Skip to main content

Abstract

Microelectromechanical systems require a multidisciplinary approach to design, including knowledge of fabrication technology, mechanics, electromechanics, and electronics. In the majority of cases, good MEMS design requires the evaluation of tradeoffs among the fabrication process, micromechanical topology, and sizing. Sensor interface circuits, signal conditioning, and feedback provide additional interactions that affect design choices. This chapter provides an introductory overview to the system-level simulation of microsystems in support of the design effort. Discussion is devoted to microelectromechanical structures with electronics. However, the general methods outlined here have equal applicability in other microsystems, such as microfluidic and micro-optical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, MA (1980)

    Google Scholar 

  2. E. K. Antonsson, “Structured design methods for MEMS,” Final Report on NSF Sponsored Workshop on Structured Design Methods for MEMS, Nov. 12–15, 1995; on-line at http://design.caltech.edu/NSF_MEMS_Workshop

    Google Scholar 

  3. C. T.-C. Nguyen, “Frequency-selective MEMS for miniaturized low-power communication devices,” IEEE Trans. Microwave Theory and Technique, 47 (8): 1486–1503 (Aug. 1999)

    Article  Google Scholar 

  4. S. D. Senturia, Microsystem Design, Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  5. A. Nathan and H. Baltes, Microtransducer CAD: Physical and Computational Aspects, Springer-Verlag, Wien (1999)

    MATH  Google Scholar 

  6. P. Voigt, G. Schräg, and G. Wachutka, “Electrofluidic full-system modelling of a flap valve micropump based on Kirchhoffian network theory,” Sensors and Actuators, A66(1–3):9–14 (April 1998)

    Google Scholar 

  7. J. S. Przemieniecki, Theory of Matrix Structural Analysis, McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  8. H. Reismann and P. S. Pawlik, Elasticity, Theory and Applications, John Wiley & Sons, New York (1980)

    MATH  Google Scholar 

  9. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York (1987)

    Google Scholar 

  10. J. J. Blech, “On isothermal squeeze films,” J. Lubrication Technol., 105:615–620 (1983)

    Article  Google Scholar 

  11. T. Veijola, H. Kuisma, J. Lahdenpera, and T. Ryhanen, “Equivalent-circuit model of the squeezed gas film in a silicon accelerometer,” Sensors and Actuators, A48:239–248 (1995)

    Article  Google Scholar 

  12. Y-H. Cho, A. P. Pisano, and R. T. Howe, “Viscous damping model for laterally oscillating microstructures,” J. MEMS, 3(2):81–87 (June 1994)

    Google Scholar 

  13. J. M. Gere and S. P. Timoshenko, Mechanics of Materials, 4th ed., PWS Publishing Co., Boston (1990)

    Google Scholar 

  14. S. Timoshenko, Strength of Materials, Part I: Elementary Theory and Problems, 3rd ed., R. E. Krieger Publishing Co., Huntington, NY (1976)

    Google Scholar 

  15. W. A. Johnson and L. K. Warne, “Electrophysics of micromechanical comb actuators,” J. MEMS, 4(1):49–59 (March 1995)

    Google Scholar 

  16. G. Lorenz, “Network Simulation of Micromechanical Systems,” Ph.D. thesis, University of Bremen, Germany (1999)

    Google Scholar 

  17. T. Mukherjee, G. K. Fedder, D. Ramaswamy, and J. White, “Emerging simulation approaches for micromachined devices,” IEEE Transactions on Computer-AidedDesignof Integrated Circuits and Systems, 19(12): 1572–1589 (Dec. 2000)

    Article  Google Scholar 

  18. L. Ljung, System Identification—Theory for the User, 2nd ed., Prentice-Hall, Upper Saddle River, NJ (1999)

    Google Scholar 

  19. Matlab System Identification Toolbox, The Math Works; on-line at http://www. mathworks. com

    Google Scholar 

  20. L. D. Gabbay, J. E. Mehner, and S. D. Senturia, “Computer-aided generation of nonlinear reduced-order dynamic macromodels—I: Non-stress-stiffened case,” J. MEMS, 9:262–269 (June 2000)

    Google Scholar 

  21. J. E. Mehner, L. D. Gabbay, and S. D. Senturia, “Computer-aided generation of nonlinear reduced-order dynamic macromodels—II: Stress-stiffened motion,” J. MEMS, 9:270–278 (June 2000)

    Google Scholar 

  22. W. H. Press, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  23. N. R. Swart, S. F. Bart, M. H. Zaman, M. Mariappan, J. R. Gilbert, and D. Murphy, “AutoMM: Automatic generation of dynamic macromodels for MEMS devices,” Proc. IEEE MEMS Conference, 1998, pp. 178–183

    Google Scholar 

  24. B. Affour, P. Nachtergaele, S. Spirkovitch, D. Ostergaard, and M. Gyimesi, “Efficient reduced order modeling for system simulation of micro-electromechanical systems (MEMS) from FEM models,” Proc. SPIE, 4019:50–54 (2000)

    Article  Google Scholar 

  25. L. Meirovitch, Analytical Methods in Vibrations, Macmillan Publishing Co., Inc., New York (1967)

    MATH  Google Scholar 

  26. J. U. Thoma, Simulation by Bondgraphs, Springer-Verlag, New York (1990)

    Google Scholar 

  27. Matlab Simulink Toolbox, The MathWorks, on-line at http://www.mathworks.com

    Google Scholar 

  28. H. Tilmans, “Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems,” J. Micromech. Microeng., 6:157–176 (1996); erratum, 6:359 (1996)

    Article  Google Scholar 

  29. H. Tilmans, “Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems,” Micromech. Microeng., 7:285–309 (1997)

    Article  Google Scholar 

  30. N. R. Swart and A. Nathan, “Mixed-mode device-circuit simulation of thermal-based microsensors,” Sensors and Materials, 6:179–192 (1994)

    Google Scholar 

  31. H. H. Pham and A. Nathan, “Compact MEMS-SPICE modeling,” Sensors and Materials, 10:63–75 (1998)

    Google Scholar 

  32. I. Getreu, “Behavioral modelling of analog blocks using the SABER simulator,” IEEE Proc. 32nd Midwest Symposium on Circuits and Systems, Aug. 14–16, 1989, vol. 2, pp. 977–980

    Google Scholar 

  33. D. Fitzpatrick and I. Miller, Analog Behavioral Modeling with the Verilog-A Modeling Language, Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  34. K. S. Kundert and O. Zinke, The Designer’s Guide to Verilog-AMS, Kluwer Academic Publishers, Boston, MA (2004)

    MATH  Google Scholar 

  35. B. Romanowicz, Methodology for the Modeling and Simulation of Microsystems, Kluwer Academic Press, Boston (1998)

    Google Scholar 

  36. S. Iyer, Q. Jing, G. K. Fedder, and T. Mukherjee, “Convergence and speed issues in analog HDL model formulation for MEMS,” Proc. Fourth Int. Conf. on Modeling and Simulation of Microsystems Semiconductors, Sensors and Actuators (MSM’ 01), Hilton Head Island, SC, March 19–21, 2001, pp. 590–593

    Google Scholar 

  37. Z. Bai, D. Bindel, J. Clark, J. Demmel, K. S. J. Pister, and N. Zhou, “New numerical techniques and tools in SUGAR for 3D MEMS simulation,” Proc. Fourth Int. Conf on Modeling and Simulation of Microsystems, March 27–29, 2000, pp. 31–34

    Google Scholar 

  38. SUGAR: A simulation program for MEMS, UC Berkeley, on-line at http://www-bsac. EECS. Berkeley. ED U/~cfm/index. html, 2001

    Google Scholar 

  39. N. R. Lo, E. C. Berg, S. R. Quakkelaar, J. N. Simon, M. Tachiki, H. J. Lee and K. S. J. Pister, “Parameterized layout synthesis, extraction, and SPICE simulation for MEMS,” Proc. ISCAS, Atlanta, GA, 1996, pp. 481–484

    Google Scholar 

  40. T. Mukherjee and G. K. Fedder, “Hierarchical mixed-domain circuit simulation, synthesis and extraction methodology for MEMS,” Journal of VLSI Signal Processing Systems for Signal Image and Video Technology, vol. 21, Kluwer Academic Publishers (July 1999), pp. 233–249

    Google Scholar 

  41. G. K. Fedder and Q. Jing, “A hierarchical circuit-level design methodology for microelectromechanical systems,” IEEE Trans. Circuits and Systems II, 46(10):1309–1315 (Oct. 1999)

    Article  Google Scholar 

  42. D. Teegarden, G. Lorenz, and R. Neul, “How to model and simulate microgyroscope systems,” IEEE Spectrum, 35(7):66–75 (July 1998)

    Article  Google Scholar 

  43. M. A. Maher and H. Lee, “MEMS systems design and verification tools,” Proc. SPIE 5th Annual Int. Symp. on Smart Structures and Materials, San Diego, CA, March 1–5, 1998

    Google Scholar 

  44. CoventorWare Architect webpage, http://www.coventor.com/software/coven-torware/architect.html, Coventor, Inc., 4001 Weston Parkway, Cary, NC 27513 (Nov. 2001)

    Google Scholar 

  45. D. Moulinier, P. Metsu, M.-P. Brutails, S. Bergeon, and P. Nachtergaele, “MEMSMaster: A new approach to prototype MEMS,” Design, Test, Integration, and Packaging of MEMS/MOEMS 2001, Apr. 25–27, 2001, Cannes, France, pp. 165–174

    Google Scholar 

  46. B. Baidya and T. Mukherjee, “Extraction for integrated electronics and MEMS devices,” Proc. Int. Conf. on Solid-State Sensors and Actuators (Transducers VI/Eurosensors XV), 2001, pp. 280–283

    Google Scholar 

  47. Q. Jing, H. Luo, T. Mukherjee, L. R. Carley, and G. K. Fedder, “CMOS micromechanical filter design using a hierarchical MEMS circuit library,” Proc. IEEE Int. Conf on MEMS, Miyazaki, Japan, January 23–27, 2000, pp. 187–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 William Andrew, Inc.

About this chapter

Cite this chapter

Fedder, G.K. (2006). System-Level Simulation of Microsystems. In: Korvink, J.G., Paul, O. (eds) MEMS: A Practical Guide to Design, Analysis, and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33655-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33655-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21117-4

  • Online ISBN: 978-3-540-33655-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics