Skip to main content

The Molecular Genetics of Hirschsprung’s Disease

  • Chapter
Hirschsprung's Disease and Allied Disorders

Abstract

Hirschsprung’s disease (HSCR), or aganglionic megacolon, is a classic example of a complex genetic disease, characterized by the lack of enteric ganglia in the submucosal and myenteric plexuses, along variable portions of the distal gut. Since it is caused by a premature arrest of the migration of neural crest cells along the hindgut, it is defined also as a neurocristopathy. The variable extent of aganglionosis correlates with severity of the disease, leading to a classification of HSCR into short- and long-segment phenotypes [1, 2]. S-forms include aganglionosis confined below the rectosigmoid junction (80% of patients), while L-forms (20% of patients) can extend below the splenic flexure (colonic forms, 9%), to the whole colon (total colonic aganglionosis, TCA, 5–10%), or up to the whole bowel (total intestinal). The disease is a congenital malformation occurring in 1 in 5,000 live births, with the highest incidence in Asian populations (2.8 in 10,000), intermediate in Afro-Americans (2.1 in 10,000) and Caucasians (1.5 in 10,000) and lowest in Hispanics (1 in 10,000). The male to female ratio is 4:1, and the sex imbalance is particularly evident for S-forms (ranging from 4.2 to 5.5 in S-form and from 1.2 to 1.9 in L-form aganglionosis) [1–3] (Table 5.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garver KL, Law JC, Garver B (1985) Hirschsprung’s dis­ease: a genetic study. Clin Genet 28:503–508

    Article  PubMed  CAS  Google Scholar 

  2. Badner JA, Sieber WK, Garver KL, Chakravarti A (1990) A genetic study of Hirschsprung’s disease. Am J Hum Genet 46:568–580

    PubMed  CAS  Google Scholar 

  3. Chakravarti A, Lyonnet S (2001) Hirschsprung’s disease. In: Scriver CR, Beaudet AL, Valle D, Sly WS, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease, international edition, 8th edn, vol 4. McGraw-Hill, New York, pp 6231–6255

    Google Scholar 

  4. Amiel J, Lyonnet S (2001) Hirschsprung’s disease, associated syndromes, and genetics: a review. J Med Genet 38:729–739

    PubMed  CAS  Google Scholar 

  5. Martucciello G, Bicocchi MP, Dodero P, Lerone M, Cirillo MS, Puliti A, Gimelli G, Romeo G, Jasonni V (1992) Total colonic aganglionosis associated with interstitial deletion of the long arm of chromosome 10. Pediatr Surg Int 7:308–310

    Google Scholar 

  6. Angrist M, Kauffman E, Slaugenhaupt SA, Matise TC, Puffenberger EG, Washington SS, Lipson A, Cass DT, Reyna T, Weeks DE, et al (1993) A gene for Hirschsprung’s disease (megacolon) in the pericentromeric region of human chromosome 10. Nat Genet 4:351–356

    PubMed  CAS  Google Scholar 

  7. Lyonnet S, Bolino A, Pelet A, Abel L, Nihoul-Fekete C, Briard ML, Mok-Siu V, Kaariainen H, Martucciello G, Lerone M, et al (1993) A gene for Hirschsprung’s disease maps to the proximal long arm of chromosome 10. Nat Genet 4:346–350

    PubMed  CAS  Google Scholar 

  8. Gardner E, Papi L, Easton DF, Cummings T, Jackson CE, Kaplan M, Love DR, Mole SE, Moore JK, Mulligan LM, et al (1993) Genetic linkage studies map the multiple endocrine neoplasia type 2 loci to a small interval on chromosome 10q11.2. Hum Mol Genet 2:241–246

    PubMed  CAS  Google Scholar 

  9. Mole SE, Mulligan LM, Healey CS, Ponder BA, Tunnacliffe A (1993) Localisation of the gene for multiple endocrine neoplasia type 2A to a 480 kb region in chromosome band 10q11.2. Hum Mol Genet 2:247–252

    PubMed  CAS  Google Scholar 

  10. Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L, et al (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363:458–460

    PubMed  CAS  Google Scholar 

  11. Luo Y, Ceccherini I, Pasini B, Matera I, Bicocchi MP, Barone V, Bocciardi R, Kaariainen H, Weber D, Devoto M, et al (1993) Close linkage with the RET protooncogene and boundaries of deletion mutations in autosomal dominant Hirschsprung’s disease. Hum Mol Genet 2:1803–1808

    PubMed  CAS  Google Scholar 

  12. Fewtrell MS, Tam PK, Thomson AH, Fitchett M, Currie J, Huson SM, Mulligan LM (1994) Hirschsprung’s disease associated with a deletion of chromosome 10 (q11.2q21.2): a further link with the neurocristopathies? J Med Genet 31:325–327

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi M, Buma Y, Iwamoto T, Inaguma Y, Ikeda H, Hiai H (1988) Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3:571–578

    PubMed  CAS  Google Scholar 

  14. Takahashi M, Buma Y, Hiai H (1989) Isolation of ret proto-oncogene cDNA with an amino-terminal signal sequence. Oncogene 4:805–806

    PubMed  CAS  Google Scholar 

  15. Ceccherini I, Bocciardi R, Luo Y, Pasini B, Hofstra R, Takahashi M, Romeo G (1993) Exon structure and flanking intronic sequences of the human RET proto-oncogene. Biochem Biophys Res Commun 196:1288–1295

    PubMed  CAS  Google Scholar 

  16. Garcia-Barcelo M, Sham MH, Lee WS, Lui VC, Chen BL, Wong KK, Wong JS, Tam PK (2004) Highly recurrent RET mutations and novel mutations in genes of the receptor tyrosine kinase and endothelin receptor B pathways in Chinese patients with sporadic Hirschsprung’s disease. Clin Chem 50:93–100

    PubMed  CAS  Google Scholar 

  17. Yin L, Barone V, Seri M, Bolino A, Bocciardi R, Ceccherini I, Pasini B, Tocco T, Lerone M, Cywes S, et al (1994) Heterogeneity and low detection rate of RET mutations in Hirschsprung’s disease. Eur J Hum Genet 2:272–280

    PubMed  CAS  Google Scholar 

  18. Angrist M, Bolk S, Thiel B, Puffenberger EG, Hofstra RM, Buys CH, Cass DT, Chakravarti A (1995) Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung’s disease. Hum Mol Genet 4:821–830

    PubMed  CAS  Google Scholar 

  19. Attie T, Pelet A, Edery P, Eng C, Mulligan LM, Amiel J, Boutrand L, Beldjord C, Nihoul-Fekete C, Munnich A, et al (1995) Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung’s disease. Hum Mol Genet 4:1381–1386

    PubMed  CAS  Google Scholar 

  20. Chakravarti A (1996) Endothelin receptor-mediated signaling in Hirschsprung’s disease. Hum Mol Genet 5:303–307

    PubMed  CAS  Google Scholar 

  21. Yin L, Seri M, Barone V, Tocco T, Scaranari M, Romeo G (1996) Prevalence and parental origin of de novo RET mutations in Hirschsprung’s disease. Eur J Hum Genet 4:356–358

    PubMed  CAS  Google Scholar 

  22. Seri M, Yin L, Barone V, Bolino A, Celli I, Bocciardi R, Pasini B, Ceccherini I, Lerone M, Kristoffersson U, Larsson LT, Casasa JM, Cass DT, Abramowicz MJ, Vanderwinden JM, Kravcenkiene I, Baric I, Silengo M, Martucciello G, Romeo G (1997) Frequency of RET mutations in long- and short-segment Hirschsprung’s disease. Hum Mutat 9:243–249

    PubMed  CAS  Google Scholar 

  23. Carlson KM, Dou S, Chi D, Scavarda N, Toshima K, Jackson CE, Wells SA Jr, Goodfellow PJ, Donis-Keller H (1994) Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci U S A 91:1579–1583

    PubMed  CAS  Google Scholar 

  24. Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, Pasini B, Hoppener JW, van Amstel HK, Romeo G, et al (1994) A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367:375–376

    PubMed  CAS  Google Scholar 

  25. Mulligan LM, Eng C, Healey CS, Clayton D, Kwok JB, Gardner E, Ponder MA, Frilling A, Jackson CE, Lehnert H, et al (1994) Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet 6:70–74

    PubMed  CAS  Google Scholar 

  26. Pelet A, Geneste O, Edery P, Pasini A, Chappuis S, Atti T, Munnich A, Lenoir G, Lyonnet S, Billaud M (1998) Various mechanisms cause RET-mediated signaling defects in Hirschsprung’s disease. J Clin Invest 101:1415–1423

    PubMed  CAS  Google Scholar 

  27. Pasini B, Borrello MG, Greco A, Bongarzone I, Luo Y, Mondellini P, Alberti L, Miranda C, Arighi E, Bocciardi R, et al (1995) Loss of function effect of RET mutations causing Hirschsprung’s disease. Nat Genet 10:35–40

    PubMed  CAS  Google Scholar 

  28. Carlomagno F, De Vita G, Berlingieri MT, de Franciscis V, Melillo RM, Colantuoni V, Kraus MH, Di Fiore PP, Fusco A, Santoro M (1996) Molecular heterogeneity of RET loss of function in Hirschsprung’s disease. EMBO J 15:2717–2725

    PubMed  CAS  Google Scholar 

  29. Iwashita T, Murakami H, Asai N, Takahashi M (1996) Mechanism of ret dysfunction by Hirschsprung’s mutations affecting its extracellular domain. Hum Mol Genet 5:1577–1580

    PubMed  CAS  Google Scholar 

  30. Asai N, Iwashita T, Matsuyama M, Takahashi M (1995) Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 15:1613–1619

    PubMed  CAS  Google Scholar 

  31. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH, et al (1995) Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267:381–383

    PubMed  CAS  Google Scholar 

  32. Songyang Z, Carraway KL 3rd, Eck MJ, Harrison SC, Feldman RA, Mohammadi M, Schlessinger J, Hubbard SR, Smith DP, Eng C, et al (1995) Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373:536–539

    PubMed  CAS  Google Scholar 

  33. Mulligan LM, Eng C, Attie T, Lyonnet S, Marsh DJ, Hyland VJ, Robinson BG, Frilling A, Verellen-Dumoulin C, Safar A, et al (1994) Diverse phenotypes associated with exon 10 mutations of the RET proto-oncogene. Hum Mol Genet 3:2163–2167

    PubMed  CAS  Google Scholar 

  34. Borst MJ, VanCamp JM, Peacock ML, Decker RA (1995) Mutational analysis of multiple endocrine neoplasia type 2A associated with Hirschsprung’s disease. Surgery 117:386–391

    PubMed  CAS  Google Scholar 

  35. Romeo G, Ceccherini I, Celli J, Priolo M, Betsos N, Bonardi G, Seri M, Yin L, Lerone M, Jasonni V, Martucciello G (1998) Association of multiple endocrine neoplasia type 2 and Hirschsprung’s disease. J Intern Med 243:515–520

    PubMed  CAS  Google Scholar 

  36. Svensson PJ, Molander ML, Eng C, Anvret M, Nordenskjold A (1998) Low frequency of RET mutations in Hirschsprung’s disease in Sweden. Clin Genet 54:39–44

    Article  PubMed  CAS  Google Scholar 

  37. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    PubMed  CAS  Google Scholar 

  38. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    PubMed  CAS  Google Scholar 

  39. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    PubMed  CAS  Google Scholar 

  40. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M, et al (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381:789–793

    PubMed  CAS  Google Scholar 

  41. Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R, Louis JC, Hu S, Altrock BW, Fox GM (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85:1113–1124

    PubMed  CAS  Google Scholar 

  42. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83

    PubMed  CAS  Google Scholar 

  43. Rosenthal A (1999) The GDNF protein family: gene ablation studies reveal what they really do and how. Neuron 22:201–203

    PubMed  CAS  Google Scholar 

  44. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM, Milbrandt J (1996) Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384:467–470

    PubMed  CAS  Google Scholar 

  45. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe PA, Heuckeroth RO, Kotzbauer PT, Simburger KS, Golden JP, Davies JA, Vejsada R, Kato AC, Hynes M, Sherman D, Nishimura M, Wang LC, Vandlen R, Moffat B, Klein RD, Poulsen K, Gray C, Garces A, Johnson EM, et al (1998) Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20:245–253

    PubMed  CAS  Google Scholar 

  46. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson EM, Milbrandt J (1998) Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 21:1291–1302

    PubMed  CAS  Google Scholar 

  47. Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A (1996) Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung’s disease patient. Nat Genet 14:341–344

    PubMed  CAS  Google Scholar 

  48. Ivanchuk SM, Myers SM, Eng C, Mulligan LM (1996) De novo mutation of GDNF, ligand for the RET/GDNFR-alpha receptor complex, in Hirschsprung’s disease. Hum Mol Genet 5:2023–2026

    PubMed  CAS  Google Scholar 

  49. Salomon R, Attie T, Pelet A, Bidaud C, Eng C, Amiel J, Sarnacki S, Goulet O, Ricour C, Nihoul-Fekete C, Munnich A, Lyonnet S (1996) Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung’s disease. Nat Genet 14:345–347

    PubMed  CAS  Google Scholar 

  50. Amiel J, Salomon R, Attie T, Pelet A, Trang H, Mokhtari M, Gaultier C, Munnich A, Lyonnet S (1998) Mutations of the RET-GDNF signaling pathway in Ondine’s curse. Am J Hum Genet 62:715–717

    PubMed  CAS  Google Scholar 

  51. Martucciello G, Thompson H, Mazzola C, Morando A, Bertagnon M, Negri F, Brizzolara A, Rocchetti L, Gambini C, Jasonni V (1998) GDNF deficit in Hirschsprung’s dis­ease. J Pediatr Surg 33:99–102

    PubMed  CAS  Google Scholar 

  52. Hofstra RM, Wu Y, Stulp RP, Elfferich P, Osinga J, Maas SM, Siderius L, Brooks AS, vd Ende JJ, Heydendael VM, Severijnen RS, Bax KM, Meijers C, Buys CH (2000) RET and GDNF gene scanning in Hirschsprung’s patients using two dual denaturing gel systems. Hum Mutat 15:418–429

    PubMed  CAS  Google Scholar 

  53. Sakai T, Nirasawa Y, Itoh Y, Wakizaka A (2000) Japanese patients with sporadic Hirschsprung: mutation analysis of the receptor tyrosine kinase proto-oncogene, endothelin-B receptor, endothelin-3, glial cell line-derived neurotrophic factor and neurturin genes: a comparison with similar studies. Eur J Pediatr 159:160–167

    PubMed  CAS  Google Scholar 

  54. Borghini S, Bocciardi R, Bonardi G, Matera I, Santamaria G, Ravazzolo R, Ceccherini I (2002) Hirschsprung’s associated GDNF mutations do not prevent RET activation. Eur J Hum Genet 10:183–187

    PubMed  CAS  Google Scholar 

  55. Eketjall S, Ibanez CF (2002) Functional characterization of mutations in the GDNF gene of patients with Hirschsprung’s disease. Hum Mol Genet 11:325–329

    PubMed  CAS  Google Scholar 

  56. Doray B, Salomon R, Amiel J, Pelet A, Touraine R, Billaud M, Attie T, Bachy B, Munnich A, Lyonnet S (1998) Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung’s disease. Hum Mol Genet 7:1449–1452

    PubMed  CAS  Google Scholar 

  57. Angrist M, Jing S, Bolk S, Bentley K, Nallasamy S, Halush­ka M, Fox GM, Chakravarti A (1998) Human GFRA1: cloning, mapping, genomic structure, and evaluation as a candidate gene for Hirschsprung’s disease susceptibility. Genomics 48:354–362

    PubMed  CAS  Google Scholar 

  58. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62

    PubMed  CAS  Google Scholar 

  59. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324

    PubMed  CAS  Google Scholar 

  60. Myers SM, Salomon R, Goessling A, Pelet A, Eng C, von Deimling A, Lyonnet S, Mulligan LM (1999) Investigation of germline GFR alpha-1 mutations in Hirschsprung’s dis­ease. J Med Genet 36:217–220

    PubMed  CAS  Google Scholar 

  61. Trupp M, Arenas E, Fainzilber M, et al (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789

    PubMed  CAS  Google Scholar 

  62. Pachnis V, Mankoo P, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017

    PubMed  CAS  Google Scholar 

  63. Tsuzuki T, Takahashi M, Asai N, Iwashita T, Matsuyama M, Asai J (1995) Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult tissues. Oncogene 10:191–198

    PubMed  CAS  Google Scholar 

  64. Martucciello G, Favre A, Takahashi M, Jasonni V (1995) Immunohistochemical localization of RET protein in Hirschsprung’s disease. J Pediatr Surg 30:433–436

    PubMed  CAS  Google Scholar 

  65. Takahashi M, Buma Y, Taniguchi M (1991) Identification of the ret proto-oncogene products in neuroblastoma and leukemia cells. Oncogene 6:297–301

    PubMed  CAS  Google Scholar 

  66. Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciardi R, Lerone M, Kaariainen H, et al (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:377–378

    PubMed  CAS  Google Scholar 

  67. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M (1994) Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79:1267–1276

    PubMed  CAS  Google Scholar 

  68. Puffenberger EG, Hosoda K, Washington SS, Nakao K, de Wit D, Yanagisawa M, Chakravart A (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 79:1257–1266

    PubMed  CAS  Google Scholar 

  69. Puffenberger EG, Kauffman ER, Bolk S, Matise TC, Washington SS, Angrist M, Weissenbach J, Garver KL, Mascari M, Ladda R, et al (1994) Identity-by-descent and association mapping of a recessive gene for Hirschsprung’s disease on human chromosome 13q22. Hum Mol Genet 3:1217–1225

    PubMed  CAS  Google Scholar 

  70. Van Camp G, Van Thienen MN, Handig I, Van Roy B, Rao VS, Milunsky A, Read AP, Baldwin CT, Farrer LA, Bonduelle M, et al (1995) Chromosome 13q deletion with Waardenburg syndrome: further evidence for a gene involved in neural crest function on 13q. J Med Genet 32:531–536

    PubMed  Google Scholar 

  71. Attie T, Till M, Pelet A, Amiel J, Edery P, Boutrand L, Munnich A, Lyonnet S (1995) Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung’s disease. Hum Mol Genet 4:2407–2409

    PubMed  CAS  Google Scholar 

  72. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, Yanagisawa M (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79:1277–1285

    PubMed  CAS  Google Scholar 

  73. Edery P, Attie T, Amiel J, Pelet A, Eng C, Hofstra RM, Martelli H, Bidaud C, Munnich A, Lyonnet S (1996) Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung’s disease (Shah-Waardenburg syndrome). Nat Genet 12:442–444

    PubMed  CAS  Google Scholar 

  74. Hofstra RM, Osinga J, Tan-Sindhunata G, Wu Y, Kamsteeg EJ, Stulp RP, van Ravenswaaij-Arts C, Majoor-Krakauer D, Angrist M, Chakravarti A, Meijers C, Buys CH (1996) A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung’s phenotype (Shah-Waardenburg syndrome). Nat Genet 12:445–447

    PubMed  CAS  Google Scholar 

  75. Bidaud C, Salomon R, Van Camp G, Pelet A, Attie T, Eng C, Bonduelle M, Amiel J, Nihoul-Fekete C, Willems PJ, Munnich A, Lyonnet S (1997) Endothelin-3 gene mutations in isolated and syndromic Hirschsprung’s disease. Eur J Hum Genet 5:247–251

    PubMed  CAS  Google Scholar 

  76. Amiel J, Attie T, Jan D, Pelet A, Edery P, Bidaud C, Lacombe D, Tam P, Simeoni J, Flori E, Nihoul-Fekete C, Munnich A, Lyonnet S (1996) Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung’s disease. Hum Mol Genet 5:355–357

    PubMed  CAS  Google Scholar 

  77. Auricchio A, Casari G, Staiano A, Ballabio A (1996) Endothelin-B receptor mutations in patients with isolated Hirschsprung’s disease from a non-inbred population. Hum Mol Genet 5:351–354

    PubMed  CAS  Google Scholar 

  78. Kusafuka T, Wang Y, Puri P (1996) Novel mutations of the endothelin-B receptor gene in isolated patients with Hirschsprung’s disease. Hum Mol Genet 5:347–349

    PubMed  CAS  Google Scholar 

  79. Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, de Wit D, Emoto N, Hammer RE (1998) Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125:825–836

    PubMed  CAS  Google Scholar 

  80. Hofstra RM, Valdenaire O, Arch E, Osinga J, Kroes H, Loffler BM, Hamosh A, Meijers C, Buys CH (1999) A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung’s disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet 64:304–308

    PubMed  CAS  Google Scholar 

  81. Lane PW, Liu HM (1984) Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J Hered 75:435–439

    PubMed  CAS  Google Scholar 

  82. Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, Lemort N, Goossens M, Wegner M (1998) Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung’s disease. Proc Natl Acad Sci U S A 95:5161–5165

    PubMed  CAS  Google Scholar 

  83. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo G, Smith JC, Read AP, Wegner M, Goossens M (1998) SOX10 mutations in patients with Waardenburg-Hirschsprung’s disease. Nat Genet 18:171–173

    PubMed  CAS  Google Scholar 

  84. Southard-Smith EM, Angrist M, Ellison JS, Agarwala R, Baxevanis AD, Chakravarti A, Pavan WJ (1999) The Sox10 (Dom) mouse: modeling the genetic variation of Waardenburg-Shah (WS4) syndrome. Genome Res 9:215–225

    PubMed  CAS  Google Scholar 

  85. Touraine RL, Attie-Bitach T, Manceau E, Korsch E, Sarda P, Pingault V, Encha-Razavi F, Pelet A, Auge J, Nivelon-Chevallier A, Holschneider AM, Munnes M, Doerfler W, Goossens M, Munnich A, Vekemans M, Lyonnet S (2000) Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am J Hum Genet 66:1496–1503

    PubMed  CAS  Google Scholar 

  86. Inoue K, Khajavi M, Ohyama T, Hirabayashi S, Wilson J, Reggin JD, Mancias P, Butler IJ, Wilkinson MF, Wegner M, Lupski JR (2004) Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 36:361–369

    PubMed  CAS  Google Scholar 

  87. Cacheux V, Dastot-Le Moal F, Kaariainen H, Bondurand N, Rintala R, Boissier B, Wilson M, Mowat D, Goossens M (2001) Loss-of-function mutations in SIP1 Smad interacting protein 1 result in a syndromic Hirschsprung’s disease. Hum Mol Genet 10:1503–1510

    PubMed  CAS  Google Scholar 

  88. Wakamatsu N, Yamada Y, Yamada K, Ono T, Nomura N, Taniguchi H, Kitoh H, Mutoh N, Yamanaka T, Mushiake K, Kato K, Sonta S, Nagaya M (2001) Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung’s disease. Nat Genet 27:369–370

    PubMed  CAS  Google Scholar 

  89. Mowat DR, Croaker GD, Cass DT, Kerr BA, Chaitow J, Ades LC, Chia NL, Wilson MJ (1998) Hirschsprung’s dis­ease, microcephaly, mental retardation, and characteristic facial features: delineation of a new syndrome and identification of a locus at chromosome 2q22-q23. J Med Genet 35:617–623

    PubMed  CAS  Google Scholar 

  90. Amiel J, Espinosa-Parrilla Y, Steffann J, Gosset P, Pelet A, Prieur M, Boute O, Choiset A, Lacombe D, Philip N, Le Merrer M, Tanaka H, Till M, Touraine R, Toutain A, Vekemans M, Munnich A, Lyonnet S (2001) Large-scale deletions and SMADIP1 truncating mutations in syndromic Hirschsprung’s disease with involvement of midline structures. Am J Hum Genet 69:1370–1377

    PubMed  CAS  Google Scholar 

  91. Mowat DR, Wilson MJ, Goossens M (2003) Mowat-Wilson syndrome. Med Genet 40:305–310

    CAS  Google Scholar 

  92. Espinosa-Parrilla Y, Amiel J, Auge J, Encha-Razavi F, Munnich A, Lyonnet S, Vekemans M, Attie-Bitach T (2002) Expression of the SMADIP1 gene during early human development. Mech Dev 114:187–191

    PubMed  CAS  Google Scholar 

  93. Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D, Higashi Y (2003) Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung’s disease-mental retardation syndrome. Am J Hum Genet 72:465–470

    PubMed  Google Scholar 

  94. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370

    PubMed  CAS  Google Scholar 

  95. Brunet JF, Pattyn A (2002) Phox2 genes – from patterning to connectivity. Curr Opin Genet Dev 12:435–440

    PubMed  CAS  Google Scholar 

  96. Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33:459–461

    PubMed  CAS  Google Scholar 

  97. Matera I, Bachetti T, Puppo F, Di Duca M, Morandi F, Casiraghi GM, Cilio MR, Hennekam R, Hofstra R, Schober JG, Ravazzolo R, Ottonello G, Ceccherini I (2004) PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset central hypoventilation syndrome. J Med Genet 41:373–380

    PubMed  CAS  Google Scholar 

  98. Mellins RB, Balfour HH Jr, Turino GM, Winters RW (1970) Failure of automatic control of ventilation (Ondine’s curse). Report of an infant born with this syndrome and review of the literature. Medicine (Baltimore) 49:487–504

    CAS  Google Scholar 

  99. Garcia-Barcelo M, Sham MH, Lui VC, Chen BL, Ott J, Tam PK (2003) Association study of PHOX2B as a candidate gene for Hirschsprung’s disease. Gut 52:563–567

    PubMed  CAS  Google Scholar 

  100. Benailly HK, Lapierre JM, Laudier B, Amiel J, Attie T, De Blois MC, Vekemans M, Romana SP (2003) PMX2B, a new candidate gene for Hirschsprung’s disease. Clin Genet 64:204–209

    PubMed  CAS  Google Scholar 

  101. Brooks AS, Bertoli-Avella AM, Burzynski GM, Breedveld GJ, Osinga J, Boven LG, Hurst JA, Mancini GM, Lequin MH, de Coo RF, Matera I, de Graaff E, Meijers C, Willems PJ, Tibboel D, Oostra BA, Hofstra RM (2005) Homozygous nonsense mutations in KIAA1279 are associated with malformations of the central and enteric nervous systems. Am J Hum Genet 77:120–126

    PubMed  CAS  Google Scholar 

  102. Goldberg RB, Shprintzen RJ (1981) Hirschsprung’s megacolon and cleft palate in two sibs. J Craniofac Genet Dev Biol 1:185–189

    PubMed  CAS  Google Scholar 

  103. Auricchio A, Griseri P, Carpentieri ML, Betsos N, Staiano A, Tozzi A, Priolo M, Thompson H, Bocciardi R, Romeo G, Ballabio A, Ceccherini I (1999) Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung’s disease. Am J Hum Genet 64:1216–1221

    PubMed  CAS  Google Scholar 

  104. Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A (2002) Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung’s disease. Nat Genet 32:237–244

    PubMed  CAS  Google Scholar 

  105. McCallion AS, Stames E, Conlon RA, Chakravarti A (2003) Phenotype variation in two-locus mouse models of Hirschsprung’s disease: tissue-specific interaction between Ret and Ednrb. Proc Natl Acad Sci U S A 100:1826–1831

    PubMed  CAS  Google Scholar 

  106. Barlow A, de Graaff E, Pachnis V (2003) Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 40:905–916

    PubMed  CAS  Google Scholar 

  107. Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ (2000) Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 107:1–6

    PubMed  CAS  Google Scholar 

  108. Lang D, Epstein JA (2003) Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet 12:937–945

    PubMed  CAS  Google Scholar 

  109. Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung’s mouse model. Nat Genet 18:60–64

    PubMed  CAS  Google Scholar 

  110. Bolk S, Pelet A, Hofstra RM, Angrist M, Salomon R, Croaker D, Buys CH, Lyonnet S, Chakravarti A (2000) A human model for multigenic inheritance: phenotypic expression in Hirschsprung’s disease requires both the RET gene and a new 9q31 locus. Proc Natl Acad Sci U S A 97:268–273

    PubMed  CAS  Google Scholar 

  111. Gabriel SB, Salomon R, Pelet A, Angrist M, Amiel J, Fornage M, Attie-Bitach T, Olson JM, Hofstra R, Buys C, Steffann J, Munnich A, Lyonnet S, Chakravarti A (2002) Segregation at three loci explains familial and population risk in Hirschsprung’s disease. Nat Genet 31:89–93

    PubMed  CAS  Google Scholar 

  112. Borrego S, Ruiz A, Saez ME, Gimm O, Gao X, Lopez-Alonso M, Hernandez A, Wright FA, Antinolo G, Eng C (2000) RET genotypes comprising specific haplotypes of polymorphic variants predispose to isolated Hirschsprung’s disease. J Med Genet 37:572–578

    PubMed  CAS  Google Scholar 

  113. Griseri P, Sancandi M, Patrone G, Bocciardi R, Hofstra R, Ravazzolo R, Devoto M, Romeo G, Ceccherini I (2000) A single-nucleotide polymorphic variant of the RET proto-oncogene is underrepresented in sporadic Hirschsprung’s disease. Eur J Hum Genet 8:721–724

    PubMed  CAS  Google Scholar 

  114. Fitze G, Cramer J, Ziegler A, Schierz M, Schreiber M, Kuhlisch E, Roesner D, Schackert HK (2002) Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung’s dis­ease. Lancet 359:1200–1205

    PubMed  CAS  Google Scholar 

  115. Borrego S, Wright FA, Fernandez RM, Williams N, Lopez-Alonso M, Davuluri R, Antinolo G, Eng C (2003) A founding locus within the RET proto-oncogene may account for a large proportion of apparently sporadic Hirschsprung’s disease and a subset of cases of sporadic medullary thyroid carcinoma. Am J Hum Genet 72:88–100

    PubMed  CAS  Google Scholar 

  116. Sancandi M, Griseri P, Pesce B, Patrone G, Puppo F, Lerone M, Martucciello G, Romeo G, Ravazzolo R, Devoto M, Ceccherini I (2003) Single nucleotide polymorphic alleles in the 5´ region of the RET proto-oncogene define a risk haplotype in Hirschsprung’s disease. J Med Genet 40:714–718

    PubMed  CAS  Google Scholar 

  117. Borrego S, Saez ME, Ruiz A, Gimm O, Lopez-Alonso M, Antinolo G, Eng C (1999) Specific polymorphisms in the RET proto-oncogene are over-represented in patients with Hirschsprung’s disease and may represent loci modifying phenotypic expression. J Med Genet 36:771–774

    PubMed  CAS  Google Scholar 

  118. Fitze G, Schreiber M, Kuhlisch E, Schackert HK, Roesner D (1999) Association of RET protooncogene codon 45 polymorphism with Hirschsprung’s disease. Am J Hum Genet 65:1469–1473

    PubMed  CAS  Google Scholar 

  119. Fitze G, Cramer J, Serra A, Schreiber M, Roesner D, Schackert HK (2003) Within-gene interaction between c.135 G/A genotypes and RET proto-oncogene germline mutations in HSCR families. Eur J Pediatr Surg 13:152–157

    PubMed  CAS  Google Scholar 

  120. Griseri P, Pesce B, Patrone G, Osinga J, Puppo F, Sancandi M, Hofstra R, Romeo G, Ravazzolo R, Devoto M, Ceccherini I (2002) A rare haplotype of the RET proto-oncogene is a risk-modifying allele in Hirschsprung’s disease. Am J Hum Genet 71:969–674

    PubMed  Google Scholar 

  121. Fitze G, Appelt H, Konig IR, Gorgens H, Stein U, Walther W, Gossen M, Schreiber M, Ziegler A, Roesner D, Schackert HK (2003) Functional haplotypes of the RET proto-oncogene promoter are associated with Hirschsprung’s disease (HSCR). Hum Mol Genet 12:3207–3214

    PubMed  CAS  Google Scholar 

  122. Garcia-Barcelo MM, Sham MH, Lui VC, Chen BL, Song YQ, Lee WS, Yung SK, Romeo G, Tam PK (2003) Chinese patients with sporadic Hirschsprung’s disease are predominantly represented by a single RET haplotype. J Med Genet 40:e122

    Google Scholar 

  123. Burzynski GM, Nolte IM, Osinga J, Ceccherini I, Twigt B, Maas S, Brooks A, Verheij J, Plaza Menacho I, Buys CH, Hofstra RM (2004) Localizing a putative mutation as the major contributor to the development of sporadic Hirschsprung’s disease to the RET genomic sequence between the promoter region and exon 2. Eur J Hum Genet 12:604–612

    PubMed  CAS  Google Scholar 

  124. Garcia-Barcelo M, Ganster RW, Lui VC, Leon TY, So MT, Lau AM, Fu M, Sham MH, Knight J, Zannini MS, Sham PC, Tam PK (2005) TTF-1 and RET promoter SNPs: regulation of RET transcription in Hirschsprung’s disease. Hum Mol Genet 14:191–204

    PubMed  CAS  Google Scholar 

  125. Lantieri F, Griseri P, Puppo F, Campus R, Martucciello G, Ravazzolo R, Devoto M, Ceccherini I (2005) Haplotypes of the human RET proto-oncogene associated with Hirschsprung’s disease in the Italian population derive from a single ancestral combination of alleles. Ann Hum Genet 70:12–26

    Google Scholar 

  126. Griseri P, Bachetti T, Puppo F, Lantieri F, Ravazzolo R, Devoto M, Ceccherini I (2005) A common haplotype at the 5´ end of the RET proto-oncogene, overrepresented in Hirschsprung’s patients, is associated with reduced gene expression. Hum Mutat 25:189–195

    PubMed  CAS  Google Scholar 

  127. Pelet A, de Pontual L, Clement-Ziza M, Salomon R, Mugnier C, Matsuda F, Lathrop M, Munnich A, Feingold J, Lyonnet S, Abel L, Amiel J (2005) Homozygosity for a frequent and weakly penetrant predisposing allele at the RET locus in sporadic Hirschsprung’s disease. J Med Genet 42:e18

    Google Scholar 

  128. Burzynski GM, Nolte IM, Bronda A, Bos KK, Osinga J, Plaza Menacho I, Twigt B, Maas S, Brooks AS, Verheij JB, Buys CH, Hofstra RM (2005) Identifying candidate Hirschsprung’s disease-associated RET variants. Am J Hum Genet 76:850–858

    PubMed  CAS  Google Scholar 

  129. Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, Portnoy ME, Cutler DJ, Green ED, Chakravarti A (2005) A common sex-dependent mutation in a RET enhancer underlies Hirschsprung’s disease risk. Nature 434:857–863

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lantieri, F. et al. (2008). The Molecular Genetics of Hirschsprung’s Disease. In: Holschneider, A., Puri, P. (eds) Hirschsprung's Disease and Allied Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33935-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33935-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33934-2

  • Online ISBN: 978-3-540-33935-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics