Skip to main content

Abstract

The devices and microsystems for measuring magnetic fields have the unique ability to reveal realities that cannot be perceived by the human senses. These transducers, which measure magnetic fields in a range not less than 15 to 16 orders of magnitude and are universal in their applications, are in continuous development.This chapter discusses recent progress in the most frequently used magnetic-field microsensors and MEMS, which are perfectly compatible with microelectronic technologies, most of which are silicon technologies. Up-to-date results are analyzed and abundant information is presented about the following topics: physical mechanisms of the origin of magnetosensitivity,device designs, sensor characteristics and the methods for their determination, biasing and inter-face circuits, the means for performance improvement and overcoming the basic transducer limitations, the most current and prospective applications, anddevelopment trends. Ample references torelevantliterature are included for all modifications of Hall effect devices (orthogonal and parallel field); micromagnetodiodes; magnetoresistors (including feromagnetic versions such as giant magnetoresistance elements); microsensors based on AniBv semiconductors; MOSFET, bipolar, CMOS, unijunction,and split-drain magnetotransistors and related devices; carrier-domain magnetometers; functional multisensorsfor the magnetic field, temperature, and light; 2-D and 3-D vector microsystems for the magnetic field; and magnetogradiometers and digital stochastic magnetotransducers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Middelhoek and S.A. Audet, Silicon Sensors, Academic Press, London, UK (1989)

    Google Scholar 

  2. R. Boll and K.J. Overshott (eds.), Magnetic Sensors, in Sensors, A Compre-hensive Survey, vol. 5, VCH, Weinheim, Germany (1989)

    Google Scholar 

  3. S.H. Sze, Semiconductor Sensors, Wiley, New York (1994)

    Google Scholar 

  4. C.S. Roumenin, Solid State Magnetic Sensors, Elsevier, Amsterdam, The Netherlands (1994)

    Google Scholar 

  5. J.E. Brignell and N. White, Intelligent Sensors Systems, IOP Publishing, Bristol, UK (1994)

    Google Scholar 

  6. R.S. Popovic, Hall Effect Devices, Adam Hilger, Bristol, UK (1991)

    Google Scholar 

  7. C. Roumenin, “Functional magnetic-field microsensors: An overview,” Sensors and Materials, 5(5):285 (1994)

    Google Scholar 

  8. S. Middelhoek, A.A. Bellekom, U. Dauderstadt, P.J. French, S.R. in t’Hout, W. Kindt, F. Riedijk, and M.J. Vellekoop, “Silicon sensors,” Meas. Sei. Technol., 6:1641 (1995)

    Article  Google Scholar 

  9. C.S. Roumenin, “Magnetic sensors continue to advance toward perfection,” Sensors and Actuators, A46–47:273 (1995)

    Google Scholar 

  10. W.H. Ko, “The future of sensor and actuator system,” Sensors and Actuators, A56:193 (1996)

    Article  Google Scholar 

  11. H. Baltes, “Future of IC microtransducers,” Sensors and Actuators, A56:179 (1996)

    Article  Google Scholar 

  12. H. Fujita, “Futureof actuators and microsystems,” Sensors and Actuators, A56:105 (1996)

    Article  Google Scholar 

  13. R.S. Popovic, J.A. Flanagan, and P.A. Besse, “The future of magnetic sensors,” Sensors and Actuators, A56:39 (1996)

    Article  Google Scholar 

  14. K. Mohri, T. Uchiyama, and L.V. Panina, “Recent advances of micro magnetic sensors and sensing application,” Sensors and Actuators, A59:1 (1997)

    Article  Google Scholar 

  15. H.N. Norton, Sensor and Transducer — Selection Guide, Elsevier, Oxford, UK (1992)

    Google Scholar 

  16. H.J. Gray and A. Isaacs (eds.), Dictionary of Physics, 3rd ed., Longman Ltd., London, UK (1990)

    Google Scholar 

  17. E.H. Hall, “On a new action of the magnet on electric current,” Am. J. Math., 2:287 (1879)

    Article  Google Scholar 

  18. E.H. Putley, The Hall Effect and Semiconductor Physics, Dover, New York (1960)

    Google Scholar 

  19. A.S. Grove, Physics and Technology of Semiconductor Devices, Wiley, New York (1967)

    Google Scholar 

  20. R. Mueller, Grundlagen der Halbleiter-Elektronik, Springer Verlag, Berlin (1971)

    Google Scholar 

  21. C.S. Roumenin, “Hall effect in diodestructures,”Compt.rendus ABS, 38(11): 1501 (1985); “Optimized emitter-injection modulation magnetotransistor,” Sensors and Actuators, 6:19 (1984)

    Google Scholar 

  22. CS. Roumenin, A. Ivanov, and P. Nikolova, “Anew class of multisensors for magnetic field and temperature basedon the diode Hall effect,” Sensors and Actuators, A85:163 (2000); “The diode Hall effect and its sensor applications—an overview,” Sensors and Materials, 13(1): 1 (2001)

    Article  Google Scholar 

  23. A. Nathan, K. Maenaka, W. Allegretto, H. Baltes, and T. Nakamura, “The Hall effect in integrated magnetotransistors,” IEEE Trans. Electron. Devices, ED-36(1):108 (1989)

    Article  Google Scholar 

  24. R.F. Wick, “Solution of the field problem of the germanium gyrator,” J. Appl. Phys., 25(6): 741 (1954)

    Article  MATH  Google Scholar 

  25. W. Versnel, “Analysis of a circular Hall plate withequal finite contacts,” Solid-State Electron., 24:63 (1981)

    Article  Google Scholar 

  26. M. Oszwaldowski, “Hall sensors based on heavily doped n-InSb thin films,” Sensors and Actuators, A68:234 (1998)

    Article  Google Scholar 

  27. R.C Gallagher and W.S. Corak, “A metal-oxide-semiconductor (MOS) Hall element,” Solid-State Electron., 9:571 (1966)

    Article  Google Scholar 

  28. J. Lau, C. Nguyen, P.K. Ko, and P.C.H. Chan, “Minimum detectable signals of integrated magnetic sensors in bulk CMOS and SOI technologies for magnetic read heads,” in Proc. 8th Intern.Conf on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden (1995), p. 257

    Google Scholar 

  29. S. Kawahito, K. Hayakava, Y Matsumoto, M. Ishida, and Y Tadokoro, “An integrated MOS magnetic sensor with chopper-stabilized amplifier,” Sensors and Materials, 8(1): 1 (1996)

    Google Scholar 

  30. D. Killat, J. v. Kluge, F. Umbach, W. Langheinrich, and R. Schmitz, “Measurement and modelling of sensitivity and noise of MOS magnetic field-effect transistors,” Sensors and Actuators, A61:346 (1997)

    Article  Google Scholar 

  31. “Improved Hall devices find new uses: orthogonal coupling yields sensitive products with reduced voltage offset and low drift,” Electron.Week, 29:59 (April 1985)

    Google Scholar 

  32. Y. Sugiyama, H. Soga,and M. Tacano, “Highly-sensitive Hall element with quantum-well superlattice structures,” J. Crystal Growth, 95:394 (1989)

    Article  Google Scholar 

  33. M. Behet, J. de Boeck, G. Borghs, and P. Mijlemans, “Comparative study on the performance of InAs/Al0.2 Ga0.8 Sb quantum well Hall sensors ongermanium and GaAs substrates,” Sensors and Actuators, A79:175 (2000)

    Article  Google Scholar 

  34. M. Behet, J. Bekaert, J. de Boeck, and G. Borghs, “InAs/Al0.2 Ga0.8 Sb quantum well Hall effect sensors,” Sensors and Actuators, A81:13 (2000)

    Article  Google Scholar 

  35. C.S. Roumenin and PT. Kostov, “Planar Hall-effect device,” Bulgarian Patent no. 37208, December 26, 1983

    Google Scholar 

  36. C.S. Roumenin, “Parallel-field Hall microsensors: an overview,” Sensors and Actuators, A30:77 (1992)

    Article  Google Scholar 

  37. R.S. Popovic, “The vertical Hall-effect device,” IEEE Electron. Device Lett., EDL-5:357 (1984)

    Article  Google Scholar 

  38. K. Maenaka, T. Ohgusu, M. Ishida, and T. Nakamura, “Novel vertical Hall cells in standard bipolar technology,” Electron. Lett., 23:1104 (1987)

    Article  Google Scholar 

  39. E. Schurig, M. Demierre, C. Schott, and R.S. Popovic, “A vertical Hall device inCMOShigh-voltage technology,” Sensors andActuators, A97–98:47 (2002)

    Article  Google Scholar 

  40. C.S. Roumenin and P.T. Kostov, “Optimized parallel-field Hall microsensor,” Compt. rendus ABS, 40:51 (1987)

    Google Scholar 

  41. S.R. in’t Hout and S. Middelhoek, “A400°C silicon Hall sensor,” Sensors and Actuators, A60:14 (1997)

    Article  Google Scholar 

  42. R.S. Popovic, “Not-plate-like Hall magnetic sensors and their applications,” Sensors and Actuators, A85:9 (2000)

    Article  Google Scholar 

  43. C.S. Roumenin, D. Nikolov, and A. Ivanov, “Enhancing the sensitivity of Hall microsensor by minority carrier injection,” Electron. Lett., 36:1375 (2000)

    Article  Google Scholar 

  44. R.A. Smith, Semiconductors, 2nd edition, Cambridge Univ. Press, Cambridge, UK (1977)

    Google Scholar 

  45. H. Weiss, Structures and Application of Galvanomagnetic Devices, Pergamon, Oxford, UK (1969)

    Google Scholar 

  46. S. Kataoka, “Recentdevelopments of magnetoresistive devices and applications,” Circulars Electrotech. Lab., no. 182, Electrotech. Lab., Tokyo, Japan (1974)

    Google Scholar 

  47. Sensoren, Magnetfeldhalbleiter, Teil 1, Siemens AG Aktiengesellschaft, Munchen, Germany (1997)

    Google Scholar 

  48. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas,“Giant magnetoresistance of (001)Fe/(001)Cr magneticsuperlattices,” Phys. Rev. Lett., 61:2472 (1988)

    Article  Google Scholar 

  49. K.-M.H. Lenssen, D.J. Adelerhof, H.J. Gassen, A.E.T. Kuiper, G.H.J. Somers, and J.B.A.D. van Zon, “Robust giant magnetoresistance sensors,” Sensors and Actuators, A85:85 (2000)

    Google Scholar 

  50. A. Barthélémy, A. Fert, and F. Petroff, Handbook of Magnetic Materials, vol. 12 (K.H.J. Buschow, ed.), Elsevier, Amsterdam, The Netherlands (1999), Chap. 1bl]

    Google Scholar 

  51. H. Pfleiderer, “Magnetodiode model,” Solid-State Electron., 15:335 (1972)

    Article  Google Scholar 

  52. E.I. Karakushan and V.l. Stafeev, “Magnetodiodes,” Sov. Phys.-Solide State, 3:493 (1961)

    Google Scholar 

  53. S. Cristoloveanu, “L’effet magnetodiode et son application aux capteurs magnétiques de haute sensibilité,” L’Onde Electrique, 59:68 (1979)

    Google Scholar 

  54. A. Chovet, S. Cristoloveanu, A. Mohaghegh, and A. Dandache, “Noise limitation of magnetodiodes,” Sensors and Actuators, 4:174 (1983)

    Article  Google Scholar 

  55. O.S. Lutes, RS. Nussbaum, and O.S. Aadland, “Sensitivity limits in SOS magnetodiodes,” IEEE Trans. Electron. Devices, ED-27:2156 (1980)

    Article  Google Scholar 

  56. CS. Roumenin, “2-D magnetodiode sensors based on SOS technology,” Sensors and Actuators, A54:584 (1996)

    Article  Google Scholar 

  57. A.W. Vinal and N.A. Masnari, “Operating principles of bipolar transistor magnetic sensors,” IEEE Trans. Electron. Devices, ED-31:1486 (1984)

    Article  Google Scholar 

  58. CS. Roumenin, “Bipolar magnetotransistor sensors: an invited review,” Sensors and Actuators, A24:83 (1990)

    Article  Google Scholar 

  59. R. Castagnetti, M. Schneider, and H. Baltes, “Micromachined magnetotransistors,” Sensors and Actuators, A46–47:280 (1995)

    Google Scholar 

  60. Y.A. Chaplygin, A.I. Galushkov, I.M. Romanov, and S.I. Volkov, “Experimental research on the sensitivity and noise level of bipolar and CMOS integrated magnetotransistors and judgment of their applicability in weak-field magnetometers,” Sensors and Actuators, A49:163 (1995)

    Article  Google Scholar 

  61. R. Castagnetti, Integrated Magnetotransistors in Bipolar and CMOS Tech nology, Phys. Electr. Lab., Zurich, Switzerland (1994), ETH-Hoenggerberg, HPT, ISBN 3-907574-05-2

    Google Scholar 

  62. C. Riccobene, Multidimensional Analysis of Galvanomagnetic Effects in Magnetotransistors, Phys. Electr. Lab., Zurich, Switzerland (1995), ETH-Hoenggerberg, HPT, ISBN 3-907574-08-7

    Google Scholar 

  63. Uk-Song Kang, Seung-Ki Lee, and Min-Koo Han, “Highly sensitive magnetotransistor with combined phenomena of Hall effect and emitter injection modulation operated in the saruration mode,” Sensors and Actuators, A54:641 (1996)

    Article  Google Scholar 

  64. A. Nagy and H. Trujillo, “Highly sensitive magnetotransistor with new topology,” Sensors and Actuators, A65:97 (1998)

    Article  Google Scholar 

  65. B. Gilbert, “Novel magnetic field sensors using carrier domain rotation: proposed device design,” Electron. Lett., 12:698 (1976)

    Google Scholar 

  66. J.I. Goicolea, R.S. Muller, and JE. Smith, “Highly sensitive silicon carrier domain magnetometer,” Sensors and Actuators, 5:174 (1984)

    Article  Google Scholar 

  67. G. Persky and D.J. Bartelink, “Controlled current fillaments in PNIPN structures with application to magnetic field detection,” Bell Syst. Tech. J., 53:467 (1974)

    Google Scholar 

  68. CS. Roumenin and V. Dobovska, “Circular magnetometer,” Sensors and Actuators, A32:661 (1992)

    Article  Google Scholar 

  69. D.L. Polla, R.S. Muller, and R.M. White, “Integrated multisensor chip,” IEEE Electron. Device Lett., EDL-7:254 (1986)

    Article  Google Scholar 

  70. C. Roumenin, P. Nikolova, and A. Ivanov, “Magnetotransistor sensors with amperometric output,” Sensors and Actuators, A69:16 (1998)

    Article  Google Scholar 

  71. CS. Roumenin, A. Ivanov, and P. Nikolova, “A linear multisensor for temperature and magnetic field based on diode structure,” Sensors and Actuators, A72:27 (1999)

    Article  Google Scholar 

  72. C.S. Roumenin, A. Ivanov, and R Nikolova, “A new anisotropy effect in the amperometric magnetic-field microsensors,” Sensors and Actuators, A77:195 (1999)

    Article  Google Scholar 

  73. C.S. Roumenin, “Magnetogradient effect in differential bipolar magnetotran-sistors,” Compt. rendus ABS, 42(12):63 (1989)

    Google Scholar 

  74. C.S. Roumenin, “Three-dimensional magnetic field vector sensor,” Compt. remdus ABS, 41(1):59 (1988)

    Google Scholar 

  75. C.S. Roumenin, K. Dimitrov, and A. Ivanov, “Novel integrated 3-D silicon Hall magnetometer,” in Proc. 14th Europ. Confer, on Solid-State Transducers — Eurosensors XIX, Copenhagen, Denmark (2000), p. 759

    Google Scholar 

  76. M. Paranjape, L.M. Landsberger, and M. Kahrizi, “A CMOS-compatible 2-D vertical Hall magnetic-field sensor using active carrier confinement and post-process micromachining,” Sensors and Actuators, A53:278 (1996)

    Article  Google Scholar 

  77. M. Paranjape and I. Filanovsky, “A 3-D vertical Hall magnetic field sensor in CMOS technology,” Sensors and Actuators, A34:9 (1992)

    Article  Google Scholar 

  78. L. Zongsheng, W. Tianping, and W. Guangli, “A new integrated JFET 3-D magnetic-field sensor in VIP technology,” Sensors and Actuators, A35:213 (1993)

    Article  Google Scholar 

  79. Lj. Ristic and M. Paranjape, “Hall devices for multidimensional sensing of magnetic field,” Sensors and Materials, 5:301 (1994)

    Google Scholar 

  80. K. Maenaka, Y. Shimizu, M. Baba, and M. Maeda, “Application of multidimensional magnetic sensors — position and movement detection,” Sensors and Materials, 8:33 (1996)

    Google Scholar 

  81. H. Lin, T. Lei, Jz-Jan Jeng, Ci-Ling Pan, and C. Chang, “A novel structure for three-dimensional silicon magnetic transducers to improve the sensitivity symmetry,” Sensors and Actuators, A56:233 (1996)

    Article  Google Scholar 

  82. A. Nagy and H. Trujillo, “3D magnetic-field sensor using only a pair of terminals,” Sensors and Actuators, A58:137 (1997)

    Article  Google Scholar 

  83. Ch. Schott, D. Manic, and R.S. Popovic, “Microsystem for high-accuracy 3-D magnetic-field measurements,” Sensors and Actuators, A67:133 (1998)

    Article  Google Scholar 

  84. K. Maenaka and M. Maeda, “Interface electronics for integrated magnetic sensors,” Sensors and Materials, 5:265 (1994)

    Google Scholar 

  85. F. Ning and E. Bruun, “An offset-trimmable array of magnetic-field-sensitive MOS transistors (MAGFETs),” Sensors and Actuators, A58:109 (1997)

    Article  Google Scholar 

  86. S. Kirby, “Temperature compensation technique for the carrier domain magnetometer,” Sensors and Actuators, 3:373 (1983)

    Article  Google Scholar 

  87. P. Munter, Spinning-Current Method for Offset Reduction in Silicon Hall Plates, Delft Univ. Press, Delft, The Netherlands (1992), ISBN 90-6275-780-4/CIP

    Google Scholar 

  88. S. Bellekom, Origin of Offset in Conventional and Spinning-Current Hall Plates, Delft Univ. Press, Delft, The Netherlands (1998), ISBN 90-407-1722-2/CIP

    Google Scholar 

  89. R. Steiner, C. Maier, A. Haberli, F.-P. Steiner, and H. Baltes, “Offset reduction in Hall devices by continuous spinning current method,” Sensors and Actuators, A66:167 (1998)

    Article  Google Scholar 

  90. S. Bellekom and RM. Sarro, “Offset reduction of Hall plates in three different crystal planes,” Sensors and Actuators, A66:23 (1998)

    Article  Google Scholar 

  91. S. Bellekom, “CMOS versus bipolar Hall plates regarding offset correction,” Sensors and Actuators, A76:178 (1999)

    Article  Google Scholar 

  92. C. Muller-Schwanneke, F. Jost, K. Marx, S. Lindenkreuz, and K. von Klitzing, “Offset reduction in silicon Hall sensors,” Sensors and Actuators, A81:18 (2000)

    Article  Google Scholar 

  93. H. Blanchard, C. de Raad Iseli, and R.S. Popovic, “Compensation of the temperature-dependent offset of a Hall sensor,” Sensors and Actuators, A60:10 (1997)

    Article  Google Scholar 

  94. Y. Kanda and Migitaka, “Effect of mechanical stress on the offset voltage of Hall devices in Si IC,” Phys. Status Solidi (A), 35:115 (1976)

    Article  Google Scholar 

  95. R. Steiner, C. Maier, M. Mayer, S. Bellekom, and H. Baltes, “Influence of mechanical stress on the offset voltage of Hall devices operated with spinning current method,” J. Microelectromech. Syst., 8(4):466 (1999)

    Article  Google Scholar 

  96. R.S. Vanha, Rotary Switch and Current Monitor by Hall-Based Microsystems, Phys. Electr. Lab., ETH Zurich, Switzerland (1999), ISBN 3-89649-446-5

    Google Scholar 

  97. S. Kordic, V. Zieren, and S. Middelhoek, “A novel method for reducing the offset of magnetic-field sensors,” Sensors and Actuators, 4:55 (1983)

    Article  Google Scholar 

  98. PL. Simon, P.H.S. Vries, and S. Middelhoek, “Autocalibration of silicon Hall devices,” in Proc. 8th Intern. Conf. on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden (1995), p. 237

    Google Scholar 

  99. CS. Roumenin, “New magnetomodulating systems for contactless measurement of linear displacements,” Compt. rendus ABS, 41(4):25 (1988)

    Google Scholar 

  100. S. Hentschke, “Digital stochastic magnetic-field detection,” Sensors and Actuators, A57:1 (1996)

    Article  Google Scholar 

  101. P. Ripka, Magnetic Sensors and Magnetometers, Artech House Books, London, UK (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 William Andrew, Inc.

About this chapter

Cite this chapter

Roumenin, C. (2006). Microsensors for Magnetic Fields. In: Korvink, J.G., Paul, O. (eds) MEMS: A Practical Guide to Design, Analysis, and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33655-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33655-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21117-4

  • Online ISBN: 978-3-540-33655-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics