Other Technetium Isotopes: 94mTc as a Potential Substitute in Positron Emission Tomography Investigations

  • Z. Kovács


Positron Emission Tomography Excitation Function Positron Emission Tomography Investigation Positron Emission Tomography Imaging Study Isobutyl Isonitrile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Browne E, Firestone RB (1986) Table of radioactive isotopes. Wiley, New YorkGoogle Scholar
  2. Denzler F, Rösch F, Qaim SM (1995) Excitation functions of α-particle induced nuclear reactions on highly enriched 92Mo: comparative evaluation of production routes for 94mTc. Radiochim Acta 68:13–20Google Scholar
  3. Faßbender M, Novgorodov AF, Rösch F, Qaim SM (1995) Excitation functions of 93Nb(3He,xn)93m,g;94m,g;95m,g, Tc processes from threshold up to 35 MeV: possibility of production of 94mTc in high radiochemical purity using a thermochromatographic separation technique. Radiochim Acta 65:215–224Google Scholar
  4. Nickles J, Nunn AD, Stone CK, Perlmann SB, Levine RL (1991) Tc-94m flow agents: bridging PET and SPECT. J Nucl Med 32:925Google Scholar
  5. Nickles RJ, Christian BT, Nunn AD, Stone CK (1993 a) Cyclotron production of high-purity 94mTc by in situ sublimation. J Labelled Compd Radiopharm 23:447Google Scholar
  6. Nickles RJ, Nunn AD, Stone CK, Christian BT (1993b) Technetium-94m-teboroxime: Synthesis, dosimetry and initial PET imaging studies. J Nucl Med 34:1058–1066PubMedGoogle Scholar
  7. Qaim SM, Stöcklin G, Weinreich R (1977) Excitation functions for the formation of neutron deficient isotopes of bromine and krypton via high-energy deuteron induced reactions on bromine: production of 77Br, 76Br and 79Kr. Int J Appl Radiat Isot 28:947–953CrossRefGoogle Scholar
  8. Qaim SM, Rösch F, Scholten B, Stöcklin G, Kovács Z, Tárkányi F (1994) Nuclear data relevant to the production of medically important β+-emitting radioisotopes 75Rb, 86Y, 94mTc and 124I at a small cyclotron. Dickens JK (ed) Proceedings of International Conference for Science and Technology. Gatlinburg, Tenn., pp 1035–1038Google Scholar
  9. Rösch R, Beyer G-J (1991) Längerlebige Positronenemitter: Einzelnuklide und Generatorsysteme, Produktion am Rossendorfer Zyklotron U-120, radiochemische Studien und Möglichkeiten für die PET, Report ZfK-745 [in German]Google Scholar
  10. Rösch F, Qaim SM (1993) Nuclear data relevant to the production of the positron emitting technetium isotope 94mTc via the 94Mo(p,n)-reaction. Radiochim Acta 62:115–121Google Scholar
  11. Rösch F, Novgorodov AF, Qaim SM (1994) Thermochromatographic separation of 94mTc from enriched molybdenum targets and its large scale production for nuclear medical application. Radiochim Acta 64:113–120Google Scholar
  12. Stone CK, Christian BT, Nuckles RJ, Perlman SB (1994) 94mTc-methoxy isobutyl isonitrile dosimetry and resting cardiac imaging with PET. J Nucl Cardiol 1:425PubMedCrossRefGoogle Scholar
  13. Weinreich R, Schult O, Stöcklin G (1974) Production of 123I via the 127I(d,6n) 123Xe(β+,EC)123I process. Int J Appl Radiat Isot 25:535–543CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Z. Kovács
    • 1
  1. 1.Radiochemistry Group, Institute of Nuclear ResearchHungarian Academy of SciencesDebrecen, DOB 51Hungary

Personalised recommendations