucl Med 26:1308–1313PubMedGoogle Scholar
  16. Lin TH, Khentigam A, Winchell HS (1974) A 99mTc-chelate substitute for organoradiomercurial renal agents. J Nucl Med 15:34–35PubMedGoogle Scholar
  17. Ohta H, Yamamoto K, Endo K, Mori T, Hamanaka D, Shimazu A, Ikekubo K, Makimoto K, Iida Y, Konishi J, Morita R, Hata N, Horiuchi K, Yokoyama A, Torizuka K, Kuma K (1984) A new agent for medullary carcinoma of the thyroid. J Nucl Med 25:323–325PubMedGoogle Scholar
  18. Ramamoorthy N, Shetye SV, Pandey PM, Mani RS, Patel MC, Patel RB, Ramanathan P, Krishna BA, Sharma SM (1987) Preparation and evaluation of 99mTc(V)-DMSA complex: studies in medullary carcinoma of thyroid. Eur J Nucl Med 12:623–628PubMedGoogle Scholar
  19. Saha GB (1997) Characteristics of specific radiopharmaceuticals. In: Fundamentals of nuclear pharmacy, 4th edn. Springer, Berlin Heidelberg New York, p 125Google Scholar
  20. Taylor A Jr, Lallone RL, Hagan PL (1980) Optimal handling of dimercaptosuccinic acid for quantitative renal scanning. J Nucl Med 21:1190–1193PubMedGoogle Scholar
  21. United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc-99m succimer injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1864Google Scholar
  22. Van Duzee BF, Bugaj JE (1981) The effect of total technetium concentration on the performance of a skeletal imaging agent. Clin Nucl Med 6(Suppl):148Google Scholar
  23. Westera G, Gadze A, Horst W (1985) A convennient method for the preparation of 99mTc(V)-DMSA. Int J Appl Radiat Isot 36:311–312PubMedGoogle Scholar
  24. Yee CA, Lee HB, Blaufox MD (1981) 99mTc-DMSA renal uptake: influence of biochemical and physiologic factors. J Nucl Med 22:1054–1058PubMedGoogle Scholar

References

  1. Atkins HL, Eckelman WC, Hauser W, Klopper JF, Richards P (1971) Evaluation of glomerular filtration rate with 99mTc-DTPA. J Nucl Med 12:338Google Scholar
  2. Agnew JE (1991) Characterizing lung aerosol penetration. J Aerosol Med 4:237–250Google Scholar
  3. Barbour GL, Crumb CK, Boyd CM, Reeves RD, Rastogi SP, Patterson RM (1976) Comparison of inulin, iothalamate and Tc-99m-DTPA for measurement of glomerular filtration rate. J Nucl Med 17:317–320PubMedGoogle Scholar
  4. Carlsen JE, Moller MH, Lund JO, Trap-Jensen J (1988) Comparison of four commercial Tc-99m-(Sn)-DTPA preparations used for the measurement of glomerular filtration rate. J Nucl Med 21:126–129Google Scholar
  5. Chadhuri TK (1974) Use of 99mTc-DTPA for measuring gastric emptying time. J Nucl Med 15:391–395Google Scholar
  6. Coates G, O’Brodovich H (1986) Measurement of pulmonary epithelial permeability with 99mTc-DTPA aerosol. Semin Nucl Med 16:275–284PubMedGoogle Scholar
  7. Council of Europe (2005) Technetium 99mTc pentetate injection. European Pharmacopeia 5.0, monograph no 642. Council of Europe, Maisonneuve, Sainte-Ruffine, pp 1223Google Scholar
  8. Gruenewald SM, Collins LT (1983) Renovascular hypertension: quantitative renography as a screening test. Radiology 149:287–291PubMedGoogle Scholar
  9. Hauser W, Atkins HL, Nelson KG, Richards P (1970) Technetium-99m-DTPA: a new radiopharmaceutical for brain and kidney scanning. Radiology. 94:679–684PubMedGoogle Scholar
  10. Hilson AJW, Mistry RD, Maisey MN (1976) Tc-99m-DTPA for the measurement of glomerular filtration rate. Br J Radiol 49:794–796PubMedGoogle Scholar
  11. International Commission on Radiological Protection (1987a) Technetium-DTPA. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 187–190Google Scholar
  12. International Commission on Radiological Protection (1987b) Technetium-labelled aerosols. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 217–219Google Scholar
  13. Kadir S, Strauss WH (1979) Evaluation of inflammatory bowel disease with Tc-99m-DTPA. Radiology 130:443–446PubMedGoogle Scholar
  14. Klopper JF, Hauser W, Atkins HL, Eckelman WC, Richards P (1972) Evaluation of Tc-99m-DTPA for the measurement of glomerular filtration rate, J Nucl Med 13:107–110PubMedGoogle Scholar
  15. McAfee JG, Gagne G, Atkins HL, Kirchner PT, Reba RC, Blaufox MD, Smith EM (1979) Biological distribution and excretion of DTPA labeled with Tc-99m and In-Ill. J Nucl Med 20:1273–1278PubMedGoogle Scholar
  16. Nielsen SP, Moller ML, Trap-Jensen J (1977) Tc-99m-DTPA scintillation-earner a renography: a new method for estimation of single-kidney function, J Nucl Med 18:112–117PubMedGoogle Scholar
  17. O’Reilly PH (1992) Diuresis renography. Recent advances and recommended protocols. Br J Urol 69:113–120PubMedGoogle Scholar
  18. Rehling M (1988) Stability, protein binding and clearance studies of 99mTc-DTPA. Evaluation of a commercially available dry-kit. Scand J Clin Lab Invest 48:603–609PubMedGoogle Scholar
  19. Rowell KL, Kontzen FK, Stutzman ME, Caranto R, Barber JM, Russel CD, Dubovsky EV, Scott JW (1986) Technical aspects of a new technique for estimating glomerular filtration rate using Technetium-99m-DTPA. J Nucl Med Tech 14:196–198Google Scholar
  20. Russell CD (1985) Radiopharmaceuticals used to assess kidney function and structure. Tauxe WN, Dubovsky EV (eds) Nuclear medicine in clinical urology and nephrology. Appleton-Century-Crofts, Norwalk, Conn., pp 7–31Google Scholar
  21. Russel CD, Crittenden RC, Cash AG (1980) Determination of net ionic charge on Tc-99m-DTPA and Tc-99m-EDTA by a column ion-exchange method. J Nucl Med 21:354–360Google Scholar
  22. Santolicandro A, Giuntini C (1979) Patterns of deposition of labeled monodispersed aerosols in obstructive lung disease. J Nucl Med All Sci 23:115Google Scholar
  23. Taplin GV, Chopra SK (1978) Lung per fusion-inhalation scintigraphy in obstructive airway disease and pulmonary embolism. Radiol Clin N Am 16:491–513PubMedGoogle Scholar
  24. Tofe AJ, Bevan JA, Fawzi MB, Francis MD, Silberstein EB, Alexander GA, Gunderson DE, Blair K (1980) Gentisic acid: a new stabilizer for low tin skeletal imaging agents. Concise communication. J Nucl Med 21:366–370PubMedGoogle Scholar
  25. United States Pharmacopeia! Convention (2005) Official Monographs: USB 28, technetium Tc-99m pentetate injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1860Google Scholar
  26. Van Duzee BF, Bugaj JE (1981) The effect of total technetium concentration on the performance of a skeletal imaging agent. Clin Nucl Med 6(Suppl):148Google Scholar
  27. Wagner HN Jr (1995) Regional ventilation and perfusion. In: Wagner HN Jr, Szabo S, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 887–895Google Scholar
  28. Wanner A (1977) Clinical aspects of mucociliary transport. Amer Rev Respir Dis 116:73–125Google Scholar
  29. Wassner SJ (1981) Assessment of glomerular filtration rate single injection of technetium Tc-99m pentetate. Am J Dis Child 135:374–375.PubMedGoogle Scholar

References

  1. Bubeck B, Brandau W, Weber E, Kaelble T, Parekh N, Georgi P (1990) Pharmacokinetics of technetium-99m-MAG3 in humans. J Nucl Med 31:1285–1293PubMedGoogle Scholar
  2. Gupta NK, Bomanji JB, Waddington W, Lui D, Costa DC, Verbruggen AM, Ell PJ (1995) Technetium-99m-L;L-ethylenedicysteine scintigraphy in patients with renal disorders. Eur J Nucl Med 22:617–624PubMedGoogle Scholar
  3. International Commission on Radiological Protection (1991) Technetium-labeled mercaptoacetyl-triglycine (MAG3) In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol. 22, no. 3. Pergamon, Oxford, pp 15–19Google Scholar
  4. Kabasakal L, Atay S, Vural VA, Özker K, Sönmezoglu K, Demir M, Uslu I, Isitman AT, Önsel C (1995) Evaluation of technetium-99m-ethylenedicysteine in renal disorders and determination of extraction ratio. J Nucl Med 36:1398–1403PubMedGoogle Scholar
  5. Kabasakal L, Turoglu HT, Önsel C, Özker K, Uslu I, Atay S, Cansiz T, Sönmezoglu K, Altiok E, Isitman AT, Kapicioglu T, Urgancioglu I (1995) Clinical comparsion of technetium-99m-L;L-EC, technetium-99m-MAG3 and iodine-125-OIH in renal disorders. J Nucl Med 36:224–228PubMedGoogle Scholar
  6. Kibar M, Tutus A, Paydas S, Reyhan M (1997) Captopril-enhanced technetium-99m-L;L-ethylenedicysteine renal scintigraphy in patients with suspected renovascular hypertension: comparative study with Tc-99m-MAG3. J Nucl Med 6:132–137Google Scholar
  7. Özker K, Önsel C, Kabasakal L, Sayman HB, Uslu I, Bozluolcay S, Cansiz T, Kapicioglu T, Urgancioglu I (1994) Te chnetium-99 m L;L-ethyl enedicysteine: a comparative study of renal scintigraphy with Tc-99m-MAG-3 and I-131-OIH in patients with obstructive renal disease. J Nucl Med 35:840–845PubMedGoogle Scholar
  8. Stoffel M, Jamar F, Van Nerom C, Verbruggen AM, Mourad M, Leners N, Squifflet JP, Beckers C (1994) Evaluation of technetium-99m-L;L-EC in renal transplant recipients: comparative study with technetium-99m-MAG3 and iodine-125-OIH. J Nucl Med 35:1951–1958PubMedGoogle Scholar
  9. Stoffel M, Jarnar F, Van Nerom C, Verbruggen AM, Besse T, Squifflet JP, Becker C (1996) Technetium-99m-L,L-ethylenedicysteine clearance and correlation with iodine-125 ortho-iodohippurate for determination of effective renal plasma flow. Eur J Nucl Med 23:365–370PubMedGoogle Scholar
  10. Van Nerom CG, Bormans GM, De Roo MJ, Verbruggen AM (1993) First experience in healthy volunteers with technetium-99m L,L-ethylenedicysteine, a new renal imaging agent. Eur. J Nucl Med 20:738–746PubMedGoogle Scholar
  11. Verbruggent AM, Nosco DL, Van Nerom CG, Bormans GM, Adriaens PJ, De Roo MJ (1992) Technetium-99m-L,L-ethylenedicysteine: a renal imaging agent. I. Labelling and evaluation in animals. J Nucl Med 33:551–557Google Scholar

References

  1. Bubeck B, Brandau W, Dreikorn K, Steinbächer M, Eisenhut M, Trojan H, zum Winkel K (1986) Clinical comparison of 1-131 o-iodohippurate with Tc-99m-CO2-DADS-A and Tc-99m-MAG3 by simultaneous double tracer measurement. Nucl Compact 17:135–138Google Scholar
  2. Bubeck B, Brandau W, Eisenhut M, Weidenhammer K, Georgi P (1987) The tubular extraction rate (TER) of Tc-99m-MAG3: a new quantitative parameter of renal function. Nuc Compact 18:260–267Google Scholar
  3. Brandau W, Bubeck B, Eisenhut M, Taylor DM (1988a) Technetium-99m labeled renal function and imaging agents: III. Synthesis of Tc-99m-MAG3 and bio distribution of by-products. Appl Radiat Isot 39:121–129Google Scholar
  4. Bubeck B, Brandau W, Reinbold F, Dreikorn K, Steinbächer M, Eisenhut M, Georgi P (1988b) Technetium-99m labeled renal function and imaging agents: I clinical evaluation of Tc-99m-CO2-DADS-A (Tc-99m-N,N-bis-(mercapto-acetyl)-2,3-diamino-propanoate). Nucl Med Biol 15:99–108Google Scholar
  5. Bubeck B, Brandau W, Steinbächer M, Reinbold F, Dreikorn K, Eisenhut M, Georgi P (1988c) Technetium-99m labeled renal function and imaging agents: II. Clinical evaluation of 99mTc-MAG3 (99mTc-mercaptoacetylglycylglycylglycine). Nucl Med Biol 15:109–118Google Scholar
  6. Bubeck B, Brandau W, Weber E, Kaelble T, Parekh N, Georgi P (1990) Pharmacokinetics of technetium-99m-MAG3 in humans. J Nucl Med 31:1285–1293PubMedGoogle Scholar
  7. Council of Europe (2005) Technetium 99mTc mertiatide injection. European pharmacopeia 5.0, monograph no 1372. Council of Europe, Maisonneuve, Sainte-Ruffine, pp 1220Google Scholar
  8. Coveney JR, Robbins MS (1987) Comparison of technetium-99m MAG3 kit with HPLC-purified technetium-99m MAG3 and OIH in rats. J Nucl Med 28:1881–1887PubMedGoogle Scholar
  9. Davison A, Jones A, Orvig C, Sohn M (1981) A new class of oxotechnetium (+5) chelate complexes containing a TcON2S2 core. Inorg Chem 20:1629–1632Google Scholar
  10. Fritzberg AR, Kuni CC, Klingensmith WC III, Stevens J, Whitney WP (1982) Synthesis and biological evaluation of Tc-99m N,N-bis (mercaptoacetyl)-2,3-diaminopropanoate: a potential replacement for [131I]-o-iodohippurate, J Nucl Med 23:592–598PubMedGoogle Scholar
  11. Fritzberg AR, Kasina S, Eshima D, Johnson DL (1986) Synthesis and biological evaluation of technetium-99m-MAG3 as a hippuran replacement. J Nucl Med 27:111–116PubMedGoogle Scholar
  12. International Commission on Radiological Protection (1991) Tech net ium-lab ell ed mercaptoacetyl-triglycine (MAG3) In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol 22, no 3. Pergamon, Oxford, pp 15–19Google Scholar
  13. Jafri RA, Britton KE, Nimmon CC, Solanki K, Al-Nahas A, Bomanji J, Fettich J, Hawkins LA (1988) Technetium-99m MAG3, a comparison with iodine-123 and iodine-131 ortho-iodohippurate, in patients with renal disorders. J Nucl Med 29:147–158PubMedGoogle Scholar
  14. Kletter K (1988) Neue Aspekte der nuklearmedizinischen Nierenfunktionsdiagnostik: Verbesserte Aussagekraft durch pharmakologische Intervention und quantitative Analyseverfahren [in German]. Wien Klin Wochenschr 100(Suppl 177)Google Scholar
  15. Mallinckrodt (1992) TechneScan MAG3 product information. Malinckrodt, Phillipsburg, NJGoogle Scholar
  16. Russel CD, Thorstad B, Yester MV, Stutzman M, Baker T, Dubovsky EV (1988) Comparison of technetium-99m MAG3 with iodine-131 hippuran by a simultaneous dual channel technique. J Nucl Med 29:1189–1193Google Scholar
  17. Taylor A, Eshima D, Fritzberg AR, Christian PE, Kasina S (1986) Comparison of iodine-131 OIH and technetium-99m MAG3 renal imaging in volunteers. J Nucl Med 27:795–803PubMedGoogle Scholar
  18. United States Pharmacopeia! Convention (2005) Official Monographs: USP 28, technetium Tc-99m mertiatide injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1858Google Scholar
  19. Van Duzee BF, Bugaj JE (1981) The effect of total technetium concentration on the performance of a skeletal imaging agent. Clin Nucl Med 6(Suppl):P148Google Scholar

References

  1. Brown PH, Krishnamurthy GT, Bobba VR, Kingston E, Turner FE (1982) Radiation-dose calculation for five Tc-99m IDA hepatobiliary agents. J Nucl Med 23:1025–1030PubMedGoogle Scholar
  2. Council of Europe (2005) Technetium 99mTc etifenin injection. European pharmacopeia 5.0, monograph no 585. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1212Google Scholar
  3. Fink-Bennett D (1995) Gallbladder and biliary ducts. Wagner HN Jr, Szabo Z, Buchanan JW (eds) In: Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 946–957Google Scholar
  4. Freeman LM, Sugarman LA, Weissmann HS (1981) Role of cholecystokinetic agents in 99mTc-IDA cholescintigraphy. Sem Nucl Med 11:186–193Google Scholar
  5. Fritzberg AR (1986) Advances in the development of hepatobiliary radiopharmaceuticals. In: Fritzberg AR (ed) Radiopharmaceuticals: progress and clinical perspectives, vol. I. CRC Press, Boca Raton, pp 89–116Google Scholar
  6. International Commission on Radiological Protection (1987) Technetium-labelled iminodiacetic acid (IDA) derivatives. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 201–205Google Scholar
  7. Klingensmith WC, Fritzberg AR, Spitzer VM, Kuni CC, Shanahan WSM (1981) Clinical comparison of Tc-99m diisopropyl-IDA and diethyl-IDA for evaluation of the hepatobiliary system. Radiology 140:791–795PubMedGoogle Scholar
  8. Krishnamurthy S, Krishnamurthy GT (1989) Technetium-99m-iminodiacetic acid organic anions: review of biokinetics and clinical application in hepatology. Hepatology 9:139–159PubMedGoogle Scholar
  9. Krishnamurthy GT, Turner FE (1990) Pharmacokinetics and clinical application of technetium-99m-labeled hepatobiliary agents. Sem Nucl Med 20:130–149Google Scholar
  10. Loberg MD, Fields AT (1978) Chemical structures of Tc-99m-labeled N-(2,6-dimethylphenyl-carbamoylmethyl)iminodiacetic acid (Tc-HIDA). Int J Appl Radiat Isot 29:167–173Google Scholar
  11. Loberg MD, Cooper MD, Harvey EB, Callery PS, Faith WC (1976) Development of new radio-pharmaceuticals based on N-substitution of iminodiacetic acid. J Nucl Med 17:633–638PubMedGoogle Scholar
  12. Majd M, Reba R, Altaian RP (1981) Effect of phenobarbital on Tc-99m-IDA scintigraphy in the evaluation of neonatal jaundice. Sem Nucl Med 11:194–204Google Scholar
  13. Nicholson RW, Herman KJ, Shields RA, Testa HJ (1980) The plasma protein binding of HIDA. Eur J Nucl Med 5:311–312PubMedGoogle Scholar
  14. Nielson P, Rasmussen F (1975) Relationship between molecular structure and excretion of drugs. Life Sci 17:1495Google Scholar
  15. Nunn AD, Schramm E (1981) Analysis of Tc-HIDAs and factors affecting their labeling rate, purity, and stability. J Nucl Med 22:P52Google Scholar
  16. Nunn AD, Loberg MD, Conley RA (1983) A structure-distribution-relationship approach leading to the development of Tc-99m-mebrofenin: an improved cholescintigraphic agent. J Nucl Med 24:423–430PubMedGoogle Scholar
  17. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–279Google Scholar
  18. Ryan J, Cooper MD, Loberg MD (1977) Technetium-99m-labeled N-(2,6-dimethylphenylcarbamoyl-methyl) iminodiacetic acid (Tc-99m-HIDA): a new radiopharmaceutical for hepatobiliary imaging studies. J Nud Med 18:997–1004Google Scholar
  19. United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m disofenin injection, technetium Tc 99m lidofenin injection, technetium Tc 99m mebrofenin injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, pp 1854–1857Google Scholar
  20. Weissmann HS, Frank MS, Bernstein LH, Freeman LM (1979) Rapid and accurate diagnosis of acute cholecystitis with Tc-99m-HIDA cholescintigraphy. Am J Roentg 132:523–528Google Scholar

References

  1. Amersham Healthcare (2000) Product monograph for the NeoSpect kit for the preparation of Tc-99m depreotide. Amersham Healthcare, UKGoogle Scholar
  2. Berlex Laboratories (2001) Product monograph for the NeoTect kit for the preparation of Tc-99m depreotide. Berlex Laboratories, Wayne, NJ (Diatide, NDA No. 21-012)Google Scholar
  3. Blum JE, Handmaker H, Rinne NA (1999) The utility of a somato statin-type receptor binding peptide radiopharmaceutical (P829) in the evaluation of solitary pulmonary nodules. Chest 115:224–232PubMedGoogle Scholar
  4. Blum JE, Handmaker H, Lister-James J, Rinne NA (2000) NeoTect solitary pulmonary nodule study group. A multicenter trial with a somatostatin analog 99mTc-depreotide in the evaluation of solitary pulmonary nodules. Chest 117:1232–1238PubMedGoogle Scholar
  5. Danielsson R, BÅÅth M, Svensson L, Forslöv U, Kölbeck K-G (2005) Imaging of regional lymph node metastases with 99mTc-depreotide in patients with lung cancer. Eur J Nud Med Mol Imag 32:925–931Google Scholar
  6. Hofland LJ, Lamberts SWJ (1997) Somatostatin analogs and receptors: diagnostic and therapeutic applications. Cancer Treat Res 89:365–382PubMedGoogle Scholar
  7. Hofland LJ, Lamberts SWJ, Van Hagen PM, Reubi JC, Schaeffer J, Waaijers M, Van Koetsveld PM, Srinivasan A, Krenning EP, Breeman WAP (2003) Crucial role for somatostatin receptor subtype 2 in determining the uptake of [111in-DTPA-D-Phe1]octreotide in somatostatin receptor-positive organs. J Nucl Med 44:1315–1321PubMedGoogle Scholar
  8. International Commission on Radiological Protection (1990) ICRP Publication 60: recommendations of the International Commission on Radiological Protection. In: Annals of the ICRP, vol 21, no 1–3. Pergamon, OxfordGoogle Scholar
  9. Kahn D, Menda Y, Kernstine K, Bushnell DL, McLaughlin K, Miller S, Berbaum K (2004) The utility of 99mTc-depreotide compared with F-18 fluorodeoxyglucose positron emission tomography and surgical staging in patients with suspected non-small cell lung cancer. Chest 125:494–501PubMedGoogle Scholar
  10. Lamberts SWJ, Krenning EP, Reubi JC (1991) The role of somatostatin and ist analogs in the diagnosis and treatment of tumors. Endocr Rev 12:450–482PubMedGoogle Scholar
  11. Menda Y, Kahn D (2002) Somatostatin receptor imaging of non-small cell lung cancer with 99m-Tc depreotide. Semin Nud Med 32:92–96Google Scholar
  12. Menda Y, Kahn D, Bushnell DL, Thomas M, Miller S, McLaughlin K, Kernstine KH (2001) Nonspecific mediastinal uptake of 99mTc-depreotide (NeoTect). J Nucl Med 42(Suppl):304PGoogle Scholar
  13. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinology 20:157–198Google Scholar
  14. Reubi JC, Schaer JC, Laissue JA, Waser B (1996) Somatostatin receptors and their subtypes in human tumors and in peritumoral vessels. Metabolism 45:39–41PubMedGoogle Scholar
  15. United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m depreotide injection. United States Pharmacopeia Convention, Rockville, Md, p 1853Google Scholar
  16. Vallabhajosula S, Moyer BR, Lister-James J, McBride BJ, Lipszyc H, Lee H, Bastidas D, Dean RT (1996) Predinical evaluation of technetium-99m-labded somatostatin receptor-binding peptides. JNM 37:1016–1022PubMedGoogle Scholar
  17. Van Den Bossche B, Van Bdle S, De Winter F, Signore A, Van de Wide C (2006) Early prediction of endocrine therapy effect in advanced breast cancer patients using 99mTc-depreotide scintigraphy. J Nucl Med 47:6–13Google Scholar
  18. Virgolini I, Leimer M, Handmaker H, Lastoria S, Bischof C, Muto P, Pangerl T, Gludovacz D, Peck-Radosavljevic M, Lister-James J, Hamilton G, Kaserer K, Valent P, Dean R (1998) Somastotatin receptor subtype specific and in vivo binding of a novel tumor tracer, 99mTc-P829. Cancer Res 58:1850–1859PubMedGoogle Scholar

References

  1. Behr T, Becker W, Hanappel E, Goldenberg DM, Wolf F (1995) Targeting of liver metastases of colorectal cancer with IgG, F(ab′)2, and Fab′ anti-carcinoembryonic antigen antibodies labelled with 99mTc: the role of metabolism and kinetics. Cancer Res. 55: 5777s–5785sPubMedGoogle Scholar
  2. Hughes KS, Pinsky CM, Petrelli NJ, Moffat FL Jr, Patt YZ, Hammershaimb L, Goldenberg DM (1997) Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer. Ann Surg 226:621–631PubMedGoogle Scholar
  3. Immunomedics Europe (2000) Product monograph for the CEA-Scan (Arcitumomab) kit for the preparation of Tc-99m CEA-Scan. Immunomedics Europe, Darmstadt, GermanyGoogle Scholar
  4. International Commission on Radiological Protection (1990) ICRP Publication 60: recommendations of the International Commission on Radiological Protection. In: Annals of the ICRP, vol 21, no 1–3. Pergamon, OxfordGoogle Scholar
  5. Lechner P, Lind P, Goldenberg DM (2000) Can postoperative surveillance with serial CEA immunoscintigraphy detect resectable rectal cancer recurrence and potentially improve tumor-free survival? J Am Coll Surg 191:511–518PubMedGoogle Scholar
  6. Moffat FL Jr, Pinsky CM, Hammershaimb L, Petrelli NJ, Patt YZ, Whaley FS, Goldenberg DM (1996) Immunomedics study group clinical utility of external immunoscintigraphy with the IMMU-4 technetium-99m Fa′b antibody fragment in patients undergoing surgery for carcinoma of the colon and rectum: results of a pivotal, phase III trial. J Clin Oncol 14:2295–2305PubMedGoogle Scholar
  7. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289Google Scholar
  8. Primus FJ, Newell KD, Blue A, Goldenberg DM (1983) Immunological heterogeneity of carcinoembryonic antigen: antigenic determinants on carcinoembryonic antigen distinguished by monoclonal antibodies. Cancer Res 43:686–692PubMedGoogle Scholar
  9. United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc-99m arcitumomab injection, United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1852Google Scholar
  10. Wegener W, Petrelli NJ, Serafini A, Goldenberg DM (2000) Safety and efficacy of arcitumomab imaging in colorectal cancer after repeated administration. J Nucl Med 41:1016–1020PubMedGoogle Scholar
  11. Willkomm P, Bender H, Bangard M, Decker P, Grunwald F, Biersack HJ (2000) FDG PET and immunoscintigraphy with 99mTc-labeled antibody fragments for detection of the recurrence of colorectal carcinoma. J Nucl Med 41:1657–1663PubMedGoogle Scholar

References

  1. Barron B, Hanna C, Passalaqua A, Lamki L, Wegener WA, Goldenberg DM (1999) Rapid diagnostic imaging of acute nonclassic appendicitis by leukoscintigraphy with sulesomab, a technetium 99m-labeled anti-granulocyte monoclonal antibody Fab’. Surgery 125(3):288–296PubMedGoogle Scholar
  2. Becker W, Bair J, Behr TM, Repp R, Streckenbach H, Beck H, Gramatzki M, Winship MJ, Goldenberg DM, Wolf F (1994) Detection of soft-tissue and osteomyeltis using a technetium-99m labeled anti-granulocyte monoclonal antibody fragment. J Nucl Med 35:1436–1443PubMedGoogle Scholar
  3. Becker W, Palestro PJ, Winship MJ, Feld T, Pinsky CM, Wolf F, Goldenberg DM (1996) Rapid imaging of infections with a monoclonal antibody fragment (LeukoScan). Clinical Orthopaedics 329:263–272Google Scholar
  4. Gratz S, Raddatz D, Hagenah G, Behr TM, Behe M, Becker W (2000) 99mTc-labelled antigranulocyte monoclonal antibody FAB’ fragments versus echocardiography in the diagnosis of subacute infective endocarditis. Int J Cardiol 75:75–84PubMedGoogle Scholar
  5. Gratz S, Schipper ML, Dorner J, Hoffken H, Becker W, Kaiser JW, Behe M, Behr TM (2003) LeukoScan for imaging infection in different clinical settings: A retrospective evaluation and extended review of the literature. Clin Nucl Med 28(4):267–276PubMedGoogle Scholar
  6. Hakki S, Harwood SJ, Morrissey M, Camblin JG, Laven DL, Webster WB Jr (1997) Comparative study of monoclonal antibody scan in diagnostic orthopaedic infection. Clin Orthop Relat Res 335:275–285.PubMedGoogle Scholar
  7. Harwood SJ, Valdivia S, Hung GL, Quenzer RW (1999) Use of sulesomab, a radiolabeled antibody fragment, to detect osteomyelitis in diabetic patients with foot ulcers by leukoscintigraphy. Clin. Infect. Dis. 28(6):1200–1205PubMedGoogle Scholar
  8. Immunomedics Europe (1997) Product monograph for LeukoScan (sulesomab). Issued by Immu-nomedics Europe, Darmstadt, Germany.Google Scholar
  9. International Commission on Radiological Protection (1990) ICRP publication 60: recommendations of the International Commission on Radiological Protection. In: Annals of the ICRP, vol 21, no 1–3. Pergamon, OxfordGoogle Scholar
  10. Kampen W, Brenner W, Terheyden H, Bohuslavizki KH, Henze E (1999) Decisive diagnosis of infected mandibular osteoradionecrosis with a Tc-99m-labeled anti-granulocyte Fab’-fragment. Nuklearmedizin 38:309–311PubMedGoogle Scholar
  11. Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. Hladik WB III, Saha GB, Study KT (eds) In: Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • I. Zolle
    • 1
  • P. O. Bremer
    • 2
  • Gy. Jánoki
    • 3
  1. 1.Department of Medicinal/Pharmaceutical ChemistryUniversity of ViennaViennaAustria
  2. 2.Radioformulation DevelopmentGE HealthcareKjellerNorway
  3. 3.Department of Applied Radioisotopes Frederic Joliot-Curie ResearchInstitute of Radiobiology and RadiohygieneBudapestHungary

Personalised recommendations