Skip to main content

Abstract

The term micromachining usually refers to the fabrication of micromechanical structures with the aid of etching techniques to remove part of the substrate or a thin film. Silicon has excellent mechanical properties,[1] making it an ideal material for machining. An early silicon (pressure) sensor was made by Honeywell in 1962 using isotropic etching.[2] In 1966, Honeywell developed a technique to fabricate thin membranes using mechanical milling. Crystal-orientation-dependent etchants led to more precise definition of structures and increased interest.[3] Anisotropic etching was introduced in 1976. An early silicon pressure sensor, based on anisotropic etching, was made by Greenwood in 1984.[4] Surface micromachining also dates back to the 1960s. Early examples included metal mechanical layers.[5] Basically, surface micromachining involves the formation of mechanical structures from thin films on the surface of the wafer. The 1980s saw the growth of silicon-based surface micromachining using a polysilicon mechanical layer.[6,7] In recent years, a number of new technologies have been developed using both silicon and alternative materials. These include the epi-processes where the epilayer is used as a mechanical layer and a number of deep plasma etching processes. This chapter concentrates on silicon-based micromachining processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.E. Petersen, “Silicon as a mechanical material,” Proc. IEEE, 70:420–457 (1982)

    Article  Google Scholar 

  2. O.N. Tufte and G.D. Long, “Silicon diffused element piezoresistive diaphragm,” J. Appl. Phys., 33:3322 (1962)

    Article  Google Scholar 

  3. K.E. Bean, “Anisotropic etching of silicon,” IEEE Trans Electron Devices, ED-25: 1185–1193 (1978)

    Article  Google Scholar 

  4. J.C. Greenwood, “Etched silicon vibrating sensor,” J. Phys. E. Sei. Instrum., 17: 650–652 (1984)

    Article  Google Scholar 

  5. H.C. Nathanson and R.A. Wickstrom, “A resonant-gate silicon surface transistor with high-Q band pass properties,” Appl. Phys. Lett., 7:84 (1965)

    Article  Google Scholar 

  6. R.T. Howe and R.S. Muller, “Polycrystalline and amorphous silicon micromechanical beams: annealing and mechanical properties,” Sens. Actuators, 4: 447–454 (1983)

    Article  Google Scholar 

  7. L-S. Fan, Y-C. Tai, and R.S. Muller, “Pin joints, gears, springs, cranks and other novel micromechanical structures,” Proc. Transducers 1987, Tokyo, (1987), pp. 849–852

    Google Scholar 

  8. M. Elwenspoek and H. Jansen, Silicon Micromachining, Cambridge University Press (1998)

    Google Scholar 

  9. H. Seidel, H. Csepregi, A. Heuberger, and H. Baumgartner, “Anisotropic etching of crystalline silicon in alkaline solutions I & II,” J. Electrochem. Soc., 137:3612–3632 (1990)

    Article  Google Scholar 

  10. D. Zielke and J. Frühauf, “Determination of rates for orientation-dependent etching,” Sens. Actuators, A48:151–156 (1995)

    Article  Google Scholar 

  11. K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Irie, and M. Yamamoto, “Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration,” Sens. Actuators, A64: 87–93 (1998)

    Article  Google Scholar 

  12. M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sens. Actuators, A80:179–188 (2000)

    Article  Google Scholar 

  13. G.T. Kovacs et al., “Bulk micromachining of silicon,” Proc. IEEE, 86(8):1536–1551 (1998)

    Article  MathSciNet  Google Scholar 

  14. T.A. Kwa, P.J. French, R.F. Wolffenbuttel, P.M. Sarro, L. Hellemans, and J. Snauwaert, “Anisotropically etched silicon mirrors for optical sensor applications,” J. Electrochem. Soc., 142:1226–1233 (1995)

    Article  Google Scholar 

  15. R.M. Finne and D.L. Klein, “A water-amine-complexing agent system for etching silicon,” J. Electrochem. Soc., 114: 965–970 (1967)

    Article  Google Scholar 

  16. A. Reisman, M. Berkenblit, S.A. Chan, F.B. Kaufman, and D.C. Green, J. Electrochem. Soc., 126:1406–1410 (1979)

    Article  Google Scholar 

  17. O. Tabata, “pH-controlled TMAH etchants for silicon micromachining,” Sens. Actuators, A53: 335–339 (1996)

    Article  Google Scholar 

  18. A. Merlos, M. Acero, M.H. Baor, J. Bauselles, and J. Esteve, “TMAH/IPA anisotropic etching characteristics,” Sens. Actuators, A37–38:737–743 (1993)

    Article  Google Scholar 

  19. P.M. Sarro, S. Brida, C.M.A. Ashruf, W.v.d. Vlist, and H.v. Zeijl, “Anisotropic etching of silicon in saturated TMAHW solutions for IC-compatible micromachining,” Sens. Mater., 10:201–212 (1998)

    Google Scholar 

  20. H. Baltes, “CMOS as sensor technology,” Sens. Actuators, 37–38:51–56 (1993)

    Article  Google Scholar 

  21. M.J. Dececlerq, L. Gerzberg, and J.D. Meindl, “Optimization of the hydrazine-water solution for anisotropic etching of silicon in integrated circuit technology,” J. Electrochem. Soc., 122(4):201–212 (1975)

    Google Scholar 

  22. M. Mehregany and S.D. Senturia, “Anisotropic etching of silicon in hydrazine,” Sens. Actuators, 13:375–390 (1988)

    Article  Google Scholar 

  23. M.A. Gajda, J.E.A. Shaw, A. Putnis, and H. Ahmed, “Anisotropic etching of silicon in hydrazine,” Sens. Actuators, A40: 227–236 (1994)

    Article  Google Scholar 

  24. U. Schnakenberg et al, “NH4OH based etchants for silicon micromachining,” Sens. Actuators, A21–23:1031–1035 (1990)

    Article  Google Scholar 

  25. L.D. Clark, Jr., J.L. Lund, and D.J. Edell, “Cesium hydroxide (CsOH): a useful etchant for micromachining silicon,” Tech. Digest IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, June 6–9, 1988, pp. 5–8

    Google Scholar 

  26. E.D. Palik et al, “Study of the etch-stop mechanism in silicon,” J. Electrochem. Soc., 137:2051–2059 (1982)

    Article  Google Scholar 

  27. Y. Gianchandani and K. Najafi, “A bulk dissolved wafer process for microelectromechanical systems,” IEDM Tech. Digest (1991), pp. 757–760

    Google Scholar 

  28. A. Perez-Rodriguez, A. Romano-Rodriguez, J.R. Morante, M.C. Acero, J. Esteve, and J. Montserrat, “Etch-stop behaviour of buried layers formed by substoichiometric nitrogen ion implantation into silicon,” J. Electrochem. Soc., 143:1026–1033 (1996)

    Article  Google Scholar 

  29. H.A. Waggener, “Electrochemically controlled thinning of silicon,” Bell Syst. Tech. J., 49:473–475 (1970)

    Google Scholar 

  30. B. Kloek, S.D. Collins, N.F.de Rooij, and R.L. Smith, “Study of electrochemical etch-stop for high precision thickness control of silicon membranes,” IEEE Electron Dev., 36:663–669 (1989)

    Article  Google Scholar 

  31. P.M. Sarro and A.W.van Herwaarden, “Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications,” J. Electrochem. Soc., 133:1724–1729 (1986)

    Article  Google Scholar 

  32. A.W. van Herwaarden, D.C. van Duyn, B.W. van Oudheusden, and P.M. Sarro, “Integrated thermal sensors,” Sens. Actuators, A21–23:621–630 (1989)

    Article  Google Scholar 

  33. E. Peeters, D. Lapadatu, R. Puers, and W. Sansen, “PHET, An electrodeless photovoltaic electrochemical etch-stop technique,” J. Microelectromech. Syst., 3:113–123 (1994)

    Article  Google Scholar 

  34. D. Lapadatu, M. de Cooman, and R. Puers, “A double-sided capacitive miniaturized accelerometer based on photovoltaic etch-stop technique,” Sens. Actuators, A53:261–266 (1996)

    Article  Google Scholar 

  35. P.J. French, M. Nagao, and M. Esashi, “Electrochemical etch-stop in TMAH without externally applied bias,” Sens. Actuators, A56:279–280 (1996)

    Article  Google Scholar 

  36. C.M.A. Ashruf, P.J. French, P.M.M.C. Bressers, P.M. Sarro, and J.J. Kelly, “A new contactless electrochemical etch-stop based on gold/silicon/TMAH galvanic cell,” Sens. Actuators, A66:284–291 (1998)

    Article  Google Scholar 

  37. C.M.A. Ashruf, Galvanic Etching of Silicon for Fabrication of Micromechanical Structures, Delft University Press (2000), ISBN 90-407-2001-0

    Google Scholar 

  38. M.M. Abu-Zeid, “Corner undercutting in anisotropically etched isolation contours,” J. Electrochem. Soc., 131:2138–2142 (1984)

    Article  Google Scholar 

  39. X. Wu and W. Ko, “Compensating corner undercutting in anisotropic etching of (100) silicon,” Sens. Actuators, A18:207–215 (1989)

    Article  Google Scholar 

  40. R. van Kampen and R.F. Wolffenbuttel, “Effects of <100>-oriented corner compensation structures on membrane quality and convex corner integrity in (100)-silicon using aqueous KOH,” J. Micromech. Microeng., 5:91–94 (1995)

    Article  Google Scholar 

  41. H.L. Offereins, H. Sandmaier, K. Marusczyk, K. Kuhl, and A. Plettner, “Compensating corner undercutting of (100) silicon in KOH,” Sens. Mater., 3:127–144 (1992)

    Google Scholar 

  42. G.M. O’Hallaran, Capacity Humidity Sensor Based on Porous Silicon, Delft University Press (2000), ISBN 90-407-1919-5

    Google Scholar 

  43. G.M. O’Hallaran, M. Kuhl, P.J. Trimp, and P.J. French, “The effect of additives on the adsorption properties of porous silicon,” Sens. Actuators, A61:415–420 (1997)

    Article  Google Scholar 

  44. P.T.J. Gennissen and P.J. French, “Sacrificial oxide etching compatible with aluminium metallization,” Proc. Transducers 97, Chicago, USA, June 1997, pp. 225–228

    Google Scholar 

  45. M. Kuhl, G.M. O’Halloran, RT.J. Gennissen, and P.J. French, “Formation of porous silicon using an ammonium fluoride based electrolyte for application as a sacrificial layer,” J. Micromech. Microeng., 8:317–322 (1998)

    Article  Google Scholar 

  46. H. Robbins and B. Schwartz, “Chemical etching of silicon,” J. Electrochem. Soc., 123:1903–1909 (1976)

    Article  Google Scholar 

  47. S.D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc., 144:2242–2262 (1997)

    Article  Google Scholar 

  48. N. Schweisinger and A. Albrecht, “Wet chemical isotropic etching procedure of silicon — a possibility for the production of deep structured microcomponents,” Proc. SPIE Micromachining and Microfabrication Process Technology III, 3233:72–81 (1997)

    Google Scholar 

  49. K.R. Williams and R.S. Muller, “Etch rates for micromachining processes,” J. Microelectromech. Syst., 5:256–269 (1996)

    Article  Google Scholar 

  50. K.C. Lee, “The fabrication of thin, freestanding, single-crystal, semiconductor membranes,” Electrochem. Soc., 137:2556–2574 (1990)

    Article  Google Scholar 

  51. T. Bischoff, G. Muller, W. Weiser, and F. Koch, “Front side micromachining using porous-silicon sacrificial-layer technology,” Sens. Actuators, A60:228–234 (1997)

    Article  Google Scholar 

  52. C. Ducso et al., “Porous silicon bulk micromachining for thermally isolated membrane formation,” Sens. Actuators, A60:235–239 (1997)

    Article  Google Scholar 

  53. C.J.M. Eijkel, J. Branebjerg, M. Elwenspoek, and F.C.M. van de Pol, “A new technology for micromachining of silicon: dopant selective HF anodic etching for the realization of low-doped monocrystalline silicon structures,” IEEE Electron. Dev. Lett., 11:588–589 (1990)

    Article  Google Scholar 

  54. M.J.J. Theunissen, “Etch channel formation during anodic dissolution of n-type silicon in aqueous hydrofluoric acid,” J Electrochem. Soc., 119:351–360(1972)

    Article  Google Scholar 

  55. M. Esashi, H. Komatsu, T. Matsuo, M. Takahashi, T. Takishima, K. Imbayashi, and H. Ozawa, “Fabrication of catheter-tip and sidewall miniature pressure sensor,” IEEE Trans. Electron. Dev., 29:57–63 (1982)

    Article  Google Scholar 

  56. G. Kaltsas and A.G. Nassiopoulou, “Front side bulk micromachining using porous-silicon technology,” Sens. Actuators, A65:175–179 (1998)

    Article  Google Scholar 

  57. W. Lang, P. Steiner, and H. Sandmaier, “Porous silicon: a novel material for microsystems,” Sens. Actuators, A51:31–36 (1995)

    Article  Google Scholar 

  58. P.T.J. Gennissen and P.J. French, “Development of silicon accelerometers using epi micromachining,” Proc. SPIE Micromachined Devices and Components, Santa Clara, CA, USA, Sept. 1999, 3876:84–92

    Google Scholar 

  59. T.E. Bell and K.D. Wise, “A dissolved wafer process using porous silicon sacrificial layer and a lightly-doped bulk silicon etch-stop,” Proc. IEEE MEMS, Heidelberg, Germany, Jan. 1997, pp. 251–256

    Google Scholar 

  60. T. Yoshida, T. Kudo, and K. lkeda, “Photo-induced preferential anodization for micromachining,” Sensors Mater., 4/5:229–238 (1993)

    Google Scholar 

  61. C.M.A. Ashruf, P.J. French, P.M.M.C. Bressers, and J.J. Kelly, “Galvanic porous silicon formation without external contact,” Sens. Actuators, A74:118–122 (1999)

    Article  Google Scholar 

  62. H. Ohji, P.J. Trimp, and P.J. French, “Fabrication of free standing structures using a single step electrochemical etching in hydrofluoric acid,” Sens. Actuators, A73:95–100 (1999)

    Article  Google Scholar 

  63. H. Ohji, P.J. French, and K. Tsutsumi, “Fabrication of mechanical structures in p-type silicon using electrochemical etching,” Sens. Actuators, A82(1–3):254–258 (2000)

    Article  Google Scholar 

  64. H. Ohji, P.J. French, S. Izuo, and K. Tsutsumi, “Initial pits for electrochemical etching in hydrofluoric acid,” Sens. Actuators, A85(1–3):390–394 (2000)

    Article  Google Scholar 

  65. V. Lehmann, “Porous silicon-a new material for MEMS,” Proc. IEEE MEMS Workshop 1996, San Diego, USA (1996), pp. 1–6

    Google Scholar 

  66. H. Ohji and P.J. French, “Single step electrochemical etching in ammonium fluoride,” Sens. Actuators, A74:109–112 (1999)

    Article  Google Scholar 

  67. J.W. Bartha, J. Greschner, M. Puech, and P. Maquin, “Low temperature etching of Si in high-density plasma using SF6/02,” Microelectron. Eng., 27:453–156 (1995)

    Article  Google Scholar 

  68. F. Laemer, A. Schilp, K. Funk, and M. Offenberg, “Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications,” Proc. IEEE MEMS 1999 Conf., Orlando, FL, USA (1999)

    Google Scholar 

  69. G. Craciun, M.A. Blauw, E. van der Drift, and P.J. French, “Aspect ratio and crystallographic orientation dependence in deep dry silicon etching at cryogenic temperatures,” Tech. Digest Transducers 2001, Munich, Germany, June 2001

    Google Scholar 

  70. E. Klaassen et al, “Silicon fusion bonding and deep reactive ion etching; a new technology for microstructures,” Proc. Transducers 1995, Stockholm, Sweden, June 1995, pp. 556–559

    Google Scholar 

  71. T.M. Bloomstein and D.J. Ehrlich, “Laser deposition and etching of threedimensional microstructures,” Proc. Transducers 1991, San Francisco, USA, June 1991, pp.507–511

    Google Scholar 

  72. M. Mullenbom, H. Dirac, J.W. Petersen, and S. Bouwstra, “Fast 3D laser micromachining of silicon for micromechanical and microfluidic applications,” Proc. Transducers 1995, Stockholm, Sweden, June 1995, pp. 166–169

    Google Scholar 

  73. Resonetics, Nashua, NH, USA, http://www.resonetics.com

    Google Scholar 

  74. S. Reyntjes and R. Puers, “Focused ion beam applications in microsystem technology,” Micro-Mechanics Europe (MME) Workshop, Uppsala, Sweden, October 1–3, 2000, pp. 87–96

    Google Scholar 

  75. R.J. Young, “Micro-machining using a focused ion beam,” Vacuum 44:353–356 (1993)

    Article  Google Scholar 

  76. G.J. Althas et al., “Focused ion beam system for automated MEMS prototyping and processing,” Proc. SPIE Micromachining and Microfabrication Process Technology III, 3223:198–207 (1997)

    Google Scholar 

  77. J.H. Daniel and D.F. Moore, “A microaccelerometer structure fabricated in silicon-on insulator using a focused ion beam process,” Sens. Actuators, A73:201–209 (1999)

    Article  Google Scholar 

  78. E. Belloy, S. Thurre, E. Walckiers, A. Sayah, and M.A.M. Gijs, “The introduction of powder blasting for sensor and microsystem applications,” Sens. Actuators, A84:330–337 (2000)

    Article  Google Scholar 

  79. P.J. Slikkerveer, P.C. Bouten, and F.C.M. de Haas, “High quality mechanical etching of brittle materials by powder blasting,” Proc. XIII Eurosensors Conf., The Hague, The Netherlands, Sept. 12–15, 1999, pp.655–662; ISBN 90-76699-02-X

    Google Scholar 

  80. H. Wensink, J.W. Berenschot, H.V. Jansen, and M.C. Elwenspoek, “High resolution powder blast micromachining,” Proc. IEEE MEMS 2000 Conf., Miyazaki, Japan (2000), pp. 169–11A

    Google Scholar 

  81. H.C. Nathanson, W.E. Newell, R.A. Wickstrom, and J.R. Davis, Jr., “The resonant gate transistor,” IEEE Trans. Electron. Dev., 14:117–133 (1967)

    Article  Google Scholar 

  82. R.N. Thomas, J. Guldberg, H.C. Nathanson, and PR. Malmberg, “The mirror matrix tube: a novel light valve for projection displays,” IEEE Electron. Dev., ED-22:765 (1975)

    Article  Google Scholar 

  83. K.J. Gabriel, W.S.N. Trimmer, and M. Mehregany, “Micro gears and turbines etched from silicon,” Proc. Transducers 87, Tokyo, 1987, pp. 853–856

    Google Scholar 

  84. Y.X. Li, P.J. French, P.M. Sarro, and R.F. Wolffenbuttel, “Fabrication of a single crystalline capacitive lateral accelerometer using micromachining based on single step plasma etching,” Proc. MEMS 95, Amsterdam, Jan–Feb 1995, pp. 398–403

    Google Scholar 

  85. K.A. Shaw and N.C. MacDonald, “Integrating SCREAM micromachined devices with integrated circuits,” Proc. IEEE MEMS, San Diego, USA, 11–15 February 1996, pp. 44–48

    Google Scholar 

  86. K.A. Shaw, Z.L. Zhang, and N.C. MacDonald, “SCREAM I: a single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sens. Actuators, A40:63–70 (1994)

    Article  Google Scholar 

  87. M. de Boer, H. Jansen, and M. Elwenspoek, “Black silicon V: a study of the fabricating of moveable structures for micro electromechanical systems,” Proc. Transducers 95, Stockholm, Sweden (1995), pp. 565–568

    Google Scholar 

  88. M. Bartek, P.T.J. Gennissen, P.M. Sarro, P.J. French, and R.F. Wolffenbuttel, “An integrated silicon colour sensor using selective epitaxial growth,” Sens. Actuators, A41–42:123–128 (1994)

    Article  Google Scholar 

  89. A.E. Kabir, G.W. Neudeck, and J.A. Hancock, “Merged epitaxial lateral overgrowth (MELO) of silicon and its applications in fabricating single crystal silicon surface micromachining structures,” Proc. Techcon 93, Atlanta, GA, USA (1993)

    Google Scholar 

  90. P.T.J. Gennissen, Micromachining Techniques Using Layers Grown in an Epitaxial Reactor, Delft University Press (1999), ISBN 90-407-1843-1

    Google Scholar 

  91. T.E. Bell, P.T.J. Gennissen, D. de Munter, and M. Kuhl, “Porous silicon as a sacrificial material”, J. Micromech. Microeng., 6:361–369 (1996)

    Article  Google Scholar 

  92. P.T.J. Gennissen, P.J. French, D.P.A. De Munter, T.E. Bell, H. Kaneko, and P.M. Sarro, “Porous silicon micromachining techniques for acceleration fabrication,” Proc. ESSDERC 95, Den Haag, The Netherlands, Sept. 1995, pp. 593–596

    Google Scholar 

  93. B. Diem, P. Rey, S. Renard, S. Viollet Bosson, H. Bono, F. Michel, M.T. Delaye, and G. Delapierre, “SOI’ sIMOX’ from bulk to surface micromachining, a new age for silicon sensors and actuators,” Sens. Actuators, A46–47:8–26 (1995)

    Article  Google Scholar 

  94. T. Lisec, M. Kreutzer, and B. Wagner, “A surface micromachined piezoresistive pressure sensor with high sensitivity,” Proc. ESSDERC 95, Den Haag, The Netherlands, Sept. 1995, pp. 339–342

    Google Scholar 

  95. P.T.J. Gennissen, P.J. French, M. Bartek, P.M. Sarro, A. van der Bogaard, and C. Visser, “Bipolar compatible epitaxial polysilicon for surface micromachined smart sensors,” Proc. SPIE Micromachining and Microfabrication Process Technology II, Austin, Texas, USA, 14–15 Oct. 1996, pp. 135–142

    Google Scholar 

  96. P.T.J. Gennissen, M. Bartek, P.J. French, and P. M. Sarro, “Bipolar compatible epitaxial poly for smart sensor-stress minimization and applications,” Sens. Actuators, A62:636–645 (1997)

    Article  Google Scholar 

  97. G.T. Mulhern, D.S. Soane, and R.T Howe, “Supercritical carbon dioxide drying of microstructures,” Proc. Transducers 1993, Yokohama, Japan, pp. 296–299

    Google Scholar 

  98. R. Legtenberg and H.A.C. Tilmans, “Electrostatically driven vacuumencapsulation polysilicon resonators: Part 1. Design and fabrication,” Sens. Actuators, A45:57–66 (1994)

    Article  Google Scholar 

  99. P.J. French and R.F. Wolffenbuttel, “Reflow of BPSG for sensor applications,” J. Micromech. Microeng., 3:1–3 (1993)

    Article  Google Scholar 

  100. A.C. Adams, “Plasma planarisation,” Solid State Technol., 24(1): 178–181 (1981)

    Google Scholar 

  101. Y.X. Li, P.J. French, and R.F. Wolffenbuttel, “Plasma planarization for sensor applications,” J. Microelectromech. Syst., 4:132–138 (1995)

    Article  Google Scholar 

  102. B. Roberts, “Chemical mechanical planarisation,” Proc. IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop 1992, Cambridge, MA, USA, 30 Sept.–l Oct. 1992, pp. 206–210

    Google Scholar 

  103. J.J. Sniegowski, “Chemical mechanical polishing: enhancing the manufacturability of MEMS,” Proc. SPIE Micromachining and Microfabrication Process Technology II, Austin, Texas, USA, 14–15 Oct. 1996, pp. 104–115

    Google Scholar 

  104. K.M. Mahmoud and R.F. Wolffenbuttel, “Compatibility between bipolar read-out electronics and microstructures in silicon,” Sens. Actuators, A31:188–199 (1992)

    Article  Google Scholar 

  105. J.H. Smith, S. Montague, J.J. Sniegowski, J.R. Murray, R.P. Manginell, and P.J. McWhorter, “Characterisation of the embedded micromachined device approach to the monolithic integration of MEMS with CMOS,” Proc. SPIE Micromachining and Microfabrication Process Technology II, Austin, Texas, USA, 14–15 Oct. 1996, 2879:306–314

    Google Scholar 

  106. Y.B. Gianchandani, M. Shinn, and K. Najafi, “Impact of long high temperature anneals on residual stress in polysilicon,” Proc. Transducers 97, Chicago, USA, June 1997, pp. 623–624

    Google Scholar 

  107. B.P van Drieënhuizen, J.FL. Goosen, P.J. French, Y.X. Li, D. Poenar, and R.F. Wolffenbuttel, “Surface micromachined module compatible with BiFET electronic processing,” Proc. Eurosensors 94, Toulouse, France, Sept. 1994, p. 108

    Google Scholar 

  108. M. Fischer, M. Nägele, D. Eichner, C. Schöllhorn, and R. Strobel, “Integration of surface micromachined polysilicon mirrors and a standard CMOS process,” Sens. Actuators, A52:140–144 (1996)

    Article  Google Scholar 

  109. C. Hierold, A. Hilderbrandt, U. Näher, T. Scheiter, B. Mensching, M. Steger, and R. Tielert, “A pure CMOS surface micromachined integrated accelerometer,” Proc. MEMS 96, San Diego, USA, Feb. 1996, pp. 174–179

    Google Scholar 

  110. G.K. Fedder, S. Santhanan, M.L. Read, S.C. Eagle, D.F. Guillou, M.S.-C. Lu, and L.R. Carley, “Laminated high-aspect ratio microstructures in a conventional CMOS process,” Proc. MEMS 96, San Diego, USA, Feb. 1996, pp. 13–18

    Google Scholar 

  111. D. Westberg, O. Paul, G.I. Andersson, and H. Baltes, “Surface micromachining by sacrificial aluminium etching,” J. Micromech. Microeng., 6:376–384 (1996)

    Article  Google Scholar 

  112. O. Paul, D. Westberg, M. Hornung, V. Ziebart, and H. Baltes, “Sacrificial aluminum etching for CMOS microstructures”, Proc. MEMS 97, Nagoya, Japan, Jan. 1997, pp. …

    Google Scholar 

  113. H. Xie and G.K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” Proc. IEEE MEMS 2000, Miyazaki, Japan, 23–27 January 2000, pp. 496–501

    Google Scholar 

  114. J.M. Bustillo, G.K. Fedder, C.T.-C. Nguyen, and R.T. Howe, “Process technology for the modular integration of CMOS and polysilicon microstructures,” Microsyst. Technol., 1:30–41 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 William Andrew, Inc.

About this chapter

Cite this chapter

French, P.J., Sarro, P.M. (2006). Micromachining Technology. In: Korvink, J.G., Paul, O. (eds) MEMS: A Practical Guide to Design, Analysis, and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33655-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33655-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21117-4

  • Online ISBN: 978-3-540-33655-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics