Skip to main content

Immunohistochemical Studies

  • Chapter

Abstract

Several diagnostic methods are necessary in the examination of patients in whom Hirschsprung’s disease (HD) is suspected. These are clinical examination, contrast enema, anorectal manometry and rectal biopsy. It has been shown that rectal suction biopsies (RSB) have the highest sensitivity (93%) and specificity (100%) rates in diagnosing HD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Lorjin F, Reitsma JB, Voskuijl WP, Aronson DC, Ten Kate FJ, Smets AMJB, Taminiau JAJM, Benninga MA (2005) Diagnosis of Hirschsprung’s disease: a prospective, comparative accuracy study of common tests. J Pediatr 146:787–792

    Google Scholar 

  2. Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for cholinesterase. J Histochem Cytochem 12:219–221

    PubMed  CAS  Google Scholar 

  3. Lake BD, Puri P, Nixon HH, Claireaux AE (1978) Hirschsprung’s disease. An appraisal of histochemically demonstrated acetylcholinesterase activity in suction rectal biopsy specimens as an aid to diagnosis. Arch Pathol Lab Med 102:244–247

    PubMed  CAS  Google Scholar 

  4. Athow AC, Filipe MI, Drake DP (1990) Problems and advantages of acetylcholinesterase histochemistry of rectal suction biopsies in the diagnosis of Hirschsprung’s disease. J Pediatr Surg 25:520–526

    PubMed  CAS  Google Scholar 

  5. Moore SW, Johnson G (2005) Acetylcholinesterase in Hirschsprung’s disease. Pediatr Surg Int 21:255–263

    PubMed  CAS  Google Scholar 

  6. Marangos PJ, Zomzely-Neurath C, York C (1975) Immunological studies of a nerve specific protein. Arch Biochem Biophys 170:289–293

    PubMed  CAS  Google Scholar 

  7. Pickel VM, Reis DJ, Marangos PJ, Zomzely-Neurath C (1976) Immunocytochemical localization of nervous system specific protein (NSP-R) in rat brain. Brain Res 105:184–187

    PubMed  CAS  Google Scholar 

  8. Marangos PJ (1987) Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci 10:269–295

    PubMed  CAS  Google Scholar 

  9. Hall CL, Lampert PW (1985) Immunohistochemistry as an aid in the diagnosis of Hirschsprung’s disease. Am J Clin Pathol 83:177–181

    PubMed  CAS  Google Scholar 

  10. Barshack I, Fridman E, Goldberg I, Chowers Y, Kopolovic J (2004) The loss of calretinin expression indicates aganglionosis in Hirschsprung’s disease. J Clin Pathol 57:712–716

    PubMed  CAS  Google Scholar 

  11. Vinores SA, May E (1985) Neuron-specific enolase as an immunohistochemical tool for the diagnosis of Hirschsprung’s disease. Am J Surg Pathol 9:281–285

    PubMed  CAS  Google Scholar 

  12. Sams VR, Bobrow LG, Happerfield L, Keeling J (1992) Evaluation of PGP9.5 in the diagnosis of Hirschsprung’s disease. J Pathol 168:55–58

    PubMed  CAS  Google Scholar 

  13. Dzienis-Koronkiewicz E, Debek W, Sulkowska M, Chyczewski L (2002) Suitability of selected markers for identification of elements of the intestinal nervous system (INS). Eur J Pediatr Surg 12:397–401

    PubMed  CAS  Google Scholar 

  14. Petchasuwan C, Pintong J (2000) Immunohistochemistry for intestinal ganglion cells and nerve fibres: aid in the diagnosis of Hirschsprung’s disease. J Med Assoc Thai 83:1402–1409

    PubMed  CAS  Google Scholar 

  15. Oh JT, Han A, Yang WI, Han SJ, Choi SH, Hwang EH (2002) Morphometric evaluation of PGP9.5 and NCAM expressing nerve fibres in colonic muscle of patients with Hirschsprung’s disease. Yonsei Med J 43:31–36

    PubMed  Google Scholar 

  16. Watanabe Y, Ito F, Ando H, Seo T, Kaneko K, Harada T, Iino S (1999) Morphological investigation of the enteric nervous system in Hirschsprung’s disease and hypogan­glionosis using whole-mount colon preparation. J Pediatr Surg 34:445–449

    PubMed  CAS  Google Scholar 

  17. Kirschke H, Wiederanders B (1987) Lysosomal proteinases. Acta Histochem 82:2–4

    PubMed  CAS  Google Scholar 

  18. Abu-Alfa AK, Kuan SF, West AB, Reyes-Mugica M (1997) Cathepsin D in intestinal ganglion cells: a potential aid to diagnosis in suspected Hirschsprung’s disease. Am J Surg Pathol 21:201–205

    PubMed  CAS  Google Scholar 

  19. Vannucchi MG, Midrio P, Zardo C, Faussone-Pellegrini (2004) Neurofilament formation and synaptic activity are delayed in the myenteric neurons of the rat fetus with gastroschisis. Neurosci Lett 364:81–85

    PubMed  CAS  Google Scholar 

  20. Dahl D (1988) Early and late appearance of neurofilament phosphorylated epitopes in rat nervous system development: in vivo and in vitro study with monoclonal antibodies. J Neurosci Res 20:431–441

    PubMed  CAS  Google Scholar 

  21. Tohyama T, Lee VMY, Rorke LB, et al (1991) Molecular milestones that signal axonal maturation and the commitment of human spinal cord precursor cells to the neuronal or glial phenotype in development. J Comp Neurol 310:1–15

    Google Scholar 

  22. Kluck P, van Muijen GN, van der Kamp AW, Tibboel D, van Hoorn WA, Warnaar SO, Molenaar JC (1984) Hirschsprung’s disease studied with monoclonal antineurofilament antibodies on tissue sections. Lancet 24:642–654

    Google Scholar 

  23. Luider TM, van Dommelen MW, Tibboel D, Meijers JHC, Ten Kate FJW, Trojanowski JQ, et al (1992) Differences in phosphorylation state of neurofilament proteins in gan­glionic and aganglionic bowel segments of children with Hirschsprung’s disease. J Pediatr Surg 27:815–819

    PubMed  CAS  Google Scholar 

  24. Deguchi E, Iwai N, Goto Y, Yanagihara J, Fushiki S (1993) An immunohistochemical study of neurofilament and microtubule-associated Tau protein in the enteric innervation in Hirschsprung’s disease. J Pediatr Surg 28:886–890

    PubMed  CAS  Google Scholar 

  25. Gorham JD, Baker H, Kegler D, Ziff EB (1990) The expression of the neuronal intermediate filament protein peripherin in the rat embryo. Dev Brain Res 57:235–248

    CAS  Google Scholar 

  26. Solari V, Piaseczna Piotrowska A, Puri P (2003) Histopathological differences between recto-sigmoid Hirschsprung’s disease and total colonic aganglionosis. Pediatr Surg Int 19:349–354

    PubMed  CAS  Google Scholar 

  27. Tam PKH, Boyd GP (1990) Origin, course, and endings of abnormal enteric nerve fibres in Hirschsprung’s disease defined by whole-mount immunohistochemistry. J Pediatr Surg 25:457–461

    PubMed  CAS  Google Scholar 

  28. Faussone-Pellegrini MS, Matini P, DeFelici M (1999) The cytoskeleton of the myenteric neurons during murine embryonic life. Anat Embryol 199:459–469

    PubMed  CAS  Google Scholar 

  29. Tam PK, Owen G (1993) An Immunohistochemical study of neuronal microtubule-associated proteins in Hirschsprung’s disease. Hum Pathol 24:424–431

    PubMed  CAS  Google Scholar 

  30. Wattchow DA, Porter AJ, Brookes SJ, et al (1997) The polarity of neurochemically defined myenteric neurons in the human colon. Gastroenterology 113:487–506

    Google Scholar 

  31. Eledman GM (1985) Cell adhesion and the molecular processes of morphogenesis. Am Rev Biochem 54:135–169

    Google Scholar 

  32. Tosney KW, Watanabe M, Landmesser L, et al (1986) The distribution of NCAM in the chick hind limb during axon outgrowth and synaptogenesis. Dev Biol 114:437–452

    PubMed  CAS  Google Scholar 

  33. Kobayashi H, O’Briain DS, Puri P (1994) Lack of expression of NADPH-diaphorase and neural cells adhesion molecule (NCAM) in colonic muscle of patients with Hirschsprung’s disease. J Pediatr Surg 29:301–304

    PubMed  CAS  Google Scholar 

  34. Kobayashi H, Hirikawa H, Puri P (1996) Abnormal internal anal sphincter innervation in patients with Hirschsprung’s disease and allied disorders. J Pediatr Surg 31:794–799

    PubMed  CAS  Google Scholar 

  35. Nogueira A, Campos M, Soares-Oliveira M, Estevao-Costa J, Silva P, Carneiro F, Carvalho JL (2001) Histochemical and immunohistochemical study of the intrinsic innervation in colonic dysganglionosis. Pediatr Surg Int 17:144–151

    PubMed  CAS  Google Scholar 

  36. Doi T, Kobayashi H, Yamataka A, Lane GF, Miyano T (2005) Complete innervation profile of whole bowel resected at pull-through for Hirschsprung’s disease. Unexpected findings. Pediatr Surg Int 21:889–898

    PubMed  Google Scholar 

  37. Barde YA, Edgar D, Thoenen H (1980) Sensory neurons in culture: changing requirements for survival factors during development. Proc Natl Acad Sci U S A 77:1199–1204

    PubMed  CAS  Google Scholar 

  38. Barde YA (1989) Trophic factors and neuronal survival. Neuron 2:1525–1534

    PubMed  CAS  Google Scholar 

  39. Hefti F, Hartikka J, Salvatierra A, et al (1986) Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neurosci Lett 69:37–41

    PubMed  CAS  Google Scholar 

  40. Kordower JH, Bartus RT, Bothwell M, et al (1988) Nerve growth factor receptor immunoreactivity in the nonhuman primate (Cebus apella): distribution, morphology, and colocalization with cholinergic enzymes. J Comp Neurol 277:465–486

    PubMed  CAS  Google Scholar 

  41. Koliatsos VE, Clatterbuck RE, Nauta HW, et al (1991) Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann Neurol 30:831–840

    PubMed  CAS  Google Scholar 

  42. Thoenen H, Barde YA (1980) Physiology of nerve growth factor. Phys Rev 60:1284–1335

    CAS  Google Scholar 

  43. Piaseczna-Piotrowska A, Solari V, Puri P (2003) Distribution of Ca2+-activated K+ channels, SK2 and SK3, in the normal and Hirschsprung’s disease bowel. J Pediatr Surg 36:978–983

    Google Scholar 

  44. Park SH, Min H, Chi JG, Park KW, Yang HR, Seo JK (2005) Immunohistochemical studies of pediatric intestinal pseudo-obstruction. Bcl2, a valuable biomarker to detect immature enteric ganglion cells. Am J Surg Pathol 29:1017–1024

    PubMed  Google Scholar 

  45. Debas HT, Mulvihill SJ (1991) Neuroendocrine design of the gut. Am J Surg 161:243–249

    PubMed  CAS  Google Scholar 

  46. Isaacs PET, Corbett CL, Riley AK, Hawker PC, Turnberg LA (1976) In vitro behaviour of acetyl choline ion transport. J Clin Invest 58:535–542

    PubMed  CAS  Google Scholar 

  47. Mackenzie JM, Dixon MF (1987) An immunohistochemical study of the enteric neural plexi in Hirschsprung’s disease. Histopathology 11:1055–1066

    PubMed  CAS  Google Scholar 

  48. Costa M, Furness JB, Llewellyn-Smith IJ (1987) Histochemistry of the enteric nervous system. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1–40

    Google Scholar 

  49. Bleys RLA, Groen GJ, Matthijssen MAH (1994) A method for identifying peripheral connections of perivascular nerves based on sensitive acetylcholinesterase staining via perfusion. J Histochem Cytochem 42:223–230

    PubMed  CAS  Google Scholar 

  50. Schemann M, Sann H, Schaaf C, Mader M (1993) Identification of cholinergic neurons in enteric nervous system by antibodies against choline acetyltransferase. Am J Physiol 265:G1005–1009

    PubMed  CAS  Google Scholar 

  51. Schemann M, Schaaf C, Mader M (1995) Neurochemical coding of enteric neurons in the guinea pig stomach. J Comp Neurol 353:161–178

    PubMed  CAS  Google Scholar 

  52. Mann PT, Furness JB, Pompolo S, Mader M (1995) Chemical coding of neurons that project from different regions of intestine to the coeliac ganglion of the guinea pig. J Autonom Nerv Syst 56:15–25

    CAS  Google Scholar 

  53. Ratcliffe EM, deSa DJ, Dixon MF, Stead RH (1998) Choline acetyltransferase (ChAT) immunoreactivity in paraffin sections of normal and diseased intestines. J Histochem Cytochem 46:1223–1231

    PubMed  CAS  Google Scholar 

  54. Nakajima K, Tooyama I, Yasuhara O, Aimi Y, Kimura H (2000) Immunohistochemical demonstration of choline acetyltransferase of a peripheral type (pChAT) in the enteric nervous system of rats. J Chem Neuroanat 18:31–40

    PubMed  CAS  Google Scholar 

  55. Beschorner R, Mittelbronn M, Bekure K, Meyermann R (2004) Problems in fast intraoperative diagnosis in Hirschsprung’s disease. Folia Neuropathol 42:191–195

    PubMed  Google Scholar 

  56. Anlauf M, Schäfer MKH, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459:90–111

    PubMed  CAS  Google Scholar 

  57. Porter AJ, Wattchow DA, Brookes SJ, Schemann M, Costa M (1996) Choline acetyltransferase immunoreactivity in the human small and large intestine. Gastroenterology 111:401–408

    PubMed  CAS  Google Scholar 

  58. Larsson LT, Malmfors G, Ekblad E, Ekman R, Sundler F (1991) NPY hyperinnervation in Hirschsprung’s disease: both adrenergic and nonadrenergic fibers contribute. J Pediatr Surg 26:1207–1214

    PubMed  CAS  Google Scholar 

  59. Shen Z, Larsson LT, Malmfors G, Oberg K, Eriksson B, Sundler F (1994) Chromogranin A and B on neuronal elements in Hirschsprung’s disease: an immunocytochemical and radioimmunoassay study. J Pediatr Surg 29:1293–1301

    PubMed  CAS  Google Scholar 

  60. Takahashi T (2003) Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol 38:421–430

    PubMed  CAS  Google Scholar 

  61. Guo R, Nada O, Suita S, Taguchi T, Masumoto K (1997) The distribution and co-localization of nitric oxide synthase and vasoactive intestinal polypeptide in nerves of the colons with Hirschsprung’s disease. Virchows Arch 430:53–61

    PubMed  CAS  Google Scholar 

  62. Vanderwinden JM, De Laet MH, Schiffmann SN, Mailleux P, Lowenstein CJ, Snyder SH, Vanderhaeghen JJ (1993) Nitric oxide synthase distribution in the enteric nervous system of Hirschsprung’s disease. Gastroenterology 105:969–973

    PubMed  CAS  Google Scholar 

  63. Bealer JF, Natuzzi ES, Flake AW, Adzick NS, Harrison MR (1994) Effect of nitric oxide on the colonic smooth muscle of patients with Hirschsprung’s disease. J Pediatr Surg 29:1025–1029

    PubMed  CAS  Google Scholar 

  64. Hanani M, Louton V, Udassin R, Freund HR, Karmeli F, Rachmilewitz D (1995) Nitric oxide-containing nerves in bowel segments of patients with Hirschsprung’s disease. J Pediatr Surg 30:818–822

    PubMed  CAS  Google Scholar 

  65. Tomita R, Munakata K, Kurosu Y, Tanjoh K (1995) A role of nitric oxide in Hirschsprung’s disease. J Pediatr Surg 30:437–440

    PubMed  CAS  Google Scholar 

  66. Larsson LT, Shen Z, Ekblad E, Sundler F, Alm P, Andersson KE (1995) Lack of neuronal nitric oxide synthase in nerve fibers of aganglionic intestine: a clue to Hirschsprung’s dis­ease. J Pediatr Gastroenterol Nutr 20:49–53

    Article  PubMed  CAS  Google Scholar 

  67. Teromata M, Domoto T, Tanigawa K, Yasui Y, Tamura K (1996) Distribution of nitric oxide synthase-containing nerves in the aganglionic intestine of mutant rats: a histochemical study. J Gastroenterol 31:214–223

    Google Scholar 

  68. Zakhary R, Poss KD, Jaffrey SR, et al (1997) Targeted gene deletion of heme oxygenase 2 reveals neural role for carbon monoxide. Proc Natl Acad Sci U S A 94:14848–14853

    PubMed  CAS  Google Scholar 

  69. Chen Y, Lui VCH, Sham MH, Tam PKH (2002) Distribution of carbon monoxide-producing neurons in human colon and on Hirschsprung’s disease patients. Hum Pathol 33:1030–1036

    PubMed  Google Scholar 

  70. Masuo Y, Ohtaki T, Masuda Y, Tsuda M, Fujino M (1992) Binding sites for pituitary adenylate cyclase activating polypeptide (PACAP): comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections. Brain Res 575:113–123

    PubMed  CAS  Google Scholar 

  71. Mungan Z, Arimura A, Ertan A, Rossowski WJ, Coy DH (1992) Pituitary adenylate cyclase-activating polypeptide relaxes rat gastrointestinal smooth muscle. Scand J Gastroenterol 27:375–380

    PubMed  CAS  Google Scholar 

  72. Facer P, Knowles CH, Tam PKH, Ford N, Dyer N, Baecker PA, Anand P (2001) Novel capsaicin (VR1) and purinergic (P2X3) receptors in Hirschsprung’s intestine. J Pediatr Surg 36:1679–1684

    PubMed  CAS  Google Scholar 

  73. Grider JR, Makhlouf GM (1986) Colonic peristaltic reflex: identification of vasoactive intestinal peptide as mediator of descending relaxation. Am J Physiol 251:G40–G45

    PubMed  CAS  Google Scholar 

  74. Domoto T, Bishop AE, Oki M, et al (1990) An in vitro study of the projections of enteric vasoactive intestinal polypeptide-immunoreactive neurons in the human colon. Gastroenterology 98:819–827

    PubMed  CAS  Google Scholar 

  75. Faussone-Pellegrini MS, Bacci S, Pantalone D, et al (1993) Distribution of VIP-immunoreactive nerve cells and fibers in the human ileocoecal region. Neurosci Lett 157:135–139

    PubMed  CAS  Google Scholar 

  76. Ferri G, Adrian TE, Ghatei MA, et al (1983) Tissue localization and relative distribution of regulatory peptides in separated layers from the human bowel. Gastroenterology 84:777–786

    PubMed  CAS  Google Scholar 

  77. Wattchow DA, Brookes SJH, Costa M (1995) The morphology and projections of retrograde labelled myenteric neurons in the human intestine. Gastroenterology 109:866–875

    PubMed  CAS  Google Scholar 

  78. Uemura S, Hurley MR, Hutson JM, Chow CW (1998) Distributions of substance P- and VIP-immunoreactive nerve fibres in the colonic circular muscle in children. Pediatr Surg Int 14:66–70

    PubMed  CAS  Google Scholar 

  79. Tsuto T, Okamura H, Fukui K, Obata HL, Terubayashi H, Iwai N, Majima S, Yanaihara N, Ibata Y (1982) An immunohistochemical investigation of vasoactive intestinal polypeptide in the colon of patients with Hirschsprung’s disease. Neurosci Lett 34:57–62

    PubMed  CAS  Google Scholar 

  80. Tsuto T, Okamura H, Fukui K, Obata-Tsuto HL, Terubayashi H, Yanagihara J, et al (1985) Immunohistochemical investigations of gut hormones in the colon of patients with Hirschsprung’s disease. J Pediatr Surg 20:266–270

    PubMed  CAS  Google Scholar 

  81. Larsson LT, Malmfors G, Sundler F (1988) Neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP) and galanin in Hirschsprung’s disease – an immunocytochemical study. J Pediatr Surg 23:342–345

    PubMed  CAS  Google Scholar 

  82. Munakata K, Tomita R, Kurosu Y (1997) Preliminary Immunohistochemical new findings in the myenteric plexus of patients with intestinal neuronal dysplasia type B. Eur J Pediatr Surg 7:21–29

    Article  PubMed  CAS  Google Scholar 

  83. Furness JB, Bornstein JC, Pompolo S, et al (1995) Plurichemical transmission and chemical coding of neurons in the digestive tract. Gastroenterology 108:554–563

    PubMed  CAS  Google Scholar 

  84. Grider JR (1989) Identification of neurotransmitters regulating intestinal peristaltic reflex in humans. Gastroenterology 97:1414–1419

    PubMed  CAS  Google Scholar 

  85. Wattchow DA, Furness JB, Costa M (1988) Distribution and coexistence of peptides in nerve fibres of external muscle of the human gastrointestinal tract. Gastroenterology 95:32–41

    PubMed  CAS  Google Scholar 

  86. Larsson LT, Sundler F (1990) Neuronal markers in Hirschsprung’s disease with special reference to neuropeptides. Acta Histochem Suppl 38:115–125

    PubMed  CAS  Google Scholar 

  87. Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Edinburgh

    Google Scholar 

  88. Palmer JM, Schemann M, Tamura K, Wood JD (1986) Calcitonin gene-related peptide excites myenteric neurons. Eur J Pharmacol 132:163–170

    PubMed  CAS  Google Scholar 

  89. Bartho L, Lembeck F, Holzer P (1987) Calcitonin gene-related peptide is a potent relaxant of intestinal muscle. Eur J Pharmacol 135:449–451

    PubMed  CAS  Google Scholar 

  90. Rasmussen TN, Gregersen H, Harling H, Holst JJ (1992) Calcitonin gene-related peptide: effect on contractile activity and luminal cross-sectional area in the isolated, perfused porcine ileum. Scand J Gastroenterol 27:787–792

    PubMed  CAS  Google Scholar 

  91. Grider JR (1994) CGRP as a transmitter in the sensory pathway mediating peristaltic reflex. Am J Physiol 266:G1139–1145

    PubMed  CAS  Google Scholar 

  92. Sternini C (1991) Tachykinin and calcitonin gene-related peptide immunoreactivities and mRNAs in the mammalian enteric system and sensory ganglia. Adv Exp Med Biol 298:39–51

    PubMed  CAS  Google Scholar 

  93. Rasmussen TN, Schmidt P, Poulsen SS, Holst JJ (2001) Localisation and neural control of the release of calcitonin gene-related peptide (CGRP) from the isolated perfused porcine ileum. Regul Pept 98:137–143

    PubMed  CAS  Google Scholar 

  94. Vanner S (1994) Co-release of neuropeptides from capsaicin-sensitive afferents dilates submucosal arterioles in the guinea-pig ileum. Am J Physiol 267:G223–G230

    Google Scholar 

  95. Kawasaki H (2002) Regulation of vascular function by perivascular calcitonin gene-related peptide-containing nerves. Jpn J Pharmacol 88:39–43

    PubMed  CAS  Google Scholar 

  96. Tache Y (1992) Inhibition of gastric acid secretion and ulcers by calcitonin gene-related peptide. Ann N Y Acad Sci 657:240–247

    PubMed  CAS  Google Scholar 

  97. Barada KA, Saade NE, Atweh SF, Khoury CI, Nassar CF (2000) Calcitonin gene-related peptide regulates amino acid absorption across rat jejunum. Regul Pept 90:39–45

    PubMed  CAS  Google Scholar 

  98. Ichikawa S, Shiozawa M, Iwanaga T, Uchino S (1991) Immunohistochemical demonstration of peptidergic nerve fibers associated with the central lacteal lymphatics in the duodenal villi of dogs. Arch Histol Cytol 54:241–248

    PubMed  CAS  Google Scholar 

  99. Ichikawa S, Dreedharan SP, Goetzl EJ, Owen RL (1994) Immunohistochemical localization of peptidergic receptors in Peyer’s patches of the cat ileum. Regul Pept 54:385–395

    PubMed  CAS  Google Scholar 

  100. Chiocchetti R, Grandis A, Bombardi C, Lucchi ML, Dal Lago DT, Bortolami R, Furness JB (2006) Extrinsic and intrinsic sources of calcitonin gene-related peptide immunoreactivity in the lamb ileum: a morphometric and neurochemical investigation. Cell Tissue Res 323:183–196

    PubMed  CAS  Google Scholar 

  101. Tatemoto K, Carquist M, Mutt M (1982) Neuropeptide Y – novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659–660

    PubMed  CAS  Google Scholar 

  102. Lundberg JM, Terenius L, Hökfelt T, Goldstein M (1983) High level of neuropeptide Y in peripheral noradrenergic neurons in various mammals including man. Neurosci Lett 42:167–172

    PubMed  CAS  Google Scholar 

  103. Hamada Y, Bishop AE, Federici G, Rivosecchi M, Talbot IC, Polak JM (1987) Increased neuropeptide Y immunoreactive innervation of aganglionic bowel in Hirschsprung’s disease. Virchows Arch A 411:369–377

    CAS  Google Scholar 

  104. Koch TR, Roddy DR, Carney JA, Telander RL, Go VL (1988) Distribution, quantitation, and origin of immunoreactive neuropeptide Y in the human gastrointestinal tract. Regul Pept 21:309–319

    PubMed  CAS  Google Scholar 

  105. Tatemoto K, Rokaeus A, Jornvall H, McDonald TJ, Mutt V (1983) Galanin – a novel biologically active peptide from porcine intestine. FEBS Lett 164:124–128

    PubMed  CAS  Google Scholar 

  106. Melander T, Hokfelt T, Rokaeus A, Fahrenkrug J, Tatemoto K, Mutt V (1985) Distribution of galanin-like immunoreactivity in the gastro-intestinal tract of several mammalian species. Cell Tissue Res 239:253–260

    PubMed  CAS  Google Scholar 

  107. Hoyle CH, Burnstock G (1989) Galanin-like immunoreactivity in enteric neurons of the human colon. J Anat 166:23–33

    PubMed  CAS  Google Scholar 

  108. Bauer FE, Adrian TE, Christofides ND, Ferri GL, Yanaihara N, Polak JM, Bloom SR (1986) Distribution and molecular heterogeneity of galanin in human, pig, guinea pig, and rat gastrointestinal tracts. Gastroenterology 91:877–883

    PubMed  CAS  Google Scholar 

  109. Melander T, Hokfelt T, Rokaeus A (1986) Distribution of galanin-like immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517

    PubMed  CAS  Google Scholar 

  110. Bauer FE, Zintel A, Kenny MJ, Calder D, Ghatei MA, Bloom SR (1989) Inhibitory effect of galanin on postprandial gastrointestinal motility and gut hormone release in humans. Gastroenterology 97:260–264

    PubMed  CAS  Google Scholar 

  111. Katsoulis S, Clemens A, Morys-Wortmann C, Schworer H, Schaube H, Klomp HJ, Folsch UR, Schmidt WE (1996) Human galanin modulates human colonic motility in vitro. Characterization of structural requirements. Scand J Gastroenterol 31:446–451

    PubMed  CAS  Google Scholar 

  112. King SC, Slater P, Turnberg LA (1989) Autoradiographic localization of binding sites for galanin and VIP in small intestine. Peptides 10:313–317

    PubMed  CAS  Google Scholar 

  113. Benya RV, Matkowskyi KA, Danikovich A, Hecht G (1998) Galanin causes Cl-secretion in the human colon. Potential significance of inflammation-associated NF-kappa B activation on galanin-1 receptor expression and function. Ann N Y Acad Sci 863:64–77

    PubMed  CAS  Google Scholar 

  114. Homaidan FR, Tang SH, Donowitz M, Sharp GW (1994) Effects of galanin on short circuit current and electrolyte transport in rabbit ileum. Peptides 15:1431–1436

    PubMed  CAS  Google Scholar 

  115. Larsson LT (1994) Hirschsprung’s disease – immunohistochemical findings. Histol Histopathol 9:615–629

    PubMed  CAS  Google Scholar 

  116. Berger A, Kofler B, Santic R, Zipperer E, Sperl W, Hauser-Kronberger C (2003) 125I-labeled galanin bindings sites in congenital innervation defects of the distal colon. Acta Neuropathol 105:43–48

    PubMed  CAS  Google Scholar 

  117. Gonzalez-Martinez T, Perez-Pinera P, Diaz-Esnal B, Vega JA (2003) S-100 proteins in the human peripheral nervous system. Microsc Res Tech 60:633–638

    PubMed  CAS  Google Scholar 

  118. Alpy F, Ritie L, Jaubert F, Becmeur F, Mechine-Neuville A, Lefebvre O, Arnold C, Sorokin L, Kedinger M, Simon-Assmann P (2005) The expression pattern of laminin isoforms in Hirschsprung’s disease reveals a distal peripheral nerve differentiation. Hum Pathol 36:1055–1065

    PubMed  CAS  Google Scholar 

  119. Kawana T, Nada O, Ikeda K (1988) An immunohistochemi­cal study of glial fibrillary acidic (GFA) protein and S-100 protein in the colon affected by Hirschsprung’s disease. Acta Neuropathol 76:159–165

    PubMed  CAS  Google Scholar 

  120. Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of pre-synaptic vesicles. Cell 41:1017–1028

    PubMed  CAS  Google Scholar 

  121. Kobayashi H, Miyano T, Yamataka A, Lane GJ, Fujimoto T, Puri P (1997) Use of synaptophysin polyclonal antibody for the rapid intraoperative immunohistochemical evalu­ation of functional bowel disorders. J Pediatr Surg 32:38–40

    PubMed  CAS  Google Scholar 

  122. Obata K, Kojima N, Nishiye H, Inoue H, Shirao T, Fujita SC, et al (1987) Four synaptic vesicle-specific proteins: identification by monoclonal antibodies and distribution in the nervous tissue and the adrenal medulla. Brain Res 404:169–179

    PubMed  CAS  Google Scholar 

  123. Yamataka A, Miyano T, Urano M, Nishiye H (1992) Hirschsprung’s disease: diagnosis using monoclonal antibody 171B5. J Pediatr Surg 27:820–822

    PubMed  CAS  Google Scholar 

  124. Romanska HM, Bishop AE, Brereton RJ, Spitz L, Polak JM (1993) Immunocytochemistry for neuronal markers shows deficiencies in conventional histology in the treatment of Hirschsprung’s disease. J Pediatr Surg 28:1059–1062

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rolle, U., Puri, P. (2008). Immunohistochemical Studies. In: Holschneider, A., Puri, P. (eds) Hirschsprung's Disease and Allied Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33935-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33935-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33934-2

  • Online ISBN: 978-3-540-33935-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics