Skip to main content

Functional Anatomy of the Enteric Nervous System

  • Chapter
Hirschsprung's Disease and Allied Disorders

Abstract

Congenital birth defects, of which Hirschsprung’s disease is an example, are among the most difficult of illnesses to study in the human patients who suffer from them. By the time the condition is identified in an affected individual, the process that brought it about is over and done with. It is thus impossible to study the ontogeny of birth defects, such as Hirschsprung’s disease, in a fetus while the problems develop. An investigator seeking to uncover the pathogenesis of such a condition must search, like a detective, for clues left behind by the perpetrator who has fled the scene of a crime. Even the identification of genes that may have mutated, important an achievement as that is, does not, by itself, explain why the defect develops. Human life, moreover, is so precious that human subjects are terrible laboratory animals. As a result, more can often be learned about the origins of human illness by studying animal models, than by investigating the patients themselves. Invasive research, which is only possible on animals, can be used to develop a conceptual framework to devise hypotheses that can subsequently be tested for applicability to human patients. Experiments, based on these hypotheses, can be targeted to what can be confirmed or denied by diagnostic tests or by analyzing the restricted materials available from human subjects. Human biology is thus made approachable by knowledge of animal biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teitelbaum DH (1995) Hirschsprung’s disease in children. Curr Opin Pediatr 7:316–322

    PubMed  CAS  Google Scholar 

  2. Larsson LT (1994) Hirschsprung’s disease — immunohistochemical findings. Histol Histopathol 9:615–629

    PubMed  CAS  Google Scholar 

  3. Gershon MD, Kirchgessner AL, Wade PR (1994) Functional anatomy of the enteric nervous system. In: Johnson LR, Alpers DH, Jacobson ED, Walsh JH (eds) Physiology of the gastrointestinal tract, 3rd edn. Raven Press, New York, vol 1, pp 381–422

    Google Scholar 

  4. Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, New York, pp 65–69

    Google Scholar 

  5. Wood JD (1987) Physiology of the enteric nervous system. In: Johnson LR, Christensen J, Jackson MJ, Jacobson EJ, Walsh JH (eds) Physiology of the gastrointestinal tract. Raven Press, New York, vol 1, pp 67–109

    Google Scholar 

  6. Wood JD (1994) Physiology of the enteric nervous system. In: Johnson LR, Alpers DH, Jacobson ED, Walsh JH (eds) Physiology of the gastrointestinal tract, 3rd edn. Raven Press, New York, pp 423–482

    Google Scholar 

  7. Sullivan PB (1996) Hirschsprung’s disease. Arch Dis Child 74:5–7

    PubMed  CAS  Google Scholar 

  8. Skinner MA (1996) Hirschsprung’s disease. Curr Probl Surg 33:389–460

    PubMed  CAS  Google Scholar 

  9. Holschneider AM, Meier-Ruge W, Ure BM (1994) Hirschsprung’s disease and allied disorders — a review. Eur J Pediatr Surg 4:260–266

    PubMed  CAS  Google Scholar 

  10. Qualman SJ, Murray R (1994) Aganglionosis and related disorders. Hum Pathol 25:1141–1149

    PubMed  CAS  Google Scholar 

  11. Rogawski MA, Goodrich JT, Gershon MD, Touloukian RV (1978) Hirschsprung’s disease: absence of serotonergic neurons in the aganglionic colon. J Pediatric Surg 13:608–615

    CAS  Google Scholar 

  12. Teramoto M, Domoto T, Tanigawa K, Yasui Y, Tamura K (1996) Distribution of nitric oxide synthase-containing nerves in the aganglionic intestine of mutant rats: a histochemical study. J Gastroenterol 31:214–223

    PubMed  CAS  Google Scholar 

  13. Tomita R, Munakata K, Kurosu Y, Tanjoh K (1995) A role of nitric oxide in Hirschsprung’s disease. J Pediatr Surg 30:437–440

    PubMed  CAS  Google Scholar 

  14. Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol (Lond) 24:99–143

    CAS  Google Scholar 

  15. Bayliss WM, Starling EH (1900) The movements and innervation of the large intestine. J Physiol (Lond) 26:107–118

    CAS  Google Scholar 

  16. Trendelenburg P (1917) Physiologische und pharmakologische Versuche über die Dünndarm Peristaltick. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 81:55–129

    Google Scholar 

  17. Langley JN (1921) The autonomic nervous system, part 1. W Heffer, Cambridge

    Google Scholar 

  18. Gabella G (1971) Glial cells in the myenteric plexus. Z Naturforsch 26B:244–245

    Google Scholar 

  19. Gabella G (1981) Ultrastructure of the nerve plexuses of the mammalian intestine: the enteric glial cells. Neuroscience 6:425–436

    PubMed  CAS  Google Scholar 

  20. Gabella G (1987) Structure of muscles and nerves of the gastrointestinal tract. In: Johnson LR, Christensen J, Jackson MJ, Jacobson EJ, Walsh JH (eds) Physiology of the gastrointestinal tract. Raven Press, New York, vol 1, pp 335–382

    Google Scholar 

  21. Gershon MD, Rothman TP (1991) Enteric glia. Glia 4:195–204

    PubMed  CAS  Google Scholar 

  22. Cooke HJ (1989) Role of the “little brain” in the gut in water and electrolyte homeostasis. FASEB J 3:127–138

    PubMed  CAS  Google Scholar 

  23. Crowcroft PJ, Holman ME, Szurszewski JH (1971) Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea pig. J Physiol (Lond) 219:443–461

    CAS  Google Scholar 

  24. Kreulen DL, Szurszewski JL (1979) Reflex pathways in the abdominal prevertebral ganglia: evidence for a colo-colonic inhibitory reflex. J Physiol (Lond) 295:21–32

    CAS  Google Scholar 

  25. Szurszewski JH (1981) Physiology of mammalian prevertebral ganglia. Annu Rev Physiol 43:53–68

    PubMed  CAS  Google Scholar 

  26. Mawe GM, Gershon MD (1989) Relationship of gallbladder ganglia to the enteric nervous system: structure, putative neurotransmitters and direct neural connections. In: Singer MV, Goebell H (eds) Proceedings of the 50th Falk Symposium. Titisee, Germany. Kluwer Academic, pp 87–96

    Google Scholar 

  27. Kirchgessner AL, Gershon MD (1990) Innervation of the pancreas by neurons in the gut. J Neurosci 10:1626–1642

    PubMed  CAS  Google Scholar 

  28. Kirchgessner AL, Gershon MD (1995) Presynaptic inhibition by serotonin (5-HT) of nerve-mediated secretion of pancreatic amylase. Am J Physiol 31:G339–G345

    Google Scholar 

  29. Scheuermann DW, Stach W (1984) Fluorescence microscopic study of the architecture and structure of an adrenergic network in the plexus myentericus (Auerbach), plexus submucosus externus (Schabadasch) and plexus submucosus internus (Meissner) of the porcine small intestine. Acta Anat 119:49–59

    Article  PubMed  CAS  Google Scholar 

  30. Timmermans J-P, Scheuermann DW, Stach W, Adriaensen D, De Groodt-Lasseel MHA (1990) Distinct distribution of CGRP-, enkephalin-. galanin-, neuromedin U-, neuropeptide Y-, somatostatin-, substance P-, VIP- and serotonin-containing neurons in the two submucosal ganglionic neural networks of the porcine small intestine. Cell Tissue Res 260:367–379

    PubMed  CAS  Google Scholar 

  31. Bülbring E, Lin RCY, Schofield G (1958) An investigation of the peristaltic reflex in relation to anatomical observations. Q J Exp Physiol 43:26–37

    Google Scholar 

  32. Kirchgessner AL, Tamir H, Gershon MD (1992) Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J Neurosci 12:235–249

    PubMed  CAS  Google Scholar 

  33. Foxx-Orenstein AE, Kuemmerle JF, Grider JR (1995) The peristaltic reflex induced by mucosal stimuli in human and guinea pig intestine is mediated by distinct mucosal 5-HT receptors. Gastroenterology 108:A600

    Google Scholar 

  34. Bornstein JD, Furness JB (1988) Correlated electrophysiological and histochemical studies of submucous neurons and their contribution to understanding enteric neural circuits. J Autonom Nerv Syst 25:1–13

    CAS  Google Scholar 

  35. Frieling T, Cooke HJ, Wood JD (1991) Electrophysiological properties of neurons in submucosal ganglia of guinea pig distal colon. Am J Physiol 260:G635–G841

    Google Scholar 

  36. Jiang M-M, Kirchgessner A, Gershon MD, Surprenant A (1993) Cholera toxin-sensitive neurons in guinea pig submucosal plexus. Am J Physiol 264:G86–G94

    PubMed  CAS  Google Scholar 

  37. Wattchow DA, Brookes SJH, Costa M (1995) The morphology and projections of retrogradely labeled myenteric neurons in the human intestine. Gastroenterology 109:866–875

    PubMed  CAS  Google Scholar 

  38. Yntema CL, Hammond WS (1954) The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 101:515–542

    PubMed  CAS  Google Scholar 

  39. Yntema CL, Hammond WS (1955) Experiments on the origin and development of the sacral autonomic nerves in the chick embryo. J Exp Zool 129:375–414

    Google Scholar 

  40. Le Douarin NM, Teillet MA (1974) Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev Biol 41:162–184

    PubMed  Google Scholar 

  41. Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30:31–48

    PubMed  Google Scholar 

  42. Allan IJ, Newgreen DF (1980) The origin and differentiation of enteric neurons of the intestine of the fowl embryo. Am J Anat 157:137–154

    PubMed  CAS  Google Scholar 

  43. Rothman TP, Gershon MD (1982) Phenotypic expression in the developing murine enteric nervous system. J Neurosci 2:381–393

    PubMed  CAS  Google Scholar 

  44. Gershon MD, Chalazonitis A, Rothman TP (1993) From neural crest to bowel: development of the enteric nervous system. J Neurobiol 24:199–214

    PubMed  CAS  Google Scholar 

  45. Coulter HD, Gershon MD, Rothman TP (1988) Neural and glial phenotypic expression by neural crest cells in culture: effects of control and presumptive aganglionic bowel from ls/ls mice. J Neurobiol 19:507–531

    PubMed  CAS  Google Scholar 

  46. Mackey HM, Payette RF, Gershon MD (1988) Tissue effects on the expression of serotonin, tyrosine hydroxylase and GABA in cultures of neurogenic cells from the neuraxis and branchial arches. Development 104:205–217

    PubMed  CAS  Google Scholar 

  47. Serbedzija GN, Burgan S, Fraser SE, Bronner-Fraser M (1991) Vital dye labeling demonstrates a sacral neural crest contribution to the enteric nervous system of chick and mouse embryos. Development 111:857–866

    PubMed  CAS  Google Scholar 

  48. Pomeranz HD, Rothman TP, Gershon MD (1991) Colonization of the post-umbilical bowel by cells derived from the sacral neural crest: direct tracing of cell migration using an intercalating probe and a replication-deficient retrovirus. Development 111:647–655

    PubMed  CAS  Google Scholar 

  49. Tam PKH, Lister J (1986) Development profile of neuron-specific enolase in human gut and its implications in Hirschsprung’s disease. Gastroenterology 90:1901–1906

    PubMed  CAS  Google Scholar 

  50. Toyohara T, Nada O, Nagasaki A, Goto S, Ikeda K (1985) An immunohistochemical study of serotoninergic nerves in the colon and rectum of children with Hirschsprung’s disease. Acta Neuropathol 68:306–310

    PubMed  CAS  Google Scholar 

  51. Durbec PL, Larsson-Blomberg LB, Schuschardt A, Costantini F, Pachnis V (1996) Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122:349–358

    PubMed  CAS  Google Scholar 

  52. Epstein ML, Mikawa T, Brown AMC, McFarlin DR (1994) Mapping the origin of the avian enteric nervous system with a retroviral marker. Dev Dyn 201:236–244

    PubMed  CAS  Google Scholar 

  53. Rothman TP, Le Douarin NM, Fontaine-Pérus JC, Gershon MD (1990) Developmental potential of neural crest-derived cells migrating from segments of developing quail bowel back-grafted into younger chick host embryos. Development 109:411–423

    PubMed  CAS  Google Scholar 

  54. Rothman TP, Le Douarin NM, Fontaine-Pérus JC, Gershon MD (1993) Colonization of the bowel by neural crest-derived cells re-migrating from foregut backtransplanted to vagal or sacral regions of host embryos. Dev Dyn 196:217–233

    PubMed  CAS  Google Scholar 

  55. Kapur RP, Yost C, Palmiter RD (1992) A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development 116:167–175

    PubMed  CAS  Google Scholar 

  56. Kapur RP, Yost C, Palmiter RD (1993) Aggregation chimeras demonstrate that the primary defect responsible for aganglionic megacolon in lethal spotted mice is not neuroblast autonomous. Development 117:993–999

    PubMed  CAS  Google Scholar 

  57. Coventry S, Yost C, Palmiter RD, Kapur RP (1994) Migration of ganglion cell precursors in the ileoceca of normal and lethal spotted embryos, a murine model for Hirschsprung disease. Lab Invest 71:82–93

    PubMed  CAS  Google Scholar 

  58. Baetge G, Gershon MD (1989) Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev Biol 132:189–211

    PubMed  CAS  Google Scholar 

  59. Baetge G, Pintar JE, Gershon MD (1990) Transiently catecholaminergic (TC) cells in the bowel of fetal rats and mice: precursors of non-catecholaminergic enteric neurons. Dev Biol 141:353–380

    PubMed  CAS  Google Scholar 

  60. Baetge G, Schneider KA, Gershon MD (1990) Development and persistence of catecholaminergic neurons in cultured explants of fetal murine vagus nerves and bowel. Development 110:689–701

    PubMed  CAS  Google Scholar 

  61. Blaugrund E, Pham TD, Tennyson VM, Lo L, Sommer L, Anderson DJ, et al (1996) Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers, and Mash-1-dependence. Development 122:309–320

    PubMed  CAS  Google Scholar 

  62. Rothman TP, Sherman D, Cochard P, Gershon MD (1986) Development of the monoaminergic innervation of the avian gut: transient and permanent expression of phenotypic markers. Dev Biol 116:357–380

    PubMed  CAS  Google Scholar 

  63. Fontaine-Pérus J, Chanconie M, Le Douarin NM (1988) Developmental potentialities in the non-neuronal population of quail sensory ganglia. Dev Biol 128:359–375

    PubMed  Google Scholar 

  64. Duff RS, Langtimm CJ, Richardson MK, Sieber-Blum M (1991) In vitro clonal analysis of progenitor cell patterns in dorsal root and sympathetic ganglia of the quail embryo. Dev Biol 147:451–459

    PubMed  CAS  Google Scholar 

  65. Ito K, Morita T, Sieber-Blum M (1993) In vitro analysis of mouse neural crest development. Dev Biol 157:517–525

    PubMed  CAS  Google Scholar 

  66. Sieber-Blum M, Cohen AM (1980) Clonal analysis of quail neural crest cells: they are pluripotent and differentiate in vitro in the absence of non-crest cells. Dev Biol 80:96–106

    PubMed  CAS  Google Scholar 

  67. Baroffio A, Dupin E, Le Douarin NM (1988) Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci U S A 85:5325–5329

    PubMed  CAS  Google Scholar 

  68. Sextier-Sainte-Claire Deville F, Ziller C, Le Douarin N (1992) Developmental potentialities of cells derived from the truncal neural crest in clonal cultures. Dev Brain Res 66:1–10

    CAS  Google Scholar 

  69. Bronner-Fraser M, Fraser S (1989) Developmental potential of avian trunk neural crest cells in situ. Neuron 3:755–766

    PubMed  CAS  Google Scholar 

  70. Bronner-Fraser M, Fraser SE (1988) Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335:161–164

    PubMed  CAS  Google Scholar 

  71. Fraser SE, Bronner-Fraser M (1991) Migrating neural crest cells in the trunk of the avian embryo are multipotent. Development 112:913–920

    PubMed  CAS  Google Scholar 

  72. Sextier-Sainte-Claire Deville F, Ziller C, Le Douarin NM (1994) Developmental potentials of enteric neural crest-derived cells in clonal and mass cultures. Dev Biol 163:141–151

    PubMed  CAS  Google Scholar 

  73. Lo L, Anderson DJ (1995) Postmigratory neural crest cells expressing c-RET display restricted developmental and proliferative capacities. Neuron 15:527–539

    PubMed  CAS  Google Scholar 

  74. Tessier-Lavigne M (1994) Axon guidance by diffusible repellents and attractants. Curr Opin Genet Dev 4:596–601

    PubMed  CAS  Google Scholar 

  75. Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78:425–435

    PubMed  CAS  Google Scholar 

  76. Serafini T, Kennedy T, Galko M, Mirzyan C, Jessell T, Tessier-Lavigne (1994) The netrins define a family of axon outgrowth-promoting proteins with homology to C. elegans UNC-6. Cell 78:409–424

    PubMed  CAS  Google Scholar 

  77. Colamarino SA, Tessier-Lavigne M (1995) The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81:621–629

    PubMed  CAS  Google Scholar 

  78. Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75:217–227

    PubMed  CAS  Google Scholar 

  79. Messersmith EK, Leonardo ED, Shatz CJ, Tessier-Lavigne M, Goodman CS, Kolodkin AL (1995) Semaphorin III can function as a selective repellent to pattern sensory projections in the spinal cord. Neuron 14:949–959

    PubMed  CAS  Google Scholar 

  80. Kolodkin AL (1995) Semaphorins: mediators of repulsive growth cone guidance. Trends Cell Biol 61:15–22

    Google Scholar 

  81. Lallier T, Deutzmann R, Perris R, Bronner-Fraser M (1994) Neural crest cell interactions with laminin: structural requirements and localization of the binding site for alpha 1 beta 1 integrin. Dev Biol 162:451–464

    PubMed  CAS  Google Scholar 

  82. Perris R, Paulsson M, Bronner-Fraser M (1989) Molecular mechanisms of neural crest cell migration on fibronectin and laminin. Dev Biol 136:222–238

    PubMed  CAS  Google Scholar 

  83. Anderson DJ (1989) The neural crest cell lineage problem: neuropoiesis? Neuron 3:1–12

    PubMed  CAS  Google Scholar 

  84. Le Douarin NM (1986) Cell line segregation during peripheral nervous system ontogeny. Science 231:1515–1522

    PubMed  Google Scholar 

  85. Le Douarin NM, Dupin E (1993) Cell lineage analysis in neural crest ontogeny. J Neurobiol 24:146–161

    PubMed  Google Scholar 

  86. Cochard P, Goldstein M, Black IB (1978) Ontogenetic appearance and disappearance of tyrosine hydroxylase and catecholamines. Proc Natl Acad Sci U S A 75:2986–2990

    PubMed  CAS  Google Scholar 

  87. Teitelman G, Joh TH, Reis DJ (1978) Transient expression of a noradrenergic phenotype in cells of the rat embryonic gut. Brain Res 158:229–234

    Google Scholar 

  88. Jonakait GM, Wolf J, Cochard P, Goldstein M, Black IB (1979) Selective loss of noradrenergic phenotypic characters in neuroblasts of the rat embryo. Proc Natl Acad Sci USA 76:4683–4686

    PubMed  CAS  Google Scholar 

  89. Gershon MD, Rothman TP, Joh TH, Teitelman GN (1984) Transient and differential expression of aspects of the catecholaminergic phenotype during development of the fetal bowel of rats and mice. J Neurosci 4:2269–2280

    PubMed  CAS  Google Scholar 

  90. Jonakait GM, Rosenthal M, Morrell JI (1989) Regulation of tyrosine hydroxylase mRNA in the catecholaminergic cells of embryonic rat: analysis by in situ hybridization. J Histochem Cytochem 37:1–5

    PubMed  CAS  Google Scholar 

  91. Rothman TP, Specht LA, Gershon MD, Joh TH, Teitelman G, Pickel VM, et al (1980) Catecholamine biosynthetic enzymes are expressed in replicating cells of the peripheral but not central nervous systems. Proc Natl Acad Sci U S A 77:6221–6225

    PubMed  CAS  Google Scholar 

  92. Teitelman G, Gershon MD, Rothman TP, Joh TH, Reis DJ (1981) Proliferation and distribution of cells that transiently express a catecholaminergic phenotype during development in mice and rats. Dev Biol 86:348–355

    PubMed  CAS  Google Scholar 

  93. Carnahan JF, Anderson DJ, Patterson PH (1991) Evidence that enteric neurons may derive from the sympathoadrenal lineage. Dev Biol 148:552–561

    PubMed  CAS  Google Scholar 

  94. Anderson DJ, Carnahan JF, Michelsohn A, Patterson PH (1991) Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J Neurosci 11:3507–3519

    PubMed  CAS  Google Scholar 

  95. Johnson JE, Birren SJ, Saito T, Anderson DJ (1992) DNA binding and transcriptional regulatory activity of mammalian achaete-scute homologous (MASH) proteins revealed by interaction with a muscle-specific enhancer. Proc Natl Acad Sci U S A 89:3596–3600

    PubMed  CAS  Google Scholar 

  96. Guillemot F, Joyner AL (1993) Dynamic expression of the murine achaete-scute homolog (MASH-1) in the developing nervous system. Mech Dev 42:171–185

    PubMed  CAS  Google Scholar 

  97. Lo L-C, Johnson JE, Wuenschell CW, Saito T, Anderson DJ (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5:1524–1537

    PubMed  CAS  Google Scholar 

  98. Guillemot F, Lo L-C, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    PubMed  CAS  Google Scholar 

  99. Pham TD, Gershon MD, Rothman TP (1991) Time of origin of neurons in the murine enteric nervous system. J Comp Neurol 314:789–798

    PubMed  CAS  Google Scholar 

  100. Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017

    PubMed  CAS  Google Scholar 

  101. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defect in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383

    PubMed  CAS  Google Scholar 

  102. Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, et al (1996) GDNF-induced activation of the Ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85:1113–1124

    PubMed  CAS  Google Scholar 

  103. Trupp M, Arenas E, Fainzilber M, Nilsson A-S, Sieber B-A, Grigoriou M, et al (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789

    PubMed  CAS  Google Scholar 

  104. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, et al (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381:789–793

    PubMed  CAS  Google Scholar 

  105. Lin L-FH, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopinergic neurons. Science 260:1130–1132

    PubMed  CAS  Google Scholar 

  106. Trupp M, Rydén M, Jörnvall H, Funakoshi H, Timmusk T, Arenas E, et al (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130:137–148

    PubMed  CAS  Google Scholar 

  107. Choi-Lundberg DL, Bohn MC (1995) Ontogeny and distribution of glial cell line-derived neurotrophic factor. Brain Res Dev Brain Res 85:80–88

    PubMed  CAS  Google Scholar 

  108. Tsuzuki T, Takahashi M, Asai N, Iwashita T, Matsuyama M, Asai J (1995) Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant, and adult rat tissues. Oncogene 10:191–198

    PubMed  CAS  Google Scholar 

  109. Sénchez M, Silos-Santiago I, Frisén J, He B, Lira S, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    Google Scholar 

  110. Moore MW, Klein RD, Fariñas I, Sauer H, Armanini M, Phillips H, et al (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    PubMed  CAS  Google Scholar 

  111. Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A, et al (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    PubMed  CAS  Google Scholar 

  112. Treanor JJS, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, et al (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83

    PubMed  CAS  Google Scholar 

  113. Dreyfus CF, Bornstein MB, Gershon MD (1977) Synthesis of serotonin by neurons of the myenteric plexus in situ and in organotypic tissue culture. Brain Res 128:125–139

    PubMed  CAS  Google Scholar 

  114. Dreyfus CF, Sherman D, Gershon MD (1977) Up­take of serotonin by intrinsic neurons of the myenteric plexus grown in organotypic tissue culture. Brain Res 128:109–123

    PubMed  CAS  Google Scholar 

  115. Johnson EMJ, Osborne P, Rydel RE, Schmidt RE, Pearson J (1983) Characterization of the effects of autoimmune nerve growth factor deprivation in the developing guinea-pig. Neuroscience 8:631–642

    PubMed  CAS  Google Scholar 

  116. Pearson J, Johnson EM, Brandeis L (1983) Effects of antibodies to nerve growth factor on intrauterine development of derivatives of cranial neural crest and placode in the guinea pig. Dev Biol 96:32–36

    PubMed  CAS  Google Scholar 

  117. Gershon MD, Rothman TP, Sherman D, Johnson EM (1983) Effect of prenatal exposure to anti-NGF on the enteric nervous system (ENS) of the guinea pig. Anat Rec 205:62A

    Google Scholar 

  118. Barbacid M (1993) The trk family of neurotrophin receptors: molecular characterization and oncogenic activation in human tumors. In: Levine AJ, Schmidek HH (eds) Molecular genetics of nervous system tumors. Wiley & Sons, New York, pp 123–135

    Google Scholar 

  119. Chao MV, Hempstead BL (1995) p75 and Trk: a two-receptor system. Trends Neurosci 18:321–326

    PubMed  CAS  Google Scholar 

  120. Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS (1994) Neurotrophic factors: from molecule to man. Trends Neurosci 17:182–190

    PubMed  CAS  Google Scholar 

  121. Götz R, Koster R, Winkler C, Raulf F, Lottspeich F, Schartl M, et al (1994) Neurotrphin-6 is a new member of the nerve growth factor family. Nature 372:266–269

    PubMed  Google Scholar 

  122. Bothwell M (1996) P75NTR: a receptor after all. Science 272:506–507

    PubMed  CAS  Google Scholar 

  123. Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhäuser N, Böhm-Matthaei R, Baeuerle PA, et al (1996) Selective activation of NFkB by nerve growth factor through the neurotrophin receptor p75. Science 272:542–545

    PubMed  CAS  Google Scholar 

  124. Tsoulfas P, Soppet D, Escandon E, Tessarollo L, Mandoza-Ramirez J-L, Rosenthal A, et al (1993) The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in PC12 cells. Neuron 10:975–990

    PubMed  CAS  Google Scholar 

  125. Pomeranz HD, Rothman TP, Chalazonitis A, Tennyson VM, Gershon MD (1993) Neural crest-derived cells isolated from the gut by immunoselection develop neuronal and glial phenotypes when cultured on laminin. Dev Biol 156:341–361

    PubMed  CAS  Google Scholar 

  126. Chalazonitis A, Rothman TP, Chen J, Lamballe F, Barbacid M, Gershon MD (1994) Neurotrophin-3 induces neural crest-derived cells from fetal rat gut to develop in vitro as neurons or glia. J Neurosci 14:6571–6584

    PubMed  CAS  Google Scholar 

  127. Verdi JM, Anderson DJ (1994) Neurotrophins regulate sequential changes in neurotrophin receptor expression by sympathetic neuroblasts. Neuron 13:1359–1372

    PubMed  CAS  Google Scholar 

  128. Birren SJ, Lo L, Anderson DJ (1993) Sympathetic neuroblasts undergo a developmental switch in trophic dependence. Development 119:597–610

    PubMed  CAS  Google Scholar 

  129. DiCicco-Bloom E, Friedman WJ, Black IB (1993) NT-3 stimulates sympathetic neuroblast proliferation by promoting precursor survival. Neuron 11:1101–1111

    PubMed  CAS  Google Scholar 

  130. Black IB (1978) Regulation of autonomic development. Annu Rev Neurosci 1:183–214

    PubMed  CAS  Google Scholar 

  131. Wyatt S, Davies AM (1995) Regulation of nerve growth factor receptor gene expression in sympathetic neurons during development. J Cell Biol 130:1–12

    Google Scholar 

  132. Zhang JM, Winslow JW, Sieber-Blum M (1993) Role of neurotrophin-3 (NT-3) in the expression of the adrenergic phenotype by neural crest cells. Neuroscience Abstract 19:251

    Google Scholar 

  133. Ernfors P, Lee K-F, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77:503–512

    PubMed  CAS  Google Scholar 

  134. Fariñas I, Jones KR, Backus C, Wang X-Y, Reichardt LF (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369:658–661

    PubMed  Google Scholar 

  135. Zhou X-F, Rush RA (1995) Sympathetic neurons in neonatal rats require endogenous neurotrophin-3 for survival. J Neurosci 15:6521–6530

    PubMed  CAS  Google Scholar 

  136. ElShamy WM, Linnarsson S, Lee K-F, Jaenisch R, Ernfors P (1996) Prenatal and postnatal requirements of NT-3 for sympathetic neuroblast survival and innervation of specific targets. Development 122:491–500

    PubMed  CAS  Google Scholar 

  137. Lamballe F, Smeyne R, Barbacid M (1994) Developmental expression of TrkC, the neurotrophin-3 receptor in the mammalian nervous system. J Neurosci 14:14–28

    PubMed  CAS  Google Scholar 

  138. Tessarollo L, Tsoulfas P, Martin-Zanca D, Gilbert DJ, Jenkins NA, Copeland NG, et al (1993) trkC, a receptor for neurotrophin-3, is widely expressed in the developing nervous and in non-neuronal tissues. Development 118:463–475

    PubMed  CAS  Google Scholar 

  139. Escandón E, Soppet D, Rosenthal A, Mendoza-Ramirez J-L, Szönyi É, Burton LE, et al (1994) Regulation of neurotrophin receptor expression during embryonic and postnatal development. J Neurosci 14:2054–2068

    PubMed  Google Scholar 

  140. Tojo H, Kaisho Y, Nakata M, Matsuoka K, Kitagawa M, Abe T, et al (1995) Targeted disruption of the neurotrophin-3 gene with lacZ induces loss of trkC-positive neurons in sensory ganglia but not in spinal cords. Brain Res 669:163–175

    PubMed  CAS  Google Scholar 

  141. Payette RF, Bennett GS, Gershon MD (1984) Neurofilament expression in vagal neural crest-derived precursors of enteric neurons. Dev Biol 105:273–287

    PubMed  CAS  Google Scholar 

  142. Payette RF, Tennyson VM, Pham TD, Mawe GM, Pomeranz HD, Rothman TP, et al (1987) Origin and morphology of nerve fibers in the aganglionic colon of the lethal spotted (ls/ls) mutant mouse. J Comp Neurol 257:237–252

    PubMed  CAS  Google Scholar 

  143. Chalazonitis A, Rothman TP, Gershon MD (1995) Ciliary neurotrophic factor (CNTF) and neurotrophin-3 (NT-3) potentiate one another in promoting the enteric neuronal development. Neuroscience Abstract 25:1545

    Google Scholar 

  144. Chalazonitis A (1996) Neurotrophin-3 as an essential sig­nal for the developing nervous system. Mol Neurobiol 12:39–53

    PubMed  CAS  Google Scholar 

  145. Ockel M, Lewin GR, Barde Y-A (1996) In vivo effects of neurotrphin-3 during sensory neurogenesis. Development 122:301–307

    PubMed  CAS  Google Scholar 

  146. Kalcheim C, Carmeli C, Rosenthal A (1992) Neurotrophin-3 is a mitogen for cultured neural crest cells. Proc Natl Acad Sci U S A 89:1661–1665

    PubMed  CAS  Google Scholar 

  147. Pinco O, Carmeli C, Rosenthal A, Kalcheim C (1993) Neurotrophin-3 affects proliferation and differentiation of distinct neural crest cells and is present in the early neural tube of avian embryos. J Neurobiol 24:1626–1641

    PubMed  CAS  Google Scholar 

  148. Pham T, Wade A, Chalazonitis A, Skirboll SL, Bothwell M, Gershon MD (1996) Increased numbers of myenteric neurons arise in transgenic mice that overexpress neurotrophin-3 (NT-3) directed to the enteric nervous system (ENS) by the dopamine beta-hydroxylase promoter. Neuroscience Abstract 12:999

    Google Scholar 

  149. Klein R, Silos-Santiago I, Smeyne RJ, Lira SA, Brambilla R, Bryant S, et al (1994) Disruption of the neurotrophin-3 receptor gene trkC eliminates 1a muscle afferents and results in abnormal movements. Nature 368:249–251

    PubMed  CAS  Google Scholar 

  150. Lee K-F, Li E, Huber LJ, Landis S, Sharpe AH, Chao MV, et al (1992) Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69:737–749

    PubMed  CAS  Google Scholar 

  151. Henderson CE (1996) Role of neurotrophic factors in neuronal development. Curr Opin Neurobiol 6:64–70

    PubMed  CAS  Google Scholar 

  152. Adler R, Landa KB, Manthorpe M, Varon S (1979) Cholinergic neuronotrophic factors: intraocular distribution of soluble trophic activity for ciliary neurons. Science 204:1434–1436

    PubMed  CAS  Google Scholar 

  153. Sendtner M, Carroll P, Holtmann B, Hughes RA, Thoe­nen H (1994) Ciliary neurotrophic factor. J Neurobiol 25:1436–1453

    PubMed  CAS  Google Scholar 

  154. DeChiara TM, Vejsada R, Poueymirou WT, Acheson A, Suri C, Conover JC, et al (1995) Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83:313–322

    PubMed  CAS  Google Scholar 

  155. Pennica D, Shaw KJ, Swanson TA, Moore MW, Shelton DL, Zioncheck KA, et al (1995) Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J Biol Chem 270:10915–10922

    PubMed  CAS  Google Scholar 

  156. Davis S, Aldrich TH, Valenzuela D, Wong V, Furth ME, Squinto SP, et al (1991) The receptor for ciliary neurotrophic factor. Science 253:59–63

    PubMed  CAS  Google Scholar 

  157. Gearing DP, Thut CJ, VandenBos T, Gimpel SD, Delaney PB, King J, et al (1991) Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J 10:2839–2848

    PubMed  CAS  Google Scholar 

  158. Gearing DP, Comeau MR, Friend DJ, Gimpel SD, Thust CJ, McGourty J, et al (1992) The Il-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science 255:1434–1437

    PubMed  CAS  Google Scholar 

  159. Ip NY, Nye SH, Boulton TG, Davis S, Taga T, Li Y, et al (1992) CNTF and LIF act on neuronal cells via shared sig­nalling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69:1121–1132

    PubMed  CAS  Google Scholar 

  160. Davis S, Aldrich TH, Stahl N, Taga T, Kishimoto T, Ip NY, et al (1993) LIFRb and gp130 as heterodimerizing sig­nal transducers in the tripartite CNTF receptor. Science 260:1805–1808

    PubMed  CAS  Google Scholar 

  161. Kishimoto T, Taga T, Akira S (1994) Cytokine signal transduction. Cell 76:253–262

    PubMed  CAS  Google Scholar 

  162. Stahl N, Boulton TG, Farruggella T, Ip NY, Davis S, Witthuhn B, et al (1994) Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL6b receptor components. Science 263:92–95

    PubMed  CAS  Google Scholar 

  163. Rothman TP, Chen J, Gershon MD (1994) Microenvironmental factors in the differentiation of enteric neurons from neural crest-derived precursors. Neuroscience Ab­stract 20:1492

    Google Scholar 

  164. Ip NY, McClain J, Barrezueta NX, Aldrich TH, Pan L, Li Y, et al (1993) The alpha component of the CNTF receptor is required for signalling and defines potential CNTF targets in the adult and during development. Neuron 10:89–102

    PubMed  CAS  Google Scholar 

  165. Masu Y, Wold E, Holtmann BS, M, Brem G, Thoenen H (1993) Disruption of the CNTF gene results in motor neuron degeneration. Nature 365:27–32

    PubMed  CAS  Google Scholar 

  166. Takahashi R, Yokoji H, Misawa H, Hayashi M, Hu J, Deguchi T (1994) A null mutation in the human CNTF gene is not causally related to neurological diseases. Nat Genet 7:79–84

    PubMed  CAS  Google Scholar 

  167. Brookes SJH, Steele PA, Costa M (1991) Identification and immunohistochemistry of cholinergic and non-cholinergic circular muscle motor neurons in the guinea-pig small intestine. Neuroscience 42:863–878

    PubMed  CAS  Google Scholar 

  168. Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, van Maercke YM, Herman AG (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345:346–347

    PubMed  CAS  Google Scholar 

  169. Costa M, Furness JB, Pompolo S, Brookes SJH, Bornstein JC, Bredt DS, et al (1992) Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neurosci Lett 148:121–125

    PubMed  CAS  Google Scholar 

  170. Konturek SJ, Bilski J, Konturek PK, Cieszkowski M, Pawlik W (1993) Role of endogenous nitric oxide in the control of canine pancreatic secretion and blood flow. Gastroenterology 104:896–902

    PubMed  CAS  Google Scholar 

  171. Stark ME, Bauer AJ, Szurszewski JH (1991) Effect of nitric oxide on circular muscle of the canine small intestine. J Physiol (Lond) 444:743–761

    CAS  Google Scholar 

  172. Young HM, McConalogue K, Furness JB, De Vente J (1993) Nitric oxide targets in the guinea-pig intestine identified by induction of cyclic GMP immunoreactivity. Neuroscience 55:583–596

    PubMed  CAS  Google Scholar 

  173. Ernsberger U, Sendtner M, Rohrer H (1989) Proliferation and differentiation of embryonic chick sympathetic neurons: effects of ciliary neurotrophic factor. Neuron 2:1275–1284

    Google Scholar 

  174. Saadat S, Sendtner M, Rohrer H (1989) Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture. J Cell Biol 108:1807–1816

    PubMed  CAS  Google Scholar 

  175. Lane PW (1966) Association of megacolon with two recessive spotting genes in the mouse. J Hered 57:29–31

    PubMed  CAS  Google Scholar 

  176. Bolande RP (1975) Animal model of human disease. Hirschsprung’s disease, aganglionic or hypoganglionic megacolon: animal model: aganglionic megacolon in piebald and spotted mutant mouse strains. Am J Pathol 79:189–192

    PubMed  CAS  Google Scholar 

  177. Watanabe Y, Ito T, Harada T, Kobayashi S, Ozaki T, Nimura Y (1995) Spatial distribution and pattern of extrinsic nerve strands in the aganglionic segment of congenital aganglionosis: stereoscopic analysis in spotting lethal rats. J Pediatr Surg 30:1471–1476

    PubMed  CAS  Google Scholar 

  178. Karaki H, Mitsui-Saito M, Takimoto M, Oda K, Okada T, Ozaki, et al (1996) Lack of endothelin ETB receptor binding and function in the rat with a mutant ETB receptor gene. Biochem Biophys Res Commun 222:139–143

    PubMed  CAS  Google Scholar 

  179. Watanabe Y, Ito T, Harada T, Takahashi M, Kobayashi S, Ozaki T, et al (1995) Expression of ret proto-oncogene prod­ucts in the hypoganglionic segment of the small intestine of congenital aganglionosis rats. J Pediatr Surg 30:641–645

    PubMed  CAS  Google Scholar 

  180. Ceccherini I, Zhang A, Matera I, Yang G, Devoto M, Romeo G, et al (1995) Interstitial deletion of the endothelin-B receptor gene in the spotting lethal (sl) rat. Hum Mol Genet 4:2089–2096

    PubMed  CAS  Google Scholar 

  181. Gariepy CE, Cass DT, Yanagisawa M (1996) Null mutation of endothelin receptor type B gene in spotting lethal rats causes aganglionic megacolon and white coat color. Proc Natl Acad Sci U S A 93:867–872

    PubMed  CAS  Google Scholar 

  182. Bodeker D, Turck O, Loven E, Wieberneit D, Wegner W (1995) Pathophysiological and functional aspects of the megacolon-syndrome of homozygous spotted rabbits. Zentralbl Veterinarmed A 42:549–559

    PubMed  CAS  Google Scholar 

  183. Poirier V, Goossens M, Simonneau M (1996) Neuronal defects in genotyped dominant megacolon (Dom) mouse embryos, a model for Hirschsprung disease. Neuroreport 7:489–492

    Article  PubMed  Google Scholar 

  184. Kapur RP, Livingston R, Doggett B, Sweetser DA, Siebert JR, Palmiter RD (1996) Abnormal microenvironmental signals underlie intestinal aganglionosis in Dominant megacolon mutant mice. Dev Biol 174:360–369

    PubMed  CAS  Google Scholar 

  185. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, et al (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79:1277–1285

    PubMed  CAS  Google Scholar 

  186. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, et al (1994) Targeted and natural (piebald-lethal) mutation of endothelin-B receptor produce megacolon associated with spotted coat color in mice. Cell 79:1267–1276

    PubMed  CAS  Google Scholar 

  187. Puffenberger EG, Hosoda K, Washington SS, Nakao K, deWit D, Yanagisawa M, et al (1994) A missense mutation of the endothelin-receptor gene in mutagenic Hirschsprung’s disease. Cell 79:1257–1266

    PubMed  CAS  Google Scholar 

  188. Rubanyi GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46:325–415

    PubMed  CAS  Google Scholar 

  189. Sakamoto A, Yanagisawa M, Sawamura T, Enoki T, Ohtani T, Sakurai T, et al (1993) Distinct subdomains of human endothelin receptors determine their selectivity to ETA-selective antagonist and ETB-selective agonists. J Biol Chem 268:8547–8553

    PubMed  CAS  Google Scholar 

  190. Yanagisawa M (1994) The endothelin system: a new target for therapeutic intervention. Circulation 89:1320–1322

    PubMed  CAS  Google Scholar 

  191. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayshi M, Mitsui Y, et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    PubMed  CAS  Google Scholar 

  192. Xu D, Emoto J, Giaid A, Slaughter C, Kaw S, deWit D, et al (1994) ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78:473–485

    PubMed  CAS  Google Scholar 

  193. Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai RO, H, et al (1994) Elevated blood pressure and craniofacial abnormalities in mice deficient in endothlin-1. Nature 368:703–710

    PubMed  CAS  Google Scholar 

  194. Kapur RP, Sweetser DA, Doggett B, Siebert JR, Palmiter RD (1995) Intercellular signals downstream of endothelin receptor-B mediate colonization of the large intestine by enteric neuroblasts. Development 121:3787–3795

    PubMed  CAS  Google Scholar 

  195. Lahav R, Ziller C, Dupin E, Le Douarin NM (1996) Endothelin 3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc Natl Acad Sci U S A 93:3892–3897

    PubMed  CAS  Google Scholar 

  196. Rothman TP, Goldowitz D, Gershon MD (1993) Inhibition of migration of neural crest-derived cells by the abnormal mesenchyme of the presumptive aganglionic bowel of ls/ls mice: analysis with aggregation and interspecies chimeras. Dev Biol 159:559–573

    PubMed  CAS  Google Scholar 

  197. Rothman TP, Gershon MD (1984) Regionally defective colonization of the terminal bowel by the precursors of enteric neurons in lethal spotted mutant mice. Neuroscience 12:1293–1311

    PubMed  CAS  Google Scholar 

  198. Rothman TP, Tennyson VM, Gershon MD (1986) Colonization of the bowel by the precursors of enteric glia: studies of normal and congenitally aganglionic mutant mice. J Comp Neurol 252:493–506

    PubMed  CAS  Google Scholar 

  199. Jacobs-Cohen RJ, Payette RF, Gershon MD, Rothman TP (1987) Inability of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice: requirement for a permissive microenvironment. J Comp Neurol 255:425–438

    PubMed  CAS  Google Scholar 

  200. Payette RF, Tennyson VM, Pomeranz HD, Pham TD, Rothman TP, Gershon MD (1988) Accumulation of components of basal laminae: association with the failure of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice. Dev Biol 125:341–360

    PubMed  CAS  Google Scholar 

  201. Tennyson VM, Payette RF, Rothman TP, Gershon MD (1990) Distribution of hyaluronic acid and chondroitin sulfate proteoglycans in the presumptive aganglionic terminal bowel of ls/ls fetal mice: an ultrastructural analysis. J Comp Neurol 291:345–362

    PubMed  CAS  Google Scholar 

  202. Rothman TP, Chen J, Howard MJ, Costantini FD, Pachnis V, Gershon MD (1996) Increased expression of laminin-1 and collagen (IV) subunits in the aganglionic bowel of ls/ls, but not c-ret −/− mice. Dev Biol 178:498–513

    PubMed  CAS  Google Scholar 

  203. Parikh DH, Tam PKH, VanVelzen D, Edgar D (1992) Abnormalities in the distribution of laminin and collagen type IV in Hirschsprung’s disease. Gastroenterology 102:1236–1241

    PubMed  CAS  Google Scholar 

  204. Parikh DH, Leibl M, Tam PK, Edgar D (1995) Abnormal expression and distribution of nidogen in Hirschsprung’s disease. J Pediatr Surg 30:1687–1693

    PubMed  CAS  Google Scholar 

  205. Tucker GC, Ciment G, Thiery J-P (1986) Pathways of avian neural crest cell migration in the developing gut. Dev Biol 116:439–450

    PubMed  CAS  Google Scholar 

  206. Pomeranz HD, Gershon MD (1990) Colonization of the avian hindgut by cells derived from the sacral neural crest. Dev Biol 137:378–394

    PubMed  CAS  Google Scholar 

  207. Pomeranz HD, Sherman DL, Smalheiser NR, Tennyson VM, Gershon MD (1991) Expression of a neurally related laminin binding protein by neural crest-derived cells that colonize the gut: relationship to the formation of enteric ganglia. J Comp Neurol 313:625–642

    PubMed  CAS  Google Scholar 

  208. Oakley RA, Lasky CJ, Erickson CA, Tosney KW (1994) Glycoconjugates mark a transient barrier to neural crest migration in the chicken embryo. Development 120:103–114

    PubMed  CAS  Google Scholar 

  209. Erickson CA, Duong TD, Tosney KW (1992) Descriptive and experimental analysis of the dispersion of neural crest cells along the dorsolateral path and their entry into ectoderm in the chick embryo. Dev Biol 151:251–272

    PubMed  CAS  Google Scholar 

  210. Rickmann M, Fawcett JW, Keynes RJ (1985) The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 90:437–455

    PubMed  CAS  Google Scholar 

  211. Norris WE, Stern CD, Keynes RJ (1989) Molecular differences between the rostral and caudal halves of the scle­rotome in the chick embryo. Development 105:541–548

    PubMed  CAS  Google Scholar 

  212. Keynes RJ, Johnson AR, Picart CJ, Dunin-Borkowski OM, Cook GMW (1990) A glycoprotein fraction from adult chicken grey matter causes collapse of CNS and PNS growth cones in vitro. Neuroscience Abstract 16:169

    Google Scholar 

  213. Pettway Z, Guillory G, Bronner-Fraser M (1990) Absence of neural crest cells from the region surrounding notochords in situ. Dev Biol 142:335–345

    PubMed  CAS  Google Scholar 

  214. Oakley RA, Tosney KW (1991) Peanut agglutinin and chrondroitin-6-sulfate are molecular markers for tissues that act as barrier to axon advance in the avian embryo. Dev Biol 147:187–206

    PubMed  CAS  Google Scholar 

  215. Miura H, Ohi R, Tseng SW, Takahashi T (1996) The structure of the transitional and aganglionic zones of Auerbach’s plexus in patients with Hirschsprung’s disease: a computer-assisted three-dimensional reconstruction study. J Pediatr Surg 31:420–426

    PubMed  CAS  Google Scholar 

  216. Lallier T, Bronner-Fraser M (1991) Avian neural crest cell attachment to laminin: involvement of divalent cation dependent and independent integrins. Development 113:1069–1084

    PubMed  CAS  Google Scholar 

  217. Bilozur ME, Hay ED (1988) Neural crest migration in 3D extracellular matrix utilizes laminin, fibronectin, or collagen. Dev Biol 125:19–33

    PubMed  CAS  Google Scholar 

  218. Bronner-Fraser M (1985) Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J Cell Biol 101:610–617

    PubMed  CAS  Google Scholar 

  219. Bronner-Fraser M (1986) An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest development in vivo. Dev Biol 117:528–536

    PubMed  CAS  Google Scholar 

  220. Bronner-Fraser M, Lallier T (1988) A monoclonal antibody against a laminin-heparan sulfate proteoglycan complex perturbs cranial neural crest migration in vivo. J Cell Biol 106:1321–1329

    PubMed  CAS  Google Scholar 

  221. Engvall E, Davis GE, Dickerson K, Ruoslahti E, Varon S, Manthorpe M (1986) Mapping of domains in human laminin using monoclonal antibodies: localization of the neurite-promoting site. J Cell Biol 103:2457–2465

    PubMed  CAS  Google Scholar 

  222. Kleinman HK, Ogle RC, Cannon FB, Little CD, Sweeney TM, Luckenbill-Edds L (1988) Laminin receptors for neurite formation. Proc Natl Acad Sci U S A 85:1282–1286

    PubMed  CAS  Google Scholar 

  223. Lander AD, Fujii DK, Reichardt LF (1985) Laminin is associated with the neurite outgrowth-promoting factors found in conditioned media. Proc Natl Acad Sci U S A 82:2183–2187

    PubMed  CAS  Google Scholar 

  224. Liesi P, Narvanen A, Soos J, Sariola H, Snounou G (1989) Identification of a neurite outgrowth-promoting domain of laminin using synthetic peptides. FEBS Lett 244:141–148

    PubMed  CAS  Google Scholar 

  225. Manthorpe M, Engvall E, Ruoslahti E, Longo FM, Davis GE, Varon S (1983) Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J Cell Biol 97:1882–1890

    PubMed  CAS  Google Scholar 

  226. Calof AL, Reichardt LF (1985) Response of purified chick motoneurons to myotube conditioned medium: laminin is essential for the substratum-binding neurite outgrowth-promoting activity. Neurosci Lett 59:183–189

    PubMed  CAS  Google Scholar 

  227. Stemple D, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71:973–985

    PubMed  CAS  Google Scholar 

  228. Gershon MD, Chalazonitis A, Blaugrund E, Tennyson VM, Rothman TP (1993) Laminin and neurotrophin-3 (NT-3) in the formation of the enteric nervous system. Anat Rec Suppl 1:54

    Google Scholar 

  229. Tennyson VM, Chalazonitis A, Kibbey MC, Gershon MD (1995) Laminin-1 stimulates a cell surface receptor (LBP110) to promote the differentiation of enteric neurons in vitro independently of its role as an adhesion molecule. Neuroscience Abstract 21:788

    Google Scholar 

  230. Chalazonitis A, Tennyson VM, Rothman TP, Gershon MD (1992) Selective isolation of neural and glial precursors from the developing murine bowel with antibodies to a 110 kDa cell surface laminin binding protein. Neuroscience Abstract 18:1109

    Google Scholar 

  231. Douville PJ, Harvey WJ, Carbonetto S (1988) Isolation and partial characterization of high affinity laminin receptors in neural cells. J Biol Chem 263:14964–14969

    PubMed  CAS  Google Scholar 

  232. Kleinman HK, Weeks BS (1989) Laminin: structure functions and receptors. Curr Sci 1:964–967

    CAS  Google Scholar 

  233. Jucker M, Kleinman HK, Walker LC, Bialobok P, Williams LR, Ingram DK (1991) Localization and characterization of a 110 KD laminin binding protein immunoreactivity in adult and lesioned brain. Neuroscience Abstract 17:207

    Google Scholar 

  234. Kibbey MC, Jucker M, Weeks BS, Neve RL, VanNostrand WE, Kleinman HK (1993) beta-Amyloid precursor protein binds to the neurite-promoting IKVAV site of laminin. Proc Natl Acad Sci U S A 90:10150–10153

    PubMed  CAS  Google Scholar 

  235. Kleinman HK, Weeks BS, Cannon FB, Sweeney TM, Sephel GC, Clement B, et al (1991) Identification of a 110 Kd nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide. Arch Biochem Biophys 290:320–325

    PubMed  CAS  Google Scholar 

  236. Sephel GC, Tashiro K, Sasaki M, Kandel S, Yamada Y, Kleinman HK (1989) A laminin-pepsin fragment with cell attachment and neurite outgrowth activity at distinct sites. Dev Biol 135:172–181

    PubMed  CAS  Google Scholar 

  237. Sephel GC, Tashiro K, Kleinman HK, Sasaki M, Yamada Y, Martin GR (1989) A laminin A chain synthetic peptide with neurite outgrowth activity. Biochem Biophys Res Commun 162:821–829

    PubMed  CAS  Google Scholar 

  238. Bresalier RS, Schwartz B, Kim YS, Duh QY, Kleinman HK, Sullam PM (1995) The laminin alpha 1 chain Ile-Lys-Val-Ala-Val (IKVAV)-containing peptide promotes liver colonization by human colon cancer cells. Cancer Res 55:2476–2480

    PubMed  CAS  Google Scholar 

  239. Corcoran ML, Kibbey MC, Kleinman HK, Wahl LM (1995) Laminin SIKVAV peptide induction of monocyte/macrophage prostaglandin E2 and matrix metalloproteinases. J Biol Chem 270:10365–10368

    PubMed  CAS  Google Scholar 

  240. Haralabopoulos GC, Grant DS, Kleinman HK, Lelkes PI, Papaioannou SP, Maragoudakis ME (1994) Inhibitors of basement membrane collagen synthesis prevent endothelial cell alignment in matrigel in vitro and angiogenesis in vivo. Lab Invest 71:575–582

    PubMed  CAS  Google Scholar 

  241. Kibbey MC, Corcoran ML, Wahl LM, Kleinman HK (1994) Laminin SIKVAV peptide-induced angiogenesis in vivo is potentiated by neutrophils. J Cell Physiol 160:185–193

    PubMed  CAS  Google Scholar 

  242. Nomizu M, Weeks BS, Weston CA, Kim WH, Kleinman HK, Yamada Y (1995) Structure-activity study of a laminin alpha 1 chain active peptide segment Ile-Lys-Val-Ala-Val (IKVAV). FEBS Lett 365:227–231

    PubMed  CAS  Google Scholar 

  243. Weeks BS, Holloway E, Klotman PE, Akiyama SK, Schnaper HW, Kleinman HK (1994) 12-O-tetradecanoylphorbol 13-acetate stimulates human T-lymphocyte adherence to the fibronectin RGD domain and the laminin IKVAV domain. Cell Immunol 153:94–104

    PubMed  CAS  Google Scholar 

  244. Stemple DL, Anderson DJ (1993) Lineage diversification of the neural crest: in vitro investigations. Dev Biol 159:12–23

    PubMed  CAS  Google Scholar 

  245. Erickson CA, Loring JF, Lester SM (1989) Migratory pathways of HNK-1-immunoreactive neural crest cells in the rat embryo. Dev Biol 134:112–118

    PubMed  CAS  Google Scholar 

  246. Martins-Green M, Erickson CA (1987) Basal lamina is not a barrier to neural crest emigration: documentation by TEM and by immunofluorescent and immunogold labelling. Development 101:517–533

    PubMed  CAS  Google Scholar 

  247. Okabe H, Chijiiwa Y, Nakamura K, Yoshinaga M, Akihi H, Harada N, et al (1995) Two endothelin receptors (ETA and ETB) expressed on circular smooth muscle cells of guinea pig cecum. Gastroenterology 108:51–57

    PubMed  CAS  Google Scholar 

  248. Yoshinaga M, Chijiiwa Y, Misawa T, Harada N, Nawata H (1992) Endothelin-B receptor on guinea small intestinal smooth muscle cells. Am J Physiol 25:G308–G311

    Google Scholar 

  249. Vanderwinden JM, Rumessen JJ, Liu H, Descamps D, De Laet MH, Vanderhaeghen JJ (1996) Interstitial cells of Cajal in human colon and in Hirschsprung’s disease. Gastroenterology 111:901–910

    PubMed  CAS  Google Scholar 

  250. Yamataka A, Kato Y, Tibboel D, Murata Y, Sueyoshi N, Fujimoto T, et al (1995) A lack of intestinal pacemaker (c-kit) in aganglionic bowel of patients with Hirschsprung’s dis­ease. J Pediatr Surg 30:441–444

    PubMed  CAS  Google Scholar 

  251. Torihashi S, Ward SM, Sanders KM (1997) Development of c-kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112:144–155

    PubMed  CAS  Google Scholar 

  252. Kobayashi S, Furness JB, Smith TK, Pompolo S (1989) Histological identification of the interstitial cells of Cajal in the guinea-pig small intestine. Arch Histol Cytol 52:267–286

    PubMed  CAS  Google Scholar 

  253. Cook RD, Burnstock G (1976) The ultrastructure of Auerbach’s plexus in the guinea-pig. II. Non-neuronal elements. J Neurocytol 5:195–206

    PubMed  CAS  Google Scholar 

  254. Faussone-Pellegrini MS (1985) Cytodifferentiation of the interstitial cells of Cajal related to the myenteric plexus of mouse intestinal coat. Acta Embryol 171:163–169

    CAS  Google Scholar 

  255. Torihashi S, Kobayashi S, Gerthoffer WT, Sanders KM (1993) Interstitial cells in deep muscular plexus of canine small intestine may be specialized smooth muscle cells. Am J Physiol 265:G638–G645

    PubMed  CAS  Google Scholar 

  256. Ward SM, Burns AJ, Torihashi S, Sanders KM (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480:91–97

    PubMed  CAS  Google Scholar 

  257. Huizinga JD, Thuneberg L, Klüppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349

    PubMed  CAS  Google Scholar 

  258. Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM (1995) c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res 280:97–111

    PubMed  CAS  Google Scholar 

  259. Ward SM, Burns AJ, Torishashi S, Sanders KM (1995) Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am J Physiol 269:C1577–C1585

    PubMed  CAS  Google Scholar 

  260. Besmer P (1991) The kit ligand encoded at the murine Steel locus: a pleiotrophic growth and differentiation factor. Curr Opin Cell Biol 3:939–946

    PubMed  CAS  Google Scholar 

  261. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, et al (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116:369–375

    PubMed  CAS  Google Scholar 

  262. Wu J, Rothman TP, Gershon MD (1996) Development of interstitial cells of Cajal in the mouse gut: requirement for Kit ligand (KL). Neuroscience Abstract 22:31

    Google Scholar 

  263. Tsuzuki, T, Takayashi M, Asai N, Iwashita T, Matusyama M, Asai J (1995) Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant, and adult rat tissues. Oncogene 10:191–198

    PubMed  CAS  Google Scholar 

  264. Lecoin L, Gabella G, Le Douarin N (1996) Origin of the c-kit-positive interstitial cells in the avian bowel. Development 122:725–733

    PubMed  CAS  Google Scholar 

  265. Miyazawa K, Williams DA, Gotoh A, Nishimaki J, Broxmeyer HE, Toyama K (1995) Membrane-bound steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood 85:641–649

    PubMed  CAS  Google Scholar 

  266. Wehrle-Haller B, Weston J (1995) Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121:731–742

    PubMed  CAS  Google Scholar 

  267. Angrist M, Bolk S, Thiel B, Puffenberger EG, Hofstra RM, Buys CH, et al (1995) Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung disease. Hum Mol Genet 4:821–830

    PubMed  CAS  Google Scholar 

  268. Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, et al (1994) Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:378–380

    PubMed  CAS  Google Scholar 

  269. Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, et al (1994) Point mutations affect the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:377–378

    PubMed  CAS  Google Scholar 

  270. Pasini B, Borrello M, Greco A, Bongarzone I, Luo Y, Mondellini P, et al (1995) Loss of function effect of RET mutations causing Hirschsprung disease. Nat Genet 10:35–40

    PubMed  CAS  Google Scholar 

  271. Borrello MG, Smith DP, Pasini B, Bongarzone I, Greco A, Lorenzo MJ, et al (1995) RET activation by germline MEN2A and MEN2B mutations. Oncogene 11:2419–2427

    PubMed  CAS  Google Scholar 

  272. Hofstra RM, Osinga J, Tan-Sindhunata G, Wu Y, Kamsteeg EJ, Stulp RP, et al (1996) A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). Nat Genet 12:445–447

    PubMed  CAS  Google Scholar 

  273. Edery P, Attie T, Amiel J, Pelet A, Eng C, Hofstra RM, et al (1996) Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet 12:442–444

    PubMed  CAS  Google Scholar 

  274. Fujimoto T, Hata J, Yokoyama S, Mitomi T (1989) A study of the extracellular matrix protein as the migration path­way of neural crest cells in the gut: analysis in human embryos with specific reference to the pathogenesis of Hirschsprung’s disease. J Pediatr Surg 24:550–556

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gershon, M. (2008). Functional Anatomy of the Enteric Nervous System. In: Holschneider, A., Puri, P. (eds) Hirschsprung's Disease and Allied Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33935-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33935-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33934-2

  • Online ISBN: 978-3-540-33935-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics