Skip to main content

Abstract

The enteric nervous system (ENS) is the largest and the most complex division of the peripheral nervous system [1]. The ENS contains more neurons than the spinal cord and is capable of mediating reflex activity in the absence of central nervous system. About 80–100 million enteric neurons can be classified into functional distinct subpopulations, including intrinsic primary neurons, interneurons, motor neurons, secretomotor and vasomotor neurons [2]. The ENS plays a crucial role in normal gastrointestinal motility. Therefore insights into the development of the gastrointestinal tract and the ENS are relevant for the understanding of the pathophysiology and treatment of infants and children with motility disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gershon MD, Jerde SM (1981) The nervous system of the gut. Gastroenterology 80:1571–1594

    PubMed  CAS  Google Scholar 

  2. Furness JB, Clere N, Vogalis F, Stebbing MJ (2003) The enteric nervous system and its extrinsic connections. In: Yamada T, Alpers DH (eds) Textbook of gastroenterology. Lippincott Williams & Wilkins, Philadelphia, pp 13–34

    Google Scholar 

  3. Montgomery RK, Mulberg AE, Grand RJ (1999) Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 116:702–731

    Article  PubMed  CAS  Google Scholar 

  4. Bates MD (2002) Development of the enteric nervous system. Clin Perinatol 29:97–114

    Article  PubMed  CAS  Google Scholar 

  5. Rolle U, Nemeth L, Puri P (2002) Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg 36:551–567

    Article  Google Scholar 

  6. Puri P, Ohsiro K, Wester T (1998) Hirschsprung’s disease: a search for etiology. Semin Pediatr Surg 7:140–147

    PubMed  CAS  Google Scholar 

  7. Amiel J, Lyonnet S (2001) Hirschsprung’s, associated syndromes and genetics: a review. J Med Genet 38:729–739

    Article  PubMed  CAS  Google Scholar 

  8. Gershon MD, Chalazonitis A, Rothman TP (1993) From neural crest to bowel: development of the enteric nervous system. J Neurobiol 24:199–214

    Article  PubMed  CAS  Google Scholar 

  9. Goyal RK, Hirano I (1996) The enteric nervous system. N Engl J Med 334:1106–1115

    Article  PubMed  CAS  Google Scholar 

  10. Gershon MD (1999) The enteric nervous system: a second brain. Hosp Pract (Minneap) 34:31–2, 35–8, 41–2

    CAS  Google Scholar 

  11. Yntma CL, Hammond WS (1954) The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 101:515–541

    Article  Google Scholar 

  12. Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30:31–48

    PubMed  Google Scholar 

  13. Pomeranz HD, Gershon MD (1990) Colonization of the avian hindgut by cells derived from the sacral neural crest. Dev Biol 137:378–394

    Article  PubMed  CAS  Google Scholar 

  14. Burns AJ, Le Duoarin NM (1998) The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125:4335–4347

    PubMed  CAS  Google Scholar 

  15. Caniano DA, Ormsbee HS III, Polito W (1985) Total intestinal aganglionosis. J Pediatr Surg 20:456–460

    Article  PubMed  CAS  Google Scholar 

  16. Gariepy CE (2004) Developmental disorders of the enteric nervous system: genetic and molecular bases. J Pediatr Gastroenterol Nutr 39:5–11

    Article  PubMed  Google Scholar 

  17. Allan IJ, Newgreen DF (1980) The origin and differentiation of enteric neurons of the intestine of the fowl embryo. Am J Anat 157:137–154

    Article  PubMed  CAS  Google Scholar 

  18. Meijers JHC, Tibboel D, Van der Kamp AWM (1989) A model for aganglionosis in the chicken embryo. J Pediatr Surg 24:557–561

    Article  PubMed  CAS  Google Scholar 

  19. Kapur RP (2000) Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev Biol 227:146–155

    Article  PubMed  CAS  Google Scholar 

  20. Burns AJ, Champeval D, le Douarin NM (2000) Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev Biol 219:30–43

    Article  PubMed  CAS  Google Scholar 

  21. Young HM, Hearn CJ, Ciampoli D, Southwell BR, Brunet JF, Newgreen DF (1998) A single rostrocaudal colonization of the rodent intestine by enteric precursors is revealed by the expression of Phox2b, Ret, and p75 and by explants grown under the kidney capsule in organ culture. Dev Biol 202:67–84

    Article  PubMed  CAS  Google Scholar 

  22. Erickson CA, Goins TL (2000) Sacral neural crest cell migration to the gut is dependent upon migratory environment and not cell-autonomous migratory properties. Dev Biol 219:79–97

    Article  PubMed  CAS  Google Scholar 

  23. Serbedzija GN, Burgan S, Fraser SE, Bronner-Frases M (1991) Vital dye labelling demonstrates a sacral neural crest contribution to the enteric nervous system of chick and mouse embryo. Development 111:857–866

    PubMed  CAS  Google Scholar 

  24. Pomeranz HD, Rothman TP, Gershon MD (1991) Colonization of the postumbilical bowel by cells derived from the sacral neural crest: direct tracing of cell migration using an intercalating probe and replication-deficient retrovirus. Development 111:647–655

    PubMed  CAS  Google Scholar 

  25. Fujimoto T, Hata J, Yokoyama S, Mitomi T (1989) A study of the extracellular matrix protein as the migration path­way of neural crest cells in the gut: Analysis in human embryos with special reference to the pathogenesis of Hirschsprung’s disease. J Pediatr Surg 24:550–556

    Article  PubMed  CAS  Google Scholar 

  26. Le Douarin NM, Dupin E, Ziller C (1994) Genetic and epigenetic controls in neural crest development. Curr Opin Genet Dev 4:685–695

    Article  PubMed  Google Scholar 

  27. Taraviras S, Pachnis V (1999) Development of the mammalian enteric nervous system. Curr Opin Genet Dev 9:321–327

    Article  PubMed  CAS  Google Scholar 

  28. Young HM, Hearn CJ, Newgreen DF (2000) Embryology and development of enteric nervous system. Gut 47 [Suppl 4]:iv12–iv14

    Google Scholar 

  29. Young HM, Newgreen DF (2001) Enteric neural crest-derived cells: origin, identification, migration, and differentiation. Anat Rec 262:1–15

    Article  PubMed  CAS  Google Scholar 

  30. Rothman TP, Le Douarin NM, Fontaine-Perus JC, Gershon MD (1993) Colonization of the bowel by neural crest-derived cells migrating from foregut backtransplanted to vagal or sacral regions of host embryos. Dev Dyn 196:217–233

    PubMed  CAS  Google Scholar 

  31. Roman V, Bagyanszki M, Krecsmarik M, Horvath A, Resch BA, Fekete E (2004) Spatial pattern analysis of nitrergic neurons in the developing myenteric plexus of the human fetal intestine. Cytometry A 57:108–112

    Article  PubMed  CAS  Google Scholar 

  32. Matini P, Mayer B, Faussone-Pellegrini MS (1997) Neurochemical differentiation of rat enteric neurons during pre- and postnatal life. Cell Tissue Res 288:11–23

    Article  PubMed  CAS  Google Scholar 

  33. Brandt CT, Tam PKH, Gould SJ (1996) Nitrergic innervation of the human during early foetal development. J Pediatr Surg 31:661–664

    Article  PubMed  CAS  Google Scholar 

  34. Grand RJ, Watkins JB, Torti FM (1976) Development of the human gastrointestinal tract. A review. Gastroenterology 70:790–810

    PubMed  CAS  Google Scholar 

  35. Dumont RC, Rudolph CD (1994) Development of gastrointestinal motility in the infant and child. Gastroenterol Clin North Am 23:655–671

    PubMed  CAS  Google Scholar 

  36. Berseth CL, Nordyke CK (1992) Manometry can predict feeding readiness in preterm infants. Gastroenterology 103:1523–1528

    PubMed  CAS  Google Scholar 

  37. Gershon MDV (1998) Genes, lineages, and tissue interactions in the development of the enteric nervous system. Am J Physiol 275:G869–873

    PubMed  CAS  Google Scholar 

  38. Wester T, O’Briain S, Puri P (1998) Morphometric aspects of the submucous plexus in whole-mount preparations of normal human distal colon. J Pediatr Surg 33:619–622

    Article  PubMed  CAS  Google Scholar 

  39. Wester T, O’Briain S, Puri P (1999) Notable postnatal alterations in the myenteric plexus of normal human bowel. Gut 44:666–674

    Article  PubMed  CAS  Google Scholar 

  40. Wallace AS, Burns AJ (2005) Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res 319:367–382

    Article  PubMed  Google Scholar 

  41. Montgomery RK, Mulberg AE, Grand RJ (1999) Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 116:702–731

    Article  PubMed  CAS  Google Scholar 

  42. Gariepy CE (2000) Intestinal motility disorders and development of the enteric nervous system. Pediatr Res 49:605–613

    Article  Google Scholar 

  43. Parisi MA, Kapur RP (2000) Genetics of Hirschsprung’s disease. Curr Opin Pediatr 12:610–617

    Article  PubMed  CAS  Google Scholar 

  44. Passarge E (2002) Dissecting Hirschsprung’s disease. Nat Genet 31:11–12

    PubMed  CAS  Google Scholar 

  45. Newgreen D, Young HM (2002) Enteric nervous system: development and developmental disturbances part 1. Pediatr Dev Pathol 5:224–247

    PubMed  CAS  Google Scholar 

  46. Taraviras S, Pachnis V (1999) Development of the mammalian enteric nervous system. Curr Opin Genet Dev 9:321–327

    Article  PubMed  CAS  Google Scholar 

  47. Newgreen D, Young HM (2002) Enteric nervous system: development and developmental disturbances part 2. Pediatr Dev Pathol 5:329–349

    Article  PubMed  Google Scholar 

  48. Jing S, Wen D, Yu Y, Holst PJ, Fang M, Tamir R, et al (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 85:1113–1124

    Article  PubMed  CAS  Google Scholar 

  49. Jing S, Yu Y, Fang M, Hu Z, Holst PL, Boone T, et al (1997) GFRα-2 and GFRα-3 are two new receptors for ligands of the GDNF family. J Biol Chem 272:33111–33117

    Article  PubMed  CAS  Google Scholar 

  50. Schuchardt A, D’Agati V, Larsson-Blumberg L, Constantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383

    Article  PubMed  CAS  Google Scholar 

  51. Luo Y, Cecchernin I, Pasini B, Matera I, Bicochi MP, Barone V, et al (1993) Close linkage with the RET protooncogene and boundaries of deletion mutations in autosomal dominant Hirschsprung’s disease. Hum Mol Genet 2:1803–1808

    Article  PubMed  CAS  Google Scholar 

  52. Romeo G, Ronchetto P, Luo Y, Barone V, Seti M, Ceccherini I, et al (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s dis­ease. Nature 367:377–387

    Article  PubMed  CAS  Google Scholar 

  53. Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, et al (1994) Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:378–380

    Article  PubMed  CAS  Google Scholar 

  54. Kusafuka T, Puri P (1997) Altered RET gene mRNA expression in Hirschsprung’s disease. J Pediatr Surg 32:600–604

    Article  PubMed  CAS  Google Scholar 

  55. Kusafuka T, Puri P (1997) The RET proto-oncogene: a challenge to understanding of disease pathogenesis. Pediatr Surg Int 12:11–18

    Article  PubMed  CAS  Google Scholar 

  56. Martucciello G, Ceccherini I, Lerone M, Jasonni V (2000) Pathogenesis of Hirschsprung’s disease. J Pediatr Surg 35:1017–1025

    Article  PubMed  CAS  Google Scholar 

  57. Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A (1996) Embryonic expression of glial-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev 54:95–105

    Article  PubMed  CAS  Google Scholar 

  58. Worley DS, Pisano JM, Choi ED, Walus L, Hession CA, Cate RL, et al (2000) Developmental regulation of GDNF response and receptor expression in the enteric nervous system. Development 127:4383–4393

    PubMed  CAS  Google Scholar 

  59. Fock PJ, Schiltz CA, Jones SE (2001) Enteric neuroblasts require the phosphatidylinositol 3-kinase pathway for GDNF-stimulated proliferation. J Neurobiol 47:306–317

    Article  Google Scholar 

  60. Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF (2001) GDNF is a chemoattractant for enteric cells. Dev Biol 229:503–516

    Article  PubMed  CAS  Google Scholar 

  61. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, et al (1996) GDNF signaling through the ret receptor tyrosine kinase. Nature 381:789–793

    Article  PubMed  CAS  Google Scholar 

  62. Sanchez M, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    Article  PubMed  CAS  Google Scholar 

  63. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, et al (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    Article  PubMed  CAS  Google Scholar 

  64. Angrist M, Bolk S, Thiel B, Puffenberger EG, Hofstra RM, Buys CH, et al (1995) Mutations analysis of the RET receptor tyrosine kinase in Hirschsprung disease. Hum Mol Genet 4:821–830

    Article  PubMed  CAS  Google Scholar 

  65. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, et al (1994) Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79:1277–1285

    Article  PubMed  CAS  Google Scholar 

  66. Leibl MA, Ota T, Woodward MN, Kenny SE, Lloyd DA, Vaillant CR, et al (1999) Expression of endothelin-3 by mesenchymal cells of embryonic mouse caecum. Gut 44:246–252

    Article  PubMed  CAS  Google Scholar 

  67. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, et al (1994) Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79:1267–1276

    Article  PubMed  CAS  Google Scholar 

  68. Kusafuka T, Wang Y, Puri P (1997) Mutation analysis of the RET, endothelin-B receptor, and the endothelin-3 genes in sporadic cases of Hirschsprung’s disease. J Pediatr Surg 32:501–504

    Article  PubMed  CAS  Google Scholar 

  69. Kusafuka T, Wang Y, Puri P (1996) Novel mutations of the endothelin-B receptor gene in isolated patients with Hirschsprung’s disease. Hum Mol Genet 5:347–349

    Article  PubMed  CAS  Google Scholar 

  70. Kusafuka T, Puri P (1997) Mutations of the endothelin-B receptor and endothelin-3 genes in Hirschsprung’s disease. Pediatr Surg Int 12:19–23

    Article  PubMed  CAS  Google Scholar 

  71. Bidaud C, Salomon R, Pelet A, van Camp G, Attie T, Eng C, et al (1997) Endothelin-3 gene in isolated and syndromic Hirschsprung’s disease. Eur J Hum Genet 5:247–251

    PubMed  CAS  Google Scholar 

  72. Amiel J, Attie T, Jan D, Pelet A, Edery P, Bidaud C, et al (1996) Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung’s disease. Hum Mol Genet 5:355–357

    Article  PubMed  CAS  Google Scholar 

  73. Oue T, Puri P (1999) Altered endothelin-3 and endothelin-B receptor mRNA expression in Hirschsprung’s disease. J Pediatr Surg 34:1257–1260

    Article  PubMed  CAS  Google Scholar 

  74. Abe Y, Sakurai T, Yamada T, Nakamura T, Yanagisawa M, Goto K (2000) Functional analysis of five endothelin-B receptor mutations found in human Hirschsprung’s disease patients. Biochem Biophys Res Commun 275:524–531

    Article  PubMed  CAS  Google Scholar 

  75. Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, et al (1998) Dual genetic path­ways of endothelin-mediated intercellular signalling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125:825–836

    PubMed  CAS  Google Scholar 

  76. Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutations disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18:60–64

    Article  PubMed  CAS  Google Scholar 

  77. Kuhlbrodt K, Herbarth B, Sock E, Enderich J, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18:237–250

    PubMed  CAS  Google Scholar 

  78. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A, et al (1998) SOX 10 mutations in pa­tients with Waardenburg-Hirschsprung’s disease. Nat Genet 18:171–173

    Article  PubMed  CAS  Google Scholar 

  79. Kuhlbrodt M, Schmidt C, Sock E, Pingault V, Bondurand N, Goosssens M, et al (1998) Functional analysis of Sox 10 mutations found in human Waardenburgs-Hirschsprung’s disease. J Biol Chem 273:23033–23038

    Article  PubMed  CAS  Google Scholar 

  80. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124:4065–4075

    PubMed  CAS  Google Scholar 

  81. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivates. Nature 399:366–377

    Article  PubMed  CAS  Google Scholar 

  82. Hatano M, Aoki T, Dezawa M, Yusa S, Iitsuka Y, Koseki H, et al (1997) A novel pathogenesis of megacolon in NCX/HOX11L1 deficient mice. J Clin Invest 100:795–801

    Article  PubMed  CAS  Google Scholar 

  83. Shirasawa S, Yunker AMR, Roth KA, Brown GA, Horning S, et al (1997) ENX (HOX11L1) deficient mice develop myenteric neuronal hyperplasia and megacolon. Nat Med 3:646–650

    Article  PubMed  CAS  Google Scholar 

  84. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349

    Article  PubMed  CAS  Google Scholar 

  85. Wu JJ, Rothman TP, Gershon MD (2000) Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res 59:384–401

    Article  PubMed  CAS  Google Scholar 

  86. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, et al (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116:369–375

    PubMed  CAS  Google Scholar 

  87. Feldstein AE, Miller SM, El-Youssef, Rodeberg D, Lindor NM, Burgart LJ, et al (2003) Chronic intestinal pseudoob­struction associated with altered interstitial cells of Cajal networks. J Pediatr Gastroenterol Nutr 36:492–497

    Article  PubMed  Google Scholar 

  88. Hagger R, Finlayson C, Kahn F, De Oliveira R, Chimelli L, Kumar D (2000) A deficiency of interstitial cells of Cajal in Chagasic megacolon. J Auton Nerv Syst 80:108–111

    Article  PubMed  CAS  Google Scholar 

  89. Kenny S, Connell MG, Rintala RJ, Vaillant C, Edgar DH, Lloyd DA (1998) Abnormal colonic interstitial cells of Cajal in children with anorectal malformations. J Pediatr Surg 33:130–132

    Article  PubMed  CAS  Google Scholar 

  90. Rolle U, Piotrowska AP, Nemeth L, Puri P (2002) Altered distribution of interstitial cells of Cajal in Hirschsprung’s disease. Arch Pathol Lab Med 126:928–933

    PubMed  Google Scholar 

  91. Tong WD, Liu BH, Zhang LY, Zhang SB, Lei Y (2004) Decreased interstitial cells of Cajal in the sigmoid colon of patients with slow transit constipation. Int J Colorectal Dis 19:467–473

    Article  PubMed  Google Scholar 

  92. Rothman TP, Chen J, Howard MJ, Costantini F, Schuchardt A, Pachnis V, et al (1996) Increased expression of laminin-1 and collagen (IV) subunits in the aganglionic bowel of ls/ls, but not c-ret -/- mice. Dev Biol 178:498–513

    Article  PubMed  CAS  Google Scholar 

  93. Parikh DH, Tam PK, Van Velzen D, Edgar D (1994) The extracellular matrix components, tenascin and fibronectin, in Hirschsprung’s disease: an immunohistochemical study. J Pediatr Surg 29:1302–1306

    Article  PubMed  CAS  Google Scholar 

  94. Parikh DH, Leibl M, Tam PK, Edgar D (1995) Abnormal expression and distribution of nidogen in Hirschsprung’s disease. J Pediatr Surg 30:1687–1693

    Article  PubMed  CAS  Google Scholar 

  95. Puri P, Shinkai T (2004) Pathogenesis of Hirschsprung’s dis­ease and its variants: recent progress. Semin Pediatr Surg 13:18–24

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Puri, P., Rolle, U. (2008). Development of the Enteric Nervous System. In: Holschneider, A., Puri, P. (eds) Hirschsprung's Disease and Allied Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33935-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33935-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33934-2

  • Online ISBN: 978-3-540-33935-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics