Skip to main content
  • 4529 Accesses

Abstract

Microelectromechanical systems (MEMS) technology enables the creation of micro-optical elements that are inherently suited to cost-effective manufacturability and scalability because the processes are derived from the very mature semiconductor microfabrication industry. The inherent advantages of applying microelectronics technology to silicon micromechanical devices, including optical MEMS, were presented in 1982 by Petersen in the now-classic paper, “Silicon as a mechanical material.” [1] The ability to steer or direct light is a key requirement for free-space optical systems. In the 20 years since Petersen’s silicon scanner,[2] the field of optical MEMS has seen explosive growth.[3,4] In the 1980s and early 1990s, displays were the main driving force for the development of micromirror arrays. Portable digital displays are now commonplace, and head-mount displays are also commercially available. In the past decade, telecommunications have become the market driver for optical MEMS. The demand for routing ever-increasing Internet traffic through fiberoptic networks pushes the development of both digital and scanning micromirror systems for large port-count, all-optical switches. In the health care arena, scanning optical devices promise low-cost, optical cross-sectioning endoscopic microscopy for in vivo diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE, 70(5):420–457 (1982)

    Article  Google Scholar 

  2. K. E. Petersen, “Silicon torsional scanning mirror,” IBM J. R&D, 24:631–637 (1980)

    Article  Google Scholar 

  3. M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proc. IEEE, 85:1833–1856 (1997)

    Article  Google Scholar 

  4. R. S. Muller and K. Y. Lau, “Surface-micromachined microoptical elements and systems,” Proc. IEEE, 86:1705–1720 (1998)

    Article  Google Scholar 

  5. P. M. Hagelin and O. Solgaard, “Optical raster-scanning displays based on surface micromachined polysilicon mirrors,” IEEE J. Sel. Topics Quantum Electron., 5:67 (1999)

    Article  Google Scholar 

  6. O. Degani, E. Socher, A. Lipson, T. Leitner, D. J. Setter, S. Kaldor, and Y. Nemirovsky, “Pull-in study of an electrostatic torsion microactuator,” IEEE J. MEMS, 7(4):373–379 (1998)

    Google Scholar 

  7. E. Hah, H. Toshiyoshi, and M. C. Wu, “Design of electrostatic actuators for MOEMS,” Proc. SP IE, Design, Test, Integration and Packaging of MEMS/MOEMS 2002, May 2002, Cannes, France

    Google Scholar 

  8. Multi-User MEMS Processes is offered by Cronos Microsystems; for details see http://www.memsrus.com/nc-pmumps.refs.html

    Google Scholar 

  9. L. Fan and M. C. Wu, “Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator,” Proc. IEEE LEOS Summer Topical Meeting on Optical MEMS, Paper WB4, August 20–22, 1998, Monterey, CA

    Google Scholar 

  10. L. Fan, M. Wu, K. Choquette, and M. Crawford, “Self-assembled microactuated XYZ stages for optical scanning and alignment,” International Conference on Solid-State Sensors and Actuators (Transducers’ 97), June 1997, Chicago, IL, pp. 319–322

    Google Scholar 

  11. V. A. Aksyuk, F. Pardo, C. A. Bolle, S. Arney, C. R. Giles, and D. J. Bishop, “Lucent Microstar micromirror array technology for large optical crossconnects,” Proc. SPIE, MOEMS and Miniaturized Systems, Sept. 2000, Santa Clara, CA, pp. 320–324

    Google Scholar 

  12. V. A. Aksyuk, M. E. Simon, F. Pardo, S. Arney, D. Lopez, and A. Villanueva, “Optical MEMS design for telecommunications applications,” 2002 Solid-State Sensor and Actuator Workshop Tech. Digest, June 2–6, Hilton Head, SC, pp. 1–6

    Google Scholar 

  13. D. T. Neilson et al., “Fully provisioned 112×112 micro-mechanical optical crossconnect with 35.8 Tb/s demonstrated capacity,” Optical Fiber Communication Conference, OFC 2000, March 7–10, Baltimore, MD, vol. 4, pp. 202–204

    Google Scholar 

  14. L. Y. Lin and E. L. Goldstein, “Opportunities and challenges for MEMS in lightwave communications,” IEEE J. Sel. Topics Quantum Electron., 8(1):163 (2002)

    Article  Google Scholar 

  15. R. R. Syms, “Scaling laws for MEMS mirror-rotation optical cross connect switches,” IEEE J. Lightwave Technol., 20(7):1084 (2002)

    Article  Google Scholar 

  16. J. Kim, A. Papazian, R. E. Frahm, and J. V. Gates, “Performance of large scale MEMS-based optical crossconnect switches,” IEEE/LEOS Conference 2002, Nov. 11–14, Glasgow, Scotland, UK, pp. 411–412

    Google Scholar 

  17. D. R. Neilson and R. Ryf, “Scalable micro mechanical optical crossconnects” IEEE/LEOS Conference 2000, Nov. 13–16, Rio Grande, Puerto Rico, vol. 1, pp. 48–49

    Google Scholar 

  18. H.-Y Lin and W. Fang, “Torsional mirror with an electrostatically driven lever mechanism,” Proc. IEEE/LEOS International Conference on Optical MEMS, Kauai, Hawaii, August 21–24, 2000, pp. 113–114

    Google Scholar 

  19. J. Nee, R. Conat, M. Hart, R. Muller, and K. Lau, “Stretched-film micromirrors for improved optical flatness,” Proc. IEEE MEMS 2000, Miyazaki, Japan, Jan. 23–27, 2000, pp. 704–709

    Google Scholar 

  20. J. Drake and H. Jerman, “A micromachined torsional mirror for track following in magneto-optical disk drives,” 2000 Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 10–13

    Google Scholar 

  21. G.-D. Su, H. Toshiyoshi, and M. C. Wu, “ Surface-micromachined 2-D optical scanners with high-performance single-cystalline silicon micromirrors,” IEEE Photonics Technol. Lett., 13:606 (2001)

    Article  Google Scholar 

  22. G.-D. J. Su, P. R. Patterson, and M. C. Wu, “Surface-micromachined 2D optical scanners with optically flat single-crystalline silicon micromirrors,” Silicon-Based and Hybrid Optoelectronics III, San Jose, CA, 23–24 Jan. 2001, SPIE Symp. Proc., 4293:46–53 (2001)

    Article  Google Scholar 

  23. P. Patterson, D. Hah, G.-D. Su, H. Toshiyoshi, and M. Wu, “MOEMS electrostatic scanning micromirrors design and fabrication,” in Integrated Optoelectronics, Proceedings of the First International Symposium (M.J. Deen, D. Misra, and J. Ruzyllo, eds.), Electrochemical Society, Inc., Pennington, NJ (2002), p. 369

    Google Scholar 

  24. U. Srinivasan, M. Helmbrecht, C. Rembe, R. S. Muller, and R. T. Howe, “Fluidic self-assembly of micromirrors onto surface micromachined actuators,” 2000IEEE/LEOS International Conference on Optical MEMS, Kauai, HI, pp. 59–60

    Google Scholar 

  25. M. A. Michalicek and V. Bright, “Flip-chip fabrication of advanced micromirror arrays,” 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001), Interlaken, Switzerland, 21–25 Jan. 2001, pp. 152–167

    Google Scholar 

  26. Y.-A. Peter, E. Carter, and O. Solgaard, “Segmented deformable micro-mirror for free-space optical communication,” 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, pp. 197–198

    Google Scholar 

  27. S. Blackstone and T. Brosnihan, “SOI MEMS technologies for optical switching,” IEEE/LEOS International Conference on Optical MEMS, Sept. 25–28, 2001, Okinawa, Japan

    Google Scholar 

  28. T. Roessig, “Mirrors with integrated position sense electronics for optical-switching applications,” Analog Dialogue, 36(4) (2002) www.analog.com/ library/analogDialogue/archives/36-04/mirrors/index.html

    Google Scholar 

  29. M. R. Dokmeci, S. Bakshi, M. Waelti, A. Pareek, C. Fung, and C. H. Mastrangelo, “Bulk micromachined electrostatic beam steering micromirror array,” 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, pp. 15–16

    Google Scholar 

  30. R. Sawada, J. Yamaguchi, E. Higurashi, A. Shimizu, T. Yamamoto, N. Takeuchi, and Y. Uenishi, “Single Si crystal 1024ch MEMS mirror based on terraced electrodes and a high-aspect ratio torsion spring for 3-D cross-connect switch,” 2002 IEEE/LEOS International Conference on Optical MEMs, pp. 11–12

    Google Scholar 

  31. R. Ryf et al., “1296-port MEMS transport optical crossconnect with 2.07 petabit/s switch capacity,” Optical Fiber Communication Conference, OFC 2001, March 17–22, Anaheim, CA, vol. 4, p. PD28–1

    Google Scholar 

  32. V. A. Aksyuk et al., “238×238 surface micromachined optical crossconnect with 2 dB maximum loss,” Optical Fiber Communications (OFC) Conference, March 2002, Anaheim, CA (postdeadline paper)

    Google Scholar 

  33. J. Kim, A. R. Papazian, R. E. Frahm, and J. V. Gates, “Performance of large scale MEMS-based optical crossconnect switches,” IEEE/LEOS Annual Meeting, Glasgow, Scotland, November 10–14, 2002, paper WG-1

    Google Scholar 

  34. W. C. Tang, T.-C. H. Nguyen, M. W. Judy, and R. T. Howe, “Electrostatic-comb drive of lateral polysilicon resonators,” Sensors and Actuators, A21(1–3):328–331 (1990)

    Google Scholar 

  35. V. Milanovic, M. Last, and K. S. J. Pister, “Torsional micromirrors with lateral actuators,” Transducers 01, Munich, Germany, pp. 1290–1301

    Google Scholar 

  36. Selvakumar, K. Najafi, W. H. Juan, and S. Pang, “Vertical comb array microactuators,” 8th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 1995), Amsterdam, Netherlands, pp. 43–48

    Google Scholar 

  37. H. Schenk, P. Dürr, T. Hasse, D. Kunze, U. Sobe, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Selected Topics in Quantum Electron., 6(5):715–722 (2000)

    Article  Google Scholar 

  38. J.-H. Lee, Y.-C. Ko, D.-H. Kong, J.-M. Kim, K. B. Lee, and D.-Y. Jeon, “Design and fabrication of scanning mirror for laser display,” Sensors and Actuators A, A96(2–3):223–230 (2002)

    Article  Google Scholar 

  39. R. A. Conant, J. T. Nee, K. Lau, and R. S. Mueller “A flat high-frequency scanning micromirror,” 2000 Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 6–9

    Google Scholar 

  40. U. Krisnamoorthy and O. Solgaard, “Self-aligned vertical combdrive actuators for optical scanning micromirrors,” IEEE/LEOS International Conference on Optical MEMS, Sept. 25–28, 2001, Okinawa, Japan, p. 41

    Google Scholar 

  41. P. R. Patterson, D. Hah, H. Chang, H. Toshiyoshi, and M. C. Wu, “An angular vertical comb drive for scanning micromirrors,” IEEE/LEOS International Conference on Optical MEMS, Sept. 25–28, 2001, Okinawa, Japan, p. 25

    Google Scholar 

  42. R. R. A. Syms, C. Gormley, and S. Blackstone, “Improving yield, accuracy and complexity in surface tension self-assembled MOEMS,” Sensors and Actuators A, 88:273–283 (2001)

    Article  Google Scholar 

  43. P. R. Patterson, D. Hah, H. Nguyen, R.-M. Chao, H. Toshiyoshi, and M. C. Wu, “A scanning micromirror with angular comb drive actuation,” in 15th IEEE International Micro Electro Mechanical Systems Conference (MEMS 2002), Jan. 20–24, 2002, Las Vegas, NV

    Google Scholar 

  44. H. Nguyen, D. Hah, P. R. Patterson, W. Piywattanametha, and M. C. Wu, “A novel MEMS tunable capacitor based on angular vertical comb drive actuators,” in Solid-State Sensor and Actuator Workshop (Hilton Head 2002), June 2–6, 2002, Hilton Head Island, SC

    Google Scholar 

  45. S. Kwon, V. Milanovic, and L. P. Lee, “A high aspect ratio 2D gimbaled microscanner with large static rotation,” 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, pp. 149–150

    Google Scholar 

  46. Y. Mizuno, O. Tsuboi, N. Kouma, H. Soneda, H. Okuda, Y. Nakamura, S. Ueda, I. Sawaki, and F. Yamagishi, “A 2-axis comb-driven micromirror array for 3D mems switches” in 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, pp. 17–18

    Google Scholar 

  47. M. Yano, F. Yamagishi, and T. Tsuda, “Optical MEMS for photonic switching—compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks,” IEEE J. Selected Topics in Quantum Electron., 11:383 (2005)

    Article  Google Scholar 

  48. J. W. Judy and R. S. Muller, “Magnetically actuated, addressable microstructures,” IEEE J. MEMS, 6(3):249–256 (1997)

    Google Scholar 

  49. H. Miyajima, N. Asoaka, M. Arima, Y. Minamoto, K. Murakami, K. Tokuda, and K. Matsumoto, “A durable, shock-resistant electromagnetic optical scanner with polyimide-based hinges,” IEEE J. MEMS, 10(3):418–424 (2001)

    Google Scholar 

  50. R. Miller and Y.-C. Tai, “Electromagnetic MEMS scanning mirrors,” Optical Eng., 36(5):1399–1407 (1997)

    Article  Google Scholar 

  51. H. Miyajima, N. Asoaka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro, and K. Matsumoto, “Product development of a MEMS optical scanner for a laser scanning microscope,” 15th IEEE International Micro Electro Mechanical Systems Conference (MEMS 2002), Jan. 20–24, 2002, Las Vegas, NV, pp. 552–555

    Google Scholar 

  52. R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “Dynamic deformation of scanning mirrors,” 2000 IEEE/LEOS International Conference on Optical MEMS, Kauai, HI, pp. 49–50

    Google Scholar 

  53. H. Urey, D. W. Wine, and T. D. Osborn, “Optical performance requirements for MEMS-scanner based microdisplays,” Proc. SPIE, MOEMS and Miniaturized Systems, Sept. 2000, Santa Clara, CA, pp. 176–185

    Google Scholar 

  54. N. Asada, M. Takeuchi, V. Vaganov, N. Belov, S. Hout, and I. Sluchak, “Silicon micro-optical scanner,” Sensors and Actuators A, 83:284–290 (2000)

    Article  Google Scholar 

  55. N. Asada, H. Matsuki, K. Minami, and M. Esashi, “Silicon micromachined two-dimensional galvano optical scanner,” IEEE Trans. Magnetics, 30(6):4647–4649 (1994)

    Article  Google Scholar 

  56. S.-H. Ahn and Y.-Y. Kim, “Galvanometric silicon scanning mirror with 2 DOF,” 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, pp. 87–88

    Google Scholar 

  57. Gamier, T. Bourouinna, H. Fujita, E. Orsier, T. Masuzawa, T. Hiramoto, and J.-C. Peuzin, “A fast, robust and simple 2-D micro-optical scanner based on contactless magnetostrictive actuation,” 13th IEEE International Micro Electro Mechanical Systems Conference (MEMS 2000), Jan. 2000, Miyazaki, Japan, pp. 715–720

    Google Scholar 

  58. T. Bourouina, E. Lebrasseur, G. Reyne, A. Debray, H. Fujita, A. Ludwig, E. Quandt, H. Muro, T. Oki, and A. Asaoka, “Integration of two degree-of-freedom magnetostrictive actuation and piezoresistive detection: application to a two-dimensional optical scanner,” IEEE J. MEMS, 11(4):355–361 (2002)

    Google Scholar 

  59. D. W. Wine, M. P. Helsel, L. Jenkins, H. Urey, and T. D. Osborn, “Performance of a biaxial MEMS-based scanner for microdisplay applications,” Proc. SPIE, 4178:186–196 (2000)

    Article  Google Scholar 

  60. K. Yamada and T. Kuriyama, “A novel asymmetric silicon micro-mirror for optical beam scanning display,” IEEE Eleventh Annual International Workshop on Micro Electro Mechanical (MEMS 98), 25–29 Jan. 1998, Heidelberg, Germany, pp. 110–115

    Google Scholar 

  61. H.-J. Nam, Y.-S. Kim, S.-M. Cho, Y. Yee, and J.-U. Bu, “Low voltage PZT actuated tilting micromirror with hinge structure,” 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, pp. 89–90

    Google Scholar 

  62. J. Tsuar, L. Zhang, R. Maeda, and S. Matsumoto, “2D micro scanner actuated by sol-gel derived double layered PZT,” 15th IEEE International Micro Electro Mechanical Systems Conference (MEMS 2002), Jan. 20–24, 2002, Las Vegas, NV, pp. 548–551

    Google Scholar 

  63. M. A. Sinclair, “High frequency resonant scanner using thermal actuation,” 15 th IEEE International Micro Electro Mechanical Systems Conference (MEMS 2002), Jan. 20–24, 2002, Las Vegas, NV, pp. 698–701

    Google Scholar 

  64. H. Xie, Y. Pan, and G. Fedder, “A SCS CMOS micromirror for optical coherence tomographic imaging,” 15th IEEE International Micro Electro Mechanical Systems Conference (MEMS 2002), Jan. 20–24, 2002, Las Vegas, NV, pp. 495–498

    Google Scholar 

  65. L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” Proc. SPIE Projection Displays III, 3013:27–40 (1997)

    Google Scholar 

  66. P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proc. IEEE, 86:1687–1704 (1998)

    Article  Google Scholar 

  67. See, for example, S. Senturia, Microsystem Design, Kluwer Academic Publishers (2001), chapter 20

    Google Scholar 

  68. N. A. Riza and S. Sumriddetchkajorn, Optics Lett., 24(5):282 (1999)

    Article  Google Scholar 

  69. J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker, “Wavelength add-drop switching using tilting micromirrors,” IEEE J. Lightwave Technol., 17(5):904–911 (1999)

    Article  Google Scholar 

  70. D. M. Marom et al, “Wavelength-selective 1×4 switch for 128 WDM channels at 50GHz spacing,” 2002 Optical Fiber Communication (OFC) Conference, Anaheim, CA, postdeadline paper, FB7

    Google Scholar 

  71. T. Ducellier et al., “The MWS 1 ? 4: a high performance wavelength switching building block,” Proceedings of the European Conference on Optical Communication 2002, session 2.3.1

    Google Scholar 

  72. D. Hah, S. Huang, H. Nguyen, H. Chang, H. Toshiyoshi, and M. C. Wu, “A low voltage, large scan angle MEMS micromirror array with hidden vertical comb-drive actuators for WDM routers,” 2002 Optical Fiber Communication (OFC) Conference, Anaheim, CA, paper TuO-3

    Google Scholar 

  73. D. Lopez et al., “Monolithic MEMS optical switch with amplified out-of-plane angular motion,” Proc. 2002 IEEE/LEOS International Conf. Optical MEMS, Piscataway, NJ, 2002, pp. 165–166

    Google Scholar 

  74. M. S. Rodgers and J. J. Sniegowski, “Designing microelectromechanical systems-on-a-chip in a 5-level surface micromachine technology,” 2nd International Conference on Engineering Design and Automation, Maui, Hawaii, August 9–12, 1998

    Google Scholar 

  75. J. E. Ford and J. A. Walker, “Dynamic spectral power equalization using micro-opto-mechanics,” IEEE Photonics Technol. Lett., 10(10):1440–1442 (1998)

    Article  Google Scholar 

  76. D. T. Neilson et al, “High-dynamic range channelized MEMS equalizing filters,” 2002 Optical Fiber Communication (OFC) Conference, Anaheim, CA, paper ThCC3

    Google Scholar 

  77. D. M. Marom and S. H. Oh, “Filter-shape dependence on attenuation mechanism in channelized, dynamic spectral equalizers,” 2002 IEEE/LEOS Annual Meeting, Glasgow, Scotland, paper WG3

    Google Scholar 

  78. H. Toshiyoshi and H. Fujita, “Electrostataic micro torsion mirrors for an optical switch matrix,” IEEE J. MEMS, 5:231 (1996)

    Google Scholar 

  79. B. E. A. Salah and M. C. Teisch, Fundamentals of Photonics, Wiley-Interscience (1991)

    Google Scholar 

  80. L.-Y. Lin, E. L. Goldstein, R. W. Tkach, “On the expandability of free-space micromachined optical cross connects,” IEEE J. Lightwave Technol, 18:482–489 (2000)

    Article  Google Scholar 

  81. L. Fan, S. Gloeckner, P. D. Dobblelaere, S. Patra, D. Reiley, C. King, T. Yeh, J. Glitters, S. Gutierrez, Y. Loke, M. Harburn, R. Chen, E. Kruglick, M. Wu, and A. Husain, “Digital MEMS switch for planar photonic crossconnects,” 2002 Optical Fiber Communication (OFC) Conference, Anaheim, CA, paper Tu04

    Google Scholar 

  82. R. T. Chen, H. Nguyen, and M. C. Wu, “A high-speed low-voltage stress-induced micromachined 2×2 optical switch,” IEEE Photonics Technol. Lett., 11:1396–1398 (1999)

    Article  Google Scholar 

  83. R. Legtenberg, E. Berenschot, M. Elwenspoek, and J. Fluitman, “Electrostatic curved electrode actuators,” Proc. IEEE MEMS 1995, pp. 37–42

    Google Scholar 

  84. L. Houlet, P. Helin, T. Bourouina, G. Reyne, E. Diffour-Gergam, and H. Fujita, “Movable vertical mirror arrays for optical microswitch matrixes and their electromagnetic actuation,” IEEE J. Selected Topics in Quantum Electron., 8(l):58–63 (2002)

    Article  Google Scholar 

  85. L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects,” IEEE Photonics Technol. Lett., 10:525–527 (1998)

    Article  Google Scholar 

  86. B. Hehin, K. Y. Lau, and R. S. Muller, “Magnetically actuated micromirrors for fiber-optic switching,” in Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, 1998

    Google Scholar 

  87. Y. Yoon, K. Bae, and H. Choi, “An optical switch with newly designed electrostatic actuators for optical cross connects,” in 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland

    Google Scholar 

  88. R. Akiyama and H. Fujita, “A quantitative analysis of scratch drive actuator using buckling motion,” Proc. 8th IEEE International MEMS Workshop, 1995, pp. 310–315

    Google Scholar 

  89. J. W. Judy and R. S. Muller, “Magnetically actuated, addressable microstructures,” IEEE J. MEMS, 6(3):249–256 (1997)

    Google Scholar 

  90. C.-H. Ji and Y. K. Kim, “Addressable electromagnetic micromirror array with single crystal silicon mirror plate and aluminum spring,” 2001 IEEE/LEOS International Conference on Optical MEMS, Okinawa, Japan, 2001

    Google Scholar 

  91. Marxer and N. F. de Rooij, “Micro-opto-mechanical 2×2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation,” IEEE J. Lightwave Technol., 17(l):2–6 (1999)

    Article  Google Scholar 

  92. W. Noell, P.-A. Clerc, L. Dellmann, B. Guldimann, H.-P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Selected Topics in Quantum Electron., 8(1):148–154 (2002)

    Article  Google Scholar 

  93. Marxer, C. Thio, M.-A. Gretillat, N. F. de Rooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. MEMS, 6(3):277–285 (1997)

    Google Scholar 

  94. S.-S. Lee, L.-S. Huang, C.-J. Kim, and M. C. Wu, “Free-space fiber-optic switches based on MEMS vertical torsion mirrors,” IEEE J. Lightwave Technol., 17(1):7–13 (1999)

    Article  Google Scholar 

  95. Y. Kato, T. Norimatsu, O. Imaki, T. Sasaki, K. Kondo, and K. Mori, “Development of a multi-channel 2×2 optical switches,” 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, paper ThB3

    Google Scholar 

  96. C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechamcs,” IEEE Photonics Technol Lett, 11(2):233–235 (1999)

    Article  Google Scholar 

  97. C. Marxer, B de Jong, and N. F. de Rooij, “Comparison of MEMS variable optical attenuator designs,” 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, paper FA1

    Google Scholar 

  98. C. H. Ji, Y. Yee, J. Choi, and J. U. Bu, “Electromagnetic variable optical attenuator,” 2002 IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, paper WB2

    Google Scholar 

  99. C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Selected Topics in Quantum Electron., 5(1):18–25 (1999)

    Article  Google Scholar 

  100. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, “GaAs micro-machined widely tunable Fabry-Perot filters,” Electron. Lett., 31(3):228–229 (1995)

    Article  Google Scholar 

  101. M. C. Larson and J. S. Harris, Jr., “Broadly-tunable resonant-cavity light-emitting diode,” IEEE Photonics Technol. Lett., 7(11):1267–1269 (1995)

    Article  Google Scholar 

  102. C. F. R. Mateus, C. Chih-Hao, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, “Widely tunable torsional optical filter,” IEEE Photonics Technol. Lett., 14(6):819–821 (2002)

    Article  Google Scholar 

  103. R. Amano, F. Koyama, and M. Arai, “GaAlAs/GaAs micromachined thermally tunable vertical cavity filter with low tuning voltage,” Electron. Lett., 38:(14):738–740 (2002)

    Article  Google Scholar 

  104. J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-Al As Fabry-Perot filter,” IEEE Photonics Technol. Lett., 9(9):1235–1237 (1997)

    Article  Google Scholar 

  105. P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett, 34(20):1967–1968 (1998)

    Article  Google Scholar 

  106. H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett, 38(20):1201–1202 (2002)

    Article  Google Scholar 

  107. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective 1.55 mu m InP/air gap micromachined Fabry-Perot filter for optical communications,” Electron. Lett, 34(5):453–455 (1998)

    Article  Google Scholar 

  108. J. Daleiden, V. Rangelov, S. Irmer, E. Romer, M. Strassner, C. Prott, A. Tarraf, and H. Hillmer, “Record tuning range of InP-based multiple air-gap MOEMS filter,” Electron. Lett, 38(21):1270–1271 (2002)

    Article  Google Scholar 

  109. L. A. Coldren, “Monolithic tunable diode lasers,” IEEEJ. Selected Topics in Quantum Electron., 6(6):988–999 (2000)

    Article  Google Scholar 

  110. M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., 31:1671–1672 (1995)

    Article  Google Scholar 

  111. M. C. Larson, A. R. Massengale, and J. S. Harris, Jr., “Continuously tunable micromachined vertical cavity surface emitting laser with 18 nm wavelength range,” Electron. Lett., 32:330–332 (1996)

    Article  Google Scholar 

  112. D. Vakhashoori, P. D. Wang, M. Azimi, K. J. Knopp, and M. Jiang, “MEMs-tunable vertical-cavity surface-emitting lasers,” Proc. Optical Fiber Communication Conference (OFC), Post-Conference Edition, 2:TuJ1-3 (2001), IEEE Cat. no. 01CH37171

    Google Scholar 

  113. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Selected Topics in Quantum Electron., 6(6):978–987 (2000)

    Article  Google Scholar 

  114. J. S. Harris, Jr., “Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks?” IEEE J. Selected Topics in Quantum Electron., 6(6):1145–1160 (2000)

    Article  Google Scholar 

  115. H. Jerman and J. D. Grade, “A mechanically-balanced, DRIE rotary actuator for a high-power tunable laser,” in 2002 Solid-State Sensor and Actuator Workshop Tech. Digest, June 2–6, 2002, Hilton Head, SC

    Google Scholar 

  116. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Optics Lett., 17(9):688–690 (1992)

    Article  Google Scholar 

  117. D. M. Bloom, “The grating light valve: revolutionizing display technology,” SPIE Symp. Proc., Projection Displays III, 3013:165–171 (1997)

    Google Scholar 

  118. O. Solgaard, “Dynamic diffractive optical elements based on MESM technology,” Proc. 2002 Optics-Photonics Design and Fabrication (ODF) Conference, Tokyo, Japan, paper WP01

    Google Scholar 

  119. S. D. Senturia, “Diffractive MEMS: the polychromator and related devices,” Digest 2002 IEEE/LEOS International Conference on Optical MEMS, pp. 5–6

    Google Scholar 

  120. M. A. Butler, E. R. Deutsch, S. D. Senturia, M. B. Sinclair, W. C. Sweatt, D. W. Youngner, and G. B. Hocker, “A MEMS-based programmable diffraction grating for optical holography in the spectral domain,” Technical Digest 2001 International Electron Devices Meeting (IEDM), pp. 41.1.1–41.1.4

    Google Scholar 

  121. E. S. Hung and S. D. Senturia, “Extending the travel range of analog-tuned electrostatic actuators,” J. MEMS, 8:497 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 William Andrew, Inc.

About this chapter

Cite this chapter

Wu, M.C., Patterson, P.R. (2006). Free-Space Optical MEMS. In: Korvink, J.G., Paul, O. (eds) MEMS: A Practical Guide to Design, Analysis, and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33655-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33655-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21117-4

  • Online ISBN: 978-3-540-33655-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics