Skip to main content

The Last Common Ancestor of Modern Cells

  • Chapter

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach-Richter, L., R. Gupta, K.O. Stetter, and C.R. Woese. 1987. Were the original Eubacteria thermophiles? Syst. Appl. Microbiol. 9: 34–39.

    Google Scholar 

  • Arrhenius, G., J.L. Bada, G.F. Joyce, A. Lazcano, S. Miller, and L.E. Orgel. 1999. Origin and ancestor: separate environments. Science 283: 792.

    Article  Google Scholar 

  • Brinkmann, H., and H. Philippe. 1999. Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol. 16: 817–825.

    Google Scholar 

  • Brochier, C., and H. Philippe. 2002. Phylogeny: A non-hyperthermophilic ancestor for Bacteria. Nature 417: 244.

    Article  Google Scholar 

  • Broda, E. 1970. The evolution of bioenergetic processes. Prog. Biophys. Mol. Biol. 21: 143–208.

    Article  Google Scholar 

  • Castresana, J., and D. Moreira. 1999. Respiratory chains in the last common ancestor of living organisms. J. Mol. Evol. 49: 453–460.

    Article  Google Scholar 

  • Darwin, C. 1859. The Origin of Species by Means of Natural Selection. J Murray, London.

    Google Scholar 

  • Di Giulio, M. 2000. The universal ancestor lived in a thermophilic or hyperthermophilic environment. J. Theor. Biol. 203: 203–213.

    Article  Google Scholar 

  • Di Giulio, M. 2003. The ancestor of the Bacteria domain was a hyperthermophile. J. Theor. Biol. 224: 277–283.

    Article  Google Scholar 

  • Domingo, E., and J.J. Holland. 1997. RNA virus mutations and fitness for survival. Ann. Rev. Microbiol. 51: 151–178.

    Article  Google Scholar 

  • Doolittle, R.F. 2000a. Searching for the common ancestor. Res. Microbiol. 151: 85–89.

    Article  Google Scholar 

  • Doolittle, W.F. 2000b. The nature of the universal ancestor and the evolution of the proteome. Curr. Opin. Struct. Biol. 10: 355–358.

    Article  Google Scholar 

  • Eigen, M. 1971. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58: 465–523.

    Article  Google Scholar 

  • Eigen, M. 2002. Error catastrophe and antiviral strategy. Proc. Natl. Acad. Sci. USA 99: 13374–13376.

    Article  Google Scholar 

  • Fitch, W.M., and K. Upper. 1987. The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harbor Symp Quant. Biol. 52: 759–767.

    Google Scholar 

  • Forterre, P. 1999. Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol. Microbiol. 33: 457–465.

    Article  Google Scholar 

  • Forterre, P. 2002. The origin of DNA genomes and DNA replication proteins. Curr Opin. Microbiol. 5: 525–532.

    Article  Google Scholar 

  • Forterre, P., C. Brochier, and H. Philippe. 2002. Evolution of the Archaea. Theor. Pop. Biol. 61: 409–422.

    Article  Google Scholar 

  • Forterre, P., and H. Philippe. 1999. The last universal common ancestor (LUCA), simple or complex? Biol. Bull. 196: 373–375.

    Article  Google Scholar 

  • Galtier, N., N. Tourasse, and M. Gouy. 1999. A nonhyperthermophilic common ancestor to extant life forms. Sciences 283: 220–221.

    Google Scholar 

  • Giraldo, R. 2003. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol. Rev. 26: 533–554.

    Article  Google Scholar 

  • Gogarten, J.P., H. Kibak, P. Dittrich, L. Taiz, E.J. Bowman, B.J. Bowman, M.F. Manolson, R.J. Poole, T. Date, T. Oshima, J. Konishi, K. Denda, and M. Yoshida. 1989. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes Proc. Nat. Acad. Sci. USA 86: 6661–6665.

    Article  Google Scholar 

  • Gogarten-Boekels, M., E. Hilario, and J.P. Gogarten. 1995. The effects of heavy meteorite bombardment on the early evolution-the emergence of the three domains of life. Orig. Life Evol. Biosph. 25: 251–264.

    Article  Google Scholar 

  • Gribaldo, S., and P. Cammarano. 1998. The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J. Mol. Evol. 47: 508–516.

    Article  Google Scholar 

  • Joyce, G.F. 2002. The antiquity of RNA-based evolution. Nature 418: 214–221.

    Article  Google Scholar 

  • Kandler, O. 1994. The early diversification of life. In: Bengston, S. (ed.) Early Life on Earth, pp. 152–160, Columbia University Press, New York.

    Google Scholar 

  • Koga, Y., T. Kyuragi, M. Nishihara, and N. Sone. 1998. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J. Mol. Evol. 46: 54–63.

    Article  Google Scholar 

  • Koonin, E.V. 2003. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 1: 127–136.

    Article  Google Scholar 

  • Kornberg, A. 2000. Ten commandments: lessons from the enzymology of DNA replication. J. Bacteriol. 182: 3613–3618.

    Article  Google Scholar 

  • Lazcano, A., and S.L. Miller. 1996. The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85: 793–798.

    Article  Google Scholar 

  • Leipe, D.D., L. Aravind, and E.V. Koonin. 1999. Did DNA replication evolve twice independently? Nucleic Acids Res. 27: 3389–3401.

    Article  Google Scholar 

  • López-García, P. 1999. DNA supercoiling and temperature adaptation: a clue to early diversification of life? J. Mol. Evol. 49: 439–452.

    Article  Google Scholar 

  • Martin, W., and M.J. Russell. 2003. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358: 59–83.

    Article  Google Scholar 

  • Moreira, D. 2000. Multiple independent horizontal transfers of informational genes from bacteria to plasmids and phages: implications for the origin of bacterial replication machinery. Mol. Microbiol. 35: 1–5.

    Article  Google Scholar 

  • Olsen, G.J., and C.R. Woese. 1997. Archaeal genomics: an overview. Cell 89: 991–994.

    Article  Google Scholar 

  • Oparin, A.I. 1938. The Origin of Life. Mac Millan, New York.

    Google Scholar 

  • Pace, N.R. 1991. Origin of life-facing up to the physical setting. Cell 65: 531–533.

    Article  Google Scholar 

  • Pace, N.R. 2001. The universal nature of biochemistry. Proc. Natl. Acad. Sci. USA 98: 805–808.

    Article  Google Scholar 

  • Peretó, J., P. López-Garcia, and D. Moreira. 2004. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29: 469–477.

    Article  Google Scholar 

  • Peretó, J.G., A.M. Velasco, A. Becerra, and A. Lazcano. 1999. Comparative biochemistry of CO2 fixation and the evolution of autotrophy. Int. Microbiol. 2: 3–10.

    Google Scholar 

  • Philippe, H., and P. Forterre. 1999. The rooting of the universal tree of life is not reliable. J. Mol. Evol. 49: 509–523.

    Article  Google Scholar 

  • Poole, A., D. Jeffares, and D. Penny. 1999. Early evolution: prokaryotes, the new kids on the block. Bioessays 21: 880–889.

    Article  Google Scholar 

  • Raoult, D., S. Audic, C. Robert, C. Abergel, P. Renesto, H. Ogata, B. La Scola, M. Suzan, and J.M. Claverie. 2004. The 1.2-megabase genome sequence of Mimivirus. Science 306: 1344–1350.

    Article  Google Scholar 

  • Russell, M., and A.J. Hall. 1997. The emergence of life from iron monosulfide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154: 377–402.

    Google Scholar 

  • Russell, M.J., and W. Martin. 2004. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29: 358–363.

    Article  Google Scholar 

  • Stetter, K.O. 1996. Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18: 149–158.

    Article  Google Scholar 

  • Wächtershäuser, G. 1990. Evolution of the first metabolic cycles. Proc. Natl. Acad. Sci. USA 87: 200–204.

    Article  Google Scholar 

  • Wächtershäuser, G. 2003. From pre-cells to Eukarya-a tale of two lipids. Mol. Microbiol. 47: 13–22.

    Article  Google Scholar 

  • Wächtershäusser, G. 1988. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52: 452–484.

    Google Scholar 

  • Woese, C. 1998. The universal ancestor. Proc. Natl. Acad. Sci. USA 95: 6854–6859.

    Article  Google Scholar 

  • Woese, C.R. 2000. Interpreting the universal phylogenetic tree. Proc. Natl. Acad. Sci. USA 97: 8392–8396.

    Article  Google Scholar 

  • Woese, C.R., and G.E. Fox. 1977a. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74: 5088–5090.

    Article  Google Scholar 

  • Woese, C.R., and G.E. Fox. 1977b. The concept of cellular evolution. J. Mol. Evol. 10: 1–6.

    Article  Google Scholar 

  • Woese, C.R., O. Kandler, and M.L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576–4579.

    Article  Google Scholar 

  • Zhaxybayeva, O., and J.P. Gogarten. 2004. Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet. 20: 182–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moreira, D., López-García, P. (2007). The Last Common Ancestor of Modern Cells. In: Gargaud, M., Martin, H., Claeys, P. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33693-8_11

Download citation

Publish with us

Policies and ethics