Skip to main content

Abstract

Humans are not the only mammals to suffer from aganglionosis. Aganglionosis has also been described in mice, rats, horses, cats and dogs. Rodent animal models have contributed significantly to our understanding of Hirschsprung’s disease (HSCR). Over the last decade, the understanding of the genetics and cell biology of the development of the enteric nervous system (ENS) has made great progress. Rodent animal models have shown many points of correlation with humans in regard to ENS development, both normal and abnormal. Nevertheless, the link between the genotype and the phenotype is often indirect, and so many questions have yet to be answered. This chapter deals with the characteristics of aganglionosis in rodents with emphasis on how knowledge of the animal models has contributed to our understanding of the genetics and pathogenesis of HSCR and allied disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Derrick EH, St George-Grambauer BM (1957) Megacolon in mice. J Path Bacteriol 73:569–571

    Google Scholar 

  2. Bielschowsky M, Schofield GC (1962) Studies on megacolon in piebald mice. Aust J Exp Biol Med Sci 40:395–404

    Article  PubMed  CAS  Google Scholar 

  3. Lane PW (1966) Association of megacolon with two recessive spotting genes in the mouse. J Hered 57:181–183

    Google Scholar 

  4. Ikadai H, Agematsu Y, Imamichi T (1979) Observation of congenital aganglionosis rat (Hirschsprung’s disease rate) and its genetic analysis (in Japanese). Congen Anom 19:31–36

    Google Scholar 

  5. Lane PW, Liu HM (1984) Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J Hered 75:335–339

    Google Scholar 

  6. Dietzmann VU (1968) uber das Vorkommen des kongenitalen Megakolons (Hirschsprungsches Megakolon) bei der Katz. Mh Veterinermed 23:349–352

    CAS  Google Scholar 

  7. Yoder R (1968) Colectomy in cats. Vet Med Small Anim Clin 63:1049

    PubMed  CAS  Google Scholar 

  8. Hultgren BD (1982) Ileocolonic aganglionosis in white progeny of overa spotted horses. J Am Vet Med Assoc 180:289–292

    PubMed  CAS  Google Scholar 

  9. McCabe L, Griffin LD, Kinzer A, Chandler M, Beckwith JAB, McCabe ERB (1990) Overo lethal white foal syndrome: equine model of aganglionic megacolon (Hirschsprung disease). Am J Med Genet 36:336–340

    PubMed  CAS  Google Scholar 

  10. Kyke TM, Laing EA, Hutchins DR (1990) Megacolon in two related Clydesdale foals. Aust Vet J 67:463–464

    Google Scholar 

  11. Yang GC, Croaker GD, Zhang AL, Manglick P, Cartmill T, Cass DT (1998) A dinucleotide mutation in the endothelin-β receptor gene is associated with lethal white foal syndrome (LSWF): a horse variant of Hirschsprung’s disease (HSCR). Hum Mol Genet 7:1047–1052

    PubMed  CAS  Google Scholar 

  12. Kernkampe HCH, Kanning HH (1995) Primary megacolon (Hirschsprung’s disease) in swine. North Am Vet 36:642–643

    Google Scholar 

  13. Osborne JC, Davis JW, Farley H (1968) Hirschsprung’s dis­ease: a review and report of the entity in a Virginia swine herd. Vet Med Small Anim Clin 63:451–453

    PubMed  CAS  Google Scholar 

  14. Bolande RP, Towler WF (1992) Ultrastructural and histochemical studies of murine megacolon. Am J Pathol 69:139–162

    Google Scholar 

  15. Bolande RP (1975) Animal model: aganglionic megacolon in piebald and spotted mutant mouse strains. Am J Pathol 79:189–192

    PubMed  CAS  Google Scholar 

  16. Boley SJ (1975) The pathogenesis of Hirschsprung’s disease – a continuing research. J Pediatr Surg 10:861–863

    PubMed  CAS  Google Scholar 

  17. Webster WS (1973) Embryogenesis of enteric ganglia in normal mice and in mice that develop congenital aganglionic megacolon. J Embryol Exp Morphol 30:573–585

    PubMed  CAS  Google Scholar 

  18. Webster W (1974) Aganglionic megacolon in Piebald-lethal mice. Arch Pathol 97:111–117

    PubMed  CAS  Google Scholar 

  19. Bu’Lock A, Vaillant C, Dockray GJ (1984) Selective depletion of Substance P-immunoreactive neurons in the transition zone of the colon in Piebald lethal mice. Neurochem Int 6:55–61

    CAS  PubMed  Google Scholar 

  20. Ikadai H, Suzufi K, Fujita H, Imamichi T (1981) Animal models of human disease. Hirschsprung’s disease. Comp Pathol Bull 13:3–4

    Google Scholar 

  21. Horie H, Ikadai H, Iwasaki I, Ide G, Takahashi H (1980) Pathological studies on newly established congenital aganglionosis rat in Japan. J Jpn Soc Pediatr Surg 16:549–560

    Google Scholar 

  22. Nagahama M, Ozaki T, Hama K (1985) A study of the myenteric plexus of the congenital aganglionosis rat (spotting lethal). Anat Embryol 171:285–296

    PubMed  CAS  Google Scholar 

  23. Nagahama M, Semba R, Tsuzuki M, Ozaki T (2001) Distribution of peripheral nerve terminals in the small and large intestine of congenital aganglionosis rats (Hirschsprung’s disease rats). Pathol Int 51:145–157

    PubMed  CAS  Google Scholar 

  24. Ward SM, Ordog T, Bayguinov JR, Horowitz B, Epperson A, Shen L, Westphal H, Sanders KM (1999) Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterology 117:584–594

    PubMed  CAS  Google Scholar 

  25. Ward SM, Gershon MD, Keef K, Bayguinov YR, Nelson C, Sanders KM (2002) Interstitial cells of Cajal and electrical activity in ganglionic and aganglionic colons of mice. Am J Physiol Gastrointest Liver Physiol 283:G445–456

    PubMed  CAS  Google Scholar 

  26. Horisawa M, Watanabe Y, Torihashi S (1998) Distribution of c-kit immunopositive cells in normal colon and in Hirschsprung’s disease. J Pediatr Surg 33:1209–1214

    PubMed  CAS  Google Scholar 

  27. Vanderwinden JM, Rumessen JJ, Liu H, Descamps D, De Laet MH, Vanderhaeghen JJ (1996) Interstitial cells of Cajal in human colon and in Hirschsprung’s disease. Gastroenterology 111:901–910

    PubMed  CAS  Google Scholar 

  28. Yamataka A, Kato Y, Tibboel D, Murata Y, Sueyoshi N, Nishiye H, Miyano T (1995) A lack of intestinal pacemaker (c-kit) in aganglionic bowel of patients with Hirschsprung’s disease. J Pediatr Surg 30:441–444

    PubMed  CAS  Google Scholar 

  29. Taniguchi K, Matsuura K, Matsuoka T, Nakatani H, Nakano T, Furuya Y, Sugimoto T, Kobayashi M, Araki K (2005) A morphological study of the pacemaker cells of the aganglionic intestine in Hirschsprung’s disease utilizing ls/ls model mice. Med Mol Morphol 38:123–129

    PubMed  Google Scholar 

  30. Wood JD (1973) Electrical activity of the intestine of mice with hereditary megacolon and absence of enteric ganglion cells. Am J Dig Dis 18:477–488

    PubMed  CAS  Google Scholar 

  31. Brann L, Wood JD (1976) Motility of the large intestine of piebald lethal mice. Am J Dig Dis 21:633–640

    PubMed  CAS  Google Scholar 

  32. Brann L, Furtado D, Migliazzo CV, Baxendale J, Wood JD (1977) Secondary effects of aganglionosis in the piebald-lethal mouse model of Hirschsprung’s disease. Lab Anim Sci 27:946–954

    PubMed  CAS  Google Scholar 

  33. Nakai Y, Okasora T, Okamoto E (1994) Studies on cholinergic nerve function of the aganglionic colon in murine model. J Smooth Muscle Res 30:73–84

    PubMed  CAS  Google Scholar 

  34. Cass DT (1993) The treatment and cause of aganglionosis. Vol 2: Studies in rodents. PhD Thesis, Department of Paediatric Surgery, Sydney University, Sydney, Australia

    Google Scholar 

  35. Alvarez WC (1949) A simple explanation for cariospasm and Hirschsprung’s disease. Gastroenterology 13:422–429

    PubMed  CAS  Google Scholar 

  36. Richardson J (1975) Pharmacologic studies of Hirschsprung’s disease on a murine model. J Pediatr Surg 10:875

    PubMed  CAS  Google Scholar 

  37. Chakder S, McHugh KM, Rattan S (1997) Inhibitory neurotransmission in lethal spotted mutant mice: a model for Hirschsprung’s disease. Gastroenterology 112:1575–1585

    PubMed  CAS  Google Scholar 

  38. Kubota M, Ito Y, Taguchi T, Ikeda K, Ikadai H (1989) Regional differences in the pattern of neurogenic responses in the aganglionic colon from congenitally aganglionic rats. J Pediatr Surg 24:911–919

    PubMed  CAS  Google Scholar 

  39. Okasora T, Okamoto E, Toyosaka A, Nose K, Nakai Y, Tomimoto Y (1990) Study on function of aganglionic colon musculature of Hirschsprung’s disease murine model. Nippon Heikatsukin Gakkai Zasshi 26:131–136

    PubMed  CAS  Google Scholar 

  40. Wood JD, Brann LR, Vermillion DL (1986) Electrical and contractile behavior of large intestinal musculature of piebald mouse model for Hirschsprung’s disease. Dig Dis Sci 31:638–650

    PubMed  CAS  Google Scholar 

  41. Caniano DA, Grace GT, Sun CC, Ormsbee HS 3rd, Hardy FE, Hill JL (1986) Functional response to vasoactive intestinal peptide in piebald lethal mice. J Pediatr Surg 21:1128–1132

    PubMed  CAS  Google Scholar 

  42. Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG (1990) Nitric oxide as an inhibitory non-adrenergic no-cholinergic neurotransmitter. Nature 345:346–347

    PubMed  CAS  Google Scholar 

  43. Boeckxstaens GE, Pelckmans PA, Bult H, et al (1990) Non-adrenergic non-cholinergic relaxation mediated by nitric oxide in the canine ileocolonic junction. Eur J Pharmacol 190:239–246

    PubMed  CAS  Google Scholar 

  44. Rolle Udo, Nemeth L, Puri P (2002) Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg 37:551–567

    PubMed  Google Scholar 

  45. Sanders KM, Ward SM (1992) Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol 262:G379–G392

    PubMed  CAS  Google Scholar 

  46. Stark ME, Bauer AJ, Starr MG, et al (1993) Nitric oxide mediated inhibitory input in human and canine jejunum. Gastroenterology 103:398–409

    Google Scholar 

  47. de Lorijn F, de Jonge WJ, Wedel T, Vanderwinden JM, Benninga MA, Boeckxstaens GE (2005) Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex. Gut 54:1107–1113

    PubMed  Google Scholar 

  48. Rothman TP, Gershon MD (1982) Phenotypic expression in the developing murine enteric nervous system. J Neurosci 2:381–393

    PubMed  CAS  Google Scholar 

  49. Rothman TP, Gershon MD (1984) Regionally defective colonization of the terminal bowel by the precursors of enteric neurons in lethal spotted mutant mice. Neuroscience 12:1293–1311

    PubMed  CAS  Google Scholar 

  50. Jacob-Cohen RJ, Payette RF, Gershon MD, Rothman TP (1987) Inability of neural crest cells to colonise the presumptive aganglionic bowel of ls/ls mutant mice: requirements for a permissive microenvironment. J Comp Neurol 255:425–438

    Google Scholar 

  51. Payette RF, Tennyson VM, Pham TD, Mawe GM, Pomeranz HD, Rothman TP (1987) Origin and morphology of nerve fibers in the aganglionic colon of the lethal spotted (ls/ls) mutant mouse. J Comp Neurol 257:237–252

    PubMed  CAS  Google Scholar 

  52. Payette RF, Tennyson VM, Pham TD, Mawe GM, Pomeranz HD, Rothman TP, Gershon MD (1988) Accumulation of components of basal laminae: association with the failure of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice. Dev Biol 125:341–360

    PubMed  CAS  Google Scholar 

  53. Cass DT, Zhang AL, Morthorpe J (1992) Aganglionosis in rodents. J Pediatr Surg 27:351–356

    PubMed  CAS  Google Scholar 

  54. Gariepy CE (2001) Intestinal motility disorders and development of the enteric nervous system. Pediatr Res 49:605–613

    PubMed  CAS  Google Scholar 

  55. Newgreen D, Young HM (2002) Enteric nervous system: development and developmental disturbances – part 2. Pediatr Dev Pathol 5:329–349

    PubMed  Google Scholar 

  56. Rothwell NV (1993) Understanding genetics – a molecular approach. Wiley-Liss, New York

    Google Scholar 

  57. Pavan WJ, Mac S, Cheng M, Tilghman SM (1995) Quantitative trait loci that modifies the severity of spotting in piebald mice. Genome Res 5:29–41

    PubMed  CAS  Google Scholar 

  58. Metallinos DL, Oppenheimer AJ, Rinchik EM, Russell LB, Dietrich W, Tilghman SM (1994) Fine structure mapping and deletion analysis of the murine piebald locus. Genetics 136:217–223

    PubMed  CAS  Google Scholar 

  59. Newgreen D, Young HM (2002) Enteric nervous system: development and developmental disturbances – part 1. Pediatr Dev Pathol 5:224–247

    PubMed  CAS  Google Scholar 

  60. Taraviras S, Pachnis V (1999) Development of the mammalian enteric nervous system. Curr Opin Genet Dev 9:321–327

    PubMed  CAS  Google Scholar 

  61. Takahashi M, Buma Y, Iwamoto T, Inaguma Y, Ikeda H, Hiai H (1988) Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3:571–578

    PubMed  CAS  Google Scholar 

  62. Schuchardt A, D’Agayi V, Larsson-Blomberg L, Costanini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383

    PubMed  CAS  Google Scholar 

  63. Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017

    PubMed  CAS  Google Scholar 

  64. Durbec PL, Larsson-Blomberg LB, Schuchardt A, Costantini F, Pachnis V (1996) Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122:349–358

    PubMed  CAS  Google Scholar 

  65. Taraviras S, Marcos-Gutierrez CV, Durbec P, Jani H, Grigoriou M, Sukumaran M, Wang LC, Hynes M, Raisman G, Pachnis V (1999) Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development 126:2785–2797

    PubMed  CAS  Google Scholar 

  66. Martucciello G, Biocchi M, Dodero P, Lernone M, Cirillo MS, Puliti A, et al (1992) Total colonic aganglionosis associated with interstitial deletion of the long arm of chromosome 10. J Pediatr Surg 7:308–310

    Google Scholar 

  67. Lo L, Anderson DJ (1995) Postmigratory neural crest cells expressing c-RET display restricted developmental and proliferative capacities. Neuron 15:527–539

    PubMed  CAS  Google Scholar 

  68. Angrist M, Kauffman EG, Slaugenhaupt SA, Matise TC, Puffenberger EG, Washington SS, et al (1993) A gene for Hirschsprung’s disease (megacolon) in the pericentromeric region of chromosome 10. Nat Genet 4:351–356

    PubMed  CAS  Google Scholar 

  69. Lyonnet S, Bolino A, Pelet A, Abel L, Nihoul-Fekete C, Briard M, et al (1993) A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nat Genet 4:346–350

    PubMed  CAS  Google Scholar 

  70. Edery P, Lyonnet S, Mulligan L, Pelet A, Dow E, Holder, S, et al (1994) Mutations of the RET proto-oncogene in Hirschsprung disease. Nature 367:378–380

    PubMed  CAS  Google Scholar 

  71. Romeo G, Rochetto P, Luo Y, Barone V, Seri M, Ceccherini I, et al (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung dis­ease. Nature 367:377–378

    PubMed  CAS  Google Scholar 

  72. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, et al (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324

    PubMed  CAS  Google Scholar 

  73. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Philips H, et al (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    PubMed  CAS  Google Scholar 

  74. Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A (1996) Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung dis­ease patient. Nat Genet 14:341–344

    PubMed  CAS  Google Scholar 

  75. Ivanchuk SM, Myers SM, Eng C, Mulligan LM (1996) De novo mutation of GDNF, ligand for the RET/GDNFR-alpha receptor complex, in Hirschsprung disease. Hum Mol Genet 5:2023–2026

    PubMed  CAS  Google Scholar 

  76. Martucciello G, Thompson H, Mazzola C, Morando A, Bertagnon M, Negri F, et al (1998) GDNF deficit in Hirschsprung’s disease. J Pediatr Surg 33:99–102

    PubMed  CAS  Google Scholar 

  77. Rossi J, Luukko K, Poteryaev D, Laurikainen A, Sun YF, Laakso T, et al (1999) Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. Neuron 22:243–252

    PubMed  CAS  Google Scholar 

  78. Heuckeroth RO, Enomoto H, Grider JR, Golden JP, Hanke JA, Jackman A, et al (1999) Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22:253–263

    PubMed  CAS  Google Scholar 

  79. Doray B, Salomon R, Amiel J, Pelet A, Touraine R, Billaud M, et al (1998) Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum Mol Genet 7:1449–1452

    PubMed  CAS  Google Scholar 

  80. Sakurai T, Yanagisawa M, Masaki T (1992) Molecular characterization of endothelin receptors. Trends Pharmacol Sci 13:103–108

    PubMed  CAS  Google Scholar 

  81. Kurihara Y, Kuihara H, Suzuki H, Kodama T, Maemura K, Nagai R, et al (1994) Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 368:703–710

    PubMed  CAS  Google Scholar 

  82. Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, et al (1998) Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125:825–836

    PubMed  CAS  Google Scholar 

  83. Baynash AG, Hosoda K, Giaid A, Richardson J, Emoto N, Hammer R, et al (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79:1277–1285

    PubMed  CAS  Google Scholar 

  84. Hosoda K, Hammer R, Richardson J, Baynash A, Cheung J, Giaid A, et al (1994) Targeted and natural (Piebald-Lethal) mutations of endothelin-B receptor gene produces megacolon associated with spotted coat color in mice. Cell 79:1267–1276

    PubMed  CAS  Google Scholar 

  85. Leibl MA, Ota T, Woodward MN, et al (1999) Expression of endothelin-3 by mesenchymal cells of embryonic mouse caecum. Gut 44:246–252

    Article  PubMed  CAS  Google Scholar 

  86. Rice J, Doggett B, Sweetser DA, et al (2000) Transgenic rescue of aganglionosis and piebaldism in lethal spotted mice. Dev Dyn 217:120–132

    PubMed  CAS  Google Scholar 

  87. Ceccherini I, Zhang A, Matera I, Yang G, Devoto M, Romeo G, et al (1995) Interstitial deletion of the endothelin-B receptor gene in the spotting lethal (sl) rat. Hum Mol Genet 4:2089–2096

    PubMed  CAS  Google Scholar 

  88. Gariepy CE, Cass DT, Yanagisawa M (1996) Null mutation of endothelin-B receptor in spotting lethal rats causes aganglionic megacolon and white coat color. Proc Natl Acad Sci U S A 93:867–872

    PubMed  CAS  Google Scholar 

  89. Von Boyen GBT, Krammer HJ, Suss A, et al (2002) Abnormalities of the enteric nervous system in heterozygous endothelin B receptor deficient (spotting lethal) rats resembling intestinal neuronal dysplasia. Gut 51:414–419

    PubMed  CAS  Google Scholar 

  90. Puffenberger EG, Hosoda K, Washington SS, Nako K, deWit D, Yanigisawa M, et al (1994) A missense mutation of endothelin-B receptor gene in multigenic Hirschsprung disease. Cell 79:1257–1266

    PubMed  CAS  Google Scholar 

  91. Auricchio A, Cassari G, Staiano A, Ballabio A (1996) Endothelin-B receptor mutations in patients with isolated Hirschsprung disease from a non-inbred population. Hum Mol Genet 5:351–354

    PubMed  CAS  Google Scholar 

  92. Kasafuka T, Wang Y, Puri P (1996) Novel mutations of the endothelin-B receptor gene in isolated patients with Hirschsprung disease. Hum Mol Genet 5:347–349

    Google Scholar 

  93. Amiel J, Attie T, Jan D, Pelet A, Edery P, Bidaud C, et al (1996) Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet 5:355–357

    PubMed  CAS  Google Scholar 

  94. Attie T, Till M, Pelet A, Amiel J, Edery P, Boutrand L, et al (1995) Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease. Hum Mol Genet 4:2407–2409

    PubMed  CAS  Google Scholar 

  95. Edery P, Attie T, Amiel J, Pelet A, Eng C, Hofstra RMW, et al (1996) Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet 12:442–444

    PubMed  CAS  Google Scholar 

  96. Hofstra RMW, Osinga J, Tan-Sindhunata G, Wu Y, Kamsteeg E-J, Stulp RP, et al (1996) A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). Nat Genet 12:445–447

    PubMed  CAS  Google Scholar 

  97. Push C, Hustert E, Pfeifer D, Sudbeck P, Kist R, Roe B, et al (1998) The SOX10/Sox10 gene from human and mouse: sequence, expression, and transactivation by the encoded HMG domain transcription factor. Hum Genet 103:115–123

    Google Scholar 

  98. Kulbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18:237–250

    Google Scholar 

  99. Southard-Smith EM, Kos L, Pavan WJ (1998) Sox 10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18:60–64

    PubMed  CAS  Google Scholar 

  100. Kapur RP (1999) Early death of neural crest cells is responsible for total enteric aganglionosis in Sox10(Dom)/Sox10(Dom) mouse embryos. Pediatr Dev Pathol 2:559–569

    PubMed  CAS  Google Scholar 

  101. Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, et al (1998) Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci U S A 95:5161–5165

    PubMed  CAS  Google Scholar 

  102. Kuhlbordt K, Schmidt C, Sock E, Pingault V, Bondurand N, Goossens M, et al (1998) Functional analysis of Sox10 mutations found in human Waardenburg-Hirschsprung patients. J Biol Chem 273:23033–23038

    Google Scholar 

  103. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124:4065–4075

    PubMed  CAS  Google Scholar 

  104. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370

    PubMed  CAS  Google Scholar 

  105. Garcia-Barcelo M, Sham MH, Lui VCH, et al (2003) Association study of Phox2b as a candidate gene for Hirschsprung’s disease. Gut 52:563–567

    PubMed  CAS  Google Scholar 

  106. Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10:1135–1147

    PubMed  CAS  Google Scholar 

  107. Lang D, Chen F, Milewski R, Li J, Lu MM, Epstein JA, et al (2000) Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest 106:963–971

    PubMed  CAS  Google Scholar 

  108. Tassabehji M, Read AP, Newton VE, et al (1992) Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355:635–636

    PubMed  CAS  Google Scholar 

  109. Shirasawa S, Yunker AM, Roth KA, Brown GA, Horning S, Korsmeyer SJ (1997) Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Nat Med 3:646–650

    PubMed  CAS  Google Scholar 

  110. Hatano M, Aoki T, Dezawa M, Yusa S, Iitsuka Y, Koseki H, et al (1997) A novel pathogenesis of megacolon in Ncx/Hox11L1 deficient mice. J Clin Invest 100:795–801

    PubMed  CAS  Google Scholar 

  111. Costa M, Fava M, Seri M, et al (2000) Evaluation of the HOX11L1 gene as a candidate for congenital disorders of intestinal innervation (letter). J Med Genet 37:E9

    PubMed  CAS  Google Scholar 

  112. Yang JT, Liu CZ, Villavicencio EH, Yoon JW, Walterhouse D, Iannaccone PM (1997) Expression of human GLI in mice results in failure to thrive, early death, and patchy Hirschsprung-like gastrointestinal dilatation. Mol Med 3:826–835

    PubMed  CAS  Google Scholar 

  113. Ramalho-Santos M, Melton DA, McMahon AP (2000) Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127:2763–2772

    PubMed  CAS  Google Scholar 

  114. Gershon MD (1995) Neural crest development. Do developing enteric neurons need endothelins? Curr Biol 5:601–604

    PubMed  CAS  Google Scholar 

  115. Nishijima E, Meijers JHC, Tibboel D, Luider TM, Peters-van der Sanden MMJ, van der Kamp AWM, et al (1990) Formation and malformation of the enteric nervous system in mice: an organ culture study. J Pediatr Surg 25:627–631

    PubMed  CAS  Google Scholar 

  116. Kapur RP, Yost C, Palmiter RD (1993) Aggregation chimeras demonstrate that the primary defect responsible for aganglionic megacolon in lethal spotted mice is not neuroblast autonomous. Development 117:993–999

    PubMed  CAS  Google Scholar 

  117. Coventry S, Yost C, Palmiter RD, Kapur RP (1994) Migration of ganglion cell precursors in the ileoceca of normal and lethal spotted embryos, a murine model for Hirschsprung disease. Lab Invest 71:82–93

    PubMed  CAS  Google Scholar 

  118. Kapur RP, Yost C, Palmiter RD (1992) A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development 116:167–175

    PubMed  CAS  Google Scholar 

  119. Puri P, Shinkai T (2004) Pathogenesis of Hirschsprung’s dis­ease and its variants: recent progress. Semin Pediatr Surg 13:18–24

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alzahem, A., Cass, D. (2008). Animal Models of Aganglionosis. In: Holschneider, A., Puri, P. (eds) Hirschsprung's Disease and Allied Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33935-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33935-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33934-2

  • Online ISBN: 978-3-540-33935-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics