Skip to main content
  • 4600 Accesses

Abstract

This chapter provides the information necessary to understand the capabilities and limitations of existing electrically operated microactuators so that a microactuator can be selected or designed for a specific application and set of design constraints. It begins by providing introductory information about the field of microelectromechanical systems (MEMS), with the specific perspective of microactuator development. A brief but broad discussion of the transduction mechanisms used by microactuators is presented. Microactuators based on electromechanical transduction mechanisms are then described and analyzed, and specific examples are cited. References to published work are provided as existence proofs and for in-depth study of the individual cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Fujita, “Microactuators and micromachines,” Proc. IEEE, 86(8): 1721–1732 (1998)

    Article  Google Scholar 

  2. H. Fujita, “Future of actuators and microsystems,” Sens. Actuators, A56(1–2): 105–111 (1996)

    Article  Google Scholar 

  3. P. Ruther, W. Bacher, K. Feit, and W. Menz, “LIGA-microtesting system with integrated strain-gauges for force measurement,” Proc. IEEE MEMS 1997 Workshop, Nagoya, Jan. 1997, pp. 541–545

    Google Scholar 

  4. C. Grosjean, X. Yang, and Y.-C. Tai, “A thermopneumatic microfluidic system,” Proc. IEEE MEMS 2002 Conf., Las Vegas, Jan. 2002, pp. 24–27

    Google Scholar 

  5. C. Vancura, M. Rüegg, Y. Li, D. Lange, C. Hagleitner, O. Brand, A. Hierlemann, and H. Baltes, “Magnetically actuated CMOS resonant cantilever gas sensor for volatile organic compounds,” Dig. Tech. Papers Transducers 2003 Conf, Boston, June 2003, pp. 1355–1358

    Google Scholar 

  6. K.-C Lee, Sekwang Park, and Eun Sok Kim, “Improved electromagnetic displacement transducer with large force for implantable middle ear hearing aid” Dig. Tech. Papers Transducers 2003 Conf, Boston, June 2003, pp. 1217–1220

    Google Scholar 

  7. H. H. Gatzen, E. Obermeier, T. Kohlmeier, T. Budde, H. D. Ngo, B. Mukhopadhyay, and M. Fair, “An electromagnetically actuated bistable MEMS optical microswitch,” Dig. Tech. Papers Transducers 2003 Conf, Boston, June 2003, pp. 1514–1517

    Google Scholar 

  8. C.-H. Ji, Y. Yee, J. Choi, H.-H. Oh, and J.-U. Bu, “Latchable electromagnetic 2×2 MEMS optical switch,” Proc. IEEE MEMS 2003 Conf., Kyoto, Jan. 2003, pp. 239–242

    Google Scholar 

  9. J. Bernstein, W. P. Taylor, J. Brazzle, G. Kirkos, J. Odhner, A. Pareek, and M. Zai, “Two-axis-of-rotation mirror array using electromagnetic MEMS,” Proc. IEEE MEMS 2003 Conf, Kyoto, Jan. 2003, pp. 275–278

    Google Scholar 

  10. I.-J. Cho, K.-S. Yun, H.-K. Lee, J.-B. Yoon, and E. Yoon, “A low-voltage two-axis electromagnetically actuated micromirror with bulk silicon mirror plates and torsion bars,” Proc. IEEE MEMS 2002 Conf, Las Vegas, Jan. 2002, pp. 540–543

    Google Scholar 

  11. H. Rothuizen, M. Despont, U. Drechsler, G. Genolet, W. Häberle, M. Lutwyche, R. Stutz, and P. Vettiger, “Compact copper/epoxy-based electromagnetic scanner for scanning probe applications,” Proc. IEEE MEMS 2002 Conf, Las Vegas, Jan. 2002, pp. 582–585

    Google Scholar 

  12. S. Reyntjens and R. Puers, “RASTA: the real-acceleration-for-self-test accelerometer,” Dig. Tech. Papers Transducers 2001 Conf, Munich, June 2001, pp. 434–437

    Google Scholar 

  13. A. Bayrashev, A. Parker, W. P. Robbins, and B. Ziaie, “Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites,” Dig. Tech. Papers Transducers 2003 Conf, Boston, June 2003, pp. 1707–1710

    Google Scholar 

  14. T. Bourouina, E. Lebrasseur, G. Reyne, H. Fujita, T. Masuzawa, A. Ludwig, E. Quandt, H. Muro, T. Oki, and A. Asaoka, “A novel optical scanner with integrated two-dimensional magnetostrictive actuation and two-dimensional piezoresistive detection,” Dig. Tech. Papers Transducers 2001 Conf, Munich, June 2001, pp. 1328–1331

    Google Scholar 

  15. A. Gamier, T. Bourouina, and H. Fujita, “A fast, robust and simple 2-D micro-optical scanner based on contactless magnetostrictive actuation,” Proc. IEEE MEMS 2000 Conf, Miyazaki, Jan. 2000, pp. 715–718

    Google Scholar 

  16. C.-P. Hsu, Tingsin Liao, and Wensyang Hsu, “Electrothermally driven long stretch micro drive with monolithic cascaded actuation units in compact arrangement,” Dig. Tech. Papers Transducers 2003 Conf, Boston, June 2003, pp. 348–351

    Google Scholar 

  17. R. Arya, M. M. Rashid, D. Howard, S. D. Collins, and R. L. Smith, “Thermally actuated, bistable, snapping, silicon membrane,” Dig. Tech. Papers Transducers 2003 Conf, Boston, June 2003, pp. 1411–1414

    Google Scholar 

  18. E. Pichonat-Gallois and M. de Labachelerie, “Thermal actuators used for a micro-optical bench: application for a tunable Fabry-Perot filter,” Dig. Tech. Papers Transducers 2003 Conf, Boston, June 2003, pp. 1419–1422

    Google Scholar 

  19. C. S. Lee, W.-H. Jin, H.-J. Nam, S.-M. Cho, Y.-S. Kim, and J.-U. Bu, “Micro cantilevers with integrated heaters and piezoelectric detectors for low power SPM data strorage application,” Proc. IEEE MEMS 2003 Conf, Kyoto, Jan. 2003, pp. 28–31

    Google Scholar 

  20. J. Qiu, J. H. Lang, A. H. Slocum, and R. Strümpler, “A high-current electrothermal bistable MEMS relay,” Proc. IEEE MEMS 2003 Conf, Kyoto, Jan. 2003, pp. 64–67

    Google Scholar 

  21. L.-A. Liew, V. M. Bright, M. L. Dunn, J. W. Daily, and R. Raj, “Development of SiCN ceramic thermal actuators,” Proc. IEEE MEMS 2002 Conf., Las Vegas, Jan. 2002, pp. 590–593

    Google Scholar 

  22. Y. Wang, Z. Li, D. T. McCormick, and N. C. Tien, “Low-voltage lateral-contact microrelays for RF applications,” Proc. IEEE MEMS 2002 Conf, Las Vegas, Jan. 2002, pp. 645–648

    Google Scholar 

  23. W.-C. Chen, J. Hsieh, and W. Fang, “A novel single-layer bi-directional out-of-plane electrothermal microactuator,” Proc. IEEE MEMS 2002 Conf, Las Vegas, Jan. 2002, pp. 693–697

    Google Scholar 

  24. M. Sinclair, “A high frequency resonant scanner using thermal actuation,” Proc. IEEE MEMS 2002 Conf, Las Vegas, Jan. 2002, pp. 698–701

    Google Scholar 

  25. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig, “The ‘Millipede’—more than 1000 tips for parallel and dense data storage,” Dig. Tech. Papers Transducers 2001 Conf, Munich, June 2001, pp. 1054–1057

    Google Scholar 

  26. L. L. Chu, J. A. Hetrick, and Y. B. Gianchandani, “Compliant micro transmissions for rectilinear electrothermal actuators,” Dig. Tech. Papers Transducers 2001 Conf, Munich, June 2001, pp. 714–717

    Google Scholar 

  27. Y. Liu, X. Li, T. Abe, Y. Haga, and M. Esashi, “A thermomechanical relay with microspring contact array,” Proc. IEEE MEMS 2001 Conf, Interlaken, Jan. 2001, pp. 220–223

    Google Scholar 

  28. G. Lammel and P. Renaud, “3D flip-chip structure of porous silicon with actuator and optical filter for microspectrometer applications,” Proc. IEEE MEMS 2000 Conf, Miyazaki, Jan. 2000, pp. 132–135

    Google Scholar 

  29. J.-S. Park, L. L. Chu, E. Siwapornsathain, A. D. Oliver, and Y. B. Gianchandani, “Long throw and rotary output electro-thermal actuators based on bent-beam suspensions,” Proc. IEEE MEMS 2000 Conf, Miyazaki, Jan. 2000, pp. 680–685

    Google Scholar 

  30. O. Brand, M. Hornung, H. Baltes, and C. Hafner, “Ultrasound barrier microsystem for object detection based on micromachined transducer elements,” J. Microelectromech. Syst., 6:151–160 (1997)

    Article  Google Scholar 

  31. T. Mineta, T. Mitsui, Y. Watanabe, S. Kobayashi, Y. Haga, and M. Esashi, “An active wire with shape memory alloy bending actuator fabricated by room temperature process,” Dig. Tech. Papers Transducers 2001 Conf, Munich, June 2001, pp. 698–701

    Google Scholar 

  32. B. Winzek, T. Sterzl, and E. Quandt, “Bistable thin film composites with TiHfNi-shape memory alloys,” Dig. Tech. Papers Transducers 2001 Conf, Munich, June 2001, pp. 706–709

    Google Scholar 

  33. M. Kohl, B. Krevet, and E. Just, “SMA microgripper system,” Dig. Tech. Papers Transducers 2001 Conf, Munich, June 2001, pp. 710–713

    Google Scholar 

  34. C. C. Ma, R. Wang, Q. P. Sun, Y. Zohar, and M. Wong, “Frequency response of TiNi shape memory alloy thin film micro-actuator,” Proc. IEEE MEMS 2000 Conf, Miyazaki, Jan. 2000, pp. 370–373

    Google Scholar 

  35. T. Mineta, T. Mitsui, Y. Watanabe, S. Kobayashi, Y. Haga, and M. Esashi, “Batch-fabricated flat winding shape memory alloy actuator for active catheter,” Proc. IEEE MEMS 2000 Conf, Miyazaki, Jan. 2000, pp. 375–378bl]References

    Google Scholar 

  36. Y.-C. Su, L. Lin, and A. P. Pisano, “Water-powered, osmotic microactuator,” Proc. IEEE MEMS 2001 Conf., Interlaken, Jan. 2001, pp. 393–396

    Google Scholar 

  37. O. Tabata, H. Kojima, T. Kasatani, Y. Isono, and R. Yoshida, “Chemomechanical actuator using self-oscillating gel for artificial cilia,” Proc. IEEE MEMS 2003 Conf, Kyoto, Jan. 2003, pp. 12–15

    Google Scholar 

  38. M. A. Schmidt, “Technologies for microturbomachinery,” Dig. Tech. Papers Transducers 2001 Conf, Munich, June 2001, pp. 2–5

    Google Scholar 

  39. P. Q. Pham, D. Briand, C. Rossi, and N. F. de Rooij, “Downscaling of solid propellant pyrotechnical microsystems,” Dig. Tech. Papers Transducers 2003 Conf, Boston, June 2003, pp. 1423–1426

    Google Scholar 

  40. W. W. Van Arsdell and S. B. Brown, “Subcritical crack growth in silicon MEMS,” J. Microelectromech. Syst., 8(3) (Sept. 1999)

    Google Scholar 

  41. P. M. Osterberg and S. D. Senturia, “M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures,” J. Microelectromech. Syst., 6(2) (June 1997)

    Google Scholar 

  42. L. L., A. P. Pisano, and R. T. Howe, “A micro strain gauge with mechanical amplifier,” J. Microelectromech. Syst., 6(4) (Dec. 1997)

    Google Scholar 

  43. H. Guckel, T. Randazzo, and D. W. Burns, “A simple technique for the determination of mechanical strain in thin films with applications to polysilicon,” J. Appl Phys., 57(5) (Mar. 1985)

    Google Scholar 

  44. H. Guckel, D. W. Burns, H. A. C. Tilmans, D. W. DeRoo, and C. R. Rutigliano, “Mechanical properties of fine grained polysilicon — the repeatability issue,” 1988 Solid State Sensor and Actuator Workshop Technical Digest, Hilton Head Island, SC, 6–9 June 1988, cat. no.88TH0215-4

    Google Scholar 

  45. M. Biebl and H. von Philipsborn, “Fracture strength of doped and undoped polysilicon,” 8th Int. Conf. on Solid-State Sensors and Actuators, Stockholm, Sweden, 25–29 June 1995, vol. 2

    Google Scholar 

  46. M. Biebl, G. T. Mulhern, and R. T. Howe, “In situ phosphorus-doped polysilicon for integrated MEMS,” 8th Int. Conf. on Solid-State Sensors and Actuators, Stockholm, Sweden, 25–29 June 1995, vol. 1

    Google Scholar 

  47. Sir Edmund Whittaker, A History of Theories of Aether and Electricity, American Institute of Physics, NY, ISBN: 0883185237 (1987)

    Google Scholar 

  48. E. R. Williams, J. E. Faller, and H. A. Hall, Phys. Rev. Letters, 26:721 (1971)

    Article  Google Scholar 

  49. D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley Publishing Company, Inc. (1983), ISBN 0201128195

    Google Scholar 

  50. A. E. Knowlton, Standard Handbook for Electrical Engineers, McGraw-Hill Book Company, Inc., NY (1949), pp. 474–475

    Google Scholar 

  51. F. Paschen, Ann. Physik, 37:69 (1889)

    Article  Google Scholar 

  52. A. R. Von Hippel, Molecular Science and MolecularEengineering, Technology Press of MIT and J. Wiley, NY (1959)

    Google Scholar 

  53. J. W. Judy, “Magnetic microactuators with polysilicon flexures,” M.S. thesis, University of California Berkeley Electrical Engineering and Computer Sciences Department, Aug. 1994

    Google Scholar 

  54. S. F. Bart, T. A. Lober, R. T. Howe, J. H. Lang, and M. F. Schlecht, “Design considerations for micromachined electric actuators,” Sens. Actuators, 14:269–292 (July 1988)

    Article  Google Scholar 

  55. J. W. Judy, “Batch-fabricated ferromagnetic microactuators with silicon flexures,” Ph.D. thesis, University of California Berkeley Electrical Engineering and Computer Sciences Department, Dec. 1996

    Google Scholar 

  56. J. I. Seeger and S. B. Crary, “Stabilization of electrostatically actuated mechanical devices,” 1997 Int. Conf. on Solid-State Sensors and Actuators, Digest of Technical Papers, IEEE, NY, 2:1133–1136 (1997), cat. no. 97TH8267

    Google Scholar 

  57. G. K. Fedder and R. T. Howe, “Multimode digital control of a suspended polysilicon microstructure,” J. Microelectromech. Syst., 5(4):283–297 (Dec. 1996)

    Article  Google Scholar 

  58. H. C. Nathanson, William E. Newell, Robert A. Wickstrom, and John R. Davis, Jr., “The resonant gate transistor,” IEEE Trans. Electron Devices, ED-14:117 (1967)

    Article  Google Scholar 

  59. L. J. Hornbeck, “Digital Light Processing™: A new MEMS-based display technology,” available from Texas Instruments and from the white paper library at www.dlp.com/dlp_technology/dlp_technology_research.asp

    Google Scholar 

  60. R. Legtenberg, J. Gilbert, S. D. Senturia, and M. Elwenspoek, “Electrostatic curved electrode actuators,” J. Microelectromech. Syst., 6(3):257–265 (Sept. 1997)

    Article  Google Scholar 

  61. M. Shikida, K. Sato, and T. Harada, “Fabrication of an S-shaped microactuator,” J. Microelectromech. Syst., 6(1): 18–24 (March 1997)

    Article  Google Scholar 

  62. T. Akiyama and K. Shono, “Controlled stepwise motion in polysilicon microstructures,” J. Microelectromech. Syst., 2(3): 106–110 (Sept. 1993)

    Article  Google Scholar 

  63. B. R. Donald, C. G. Levey, C. D. McGray, D. Rus, and M. Sinclair, “Power delivery and locomotion of untethered microactuators,” Proc. IEEE MEMS 2003 Conf, Kyoto, Jan. 2003, pp. 124–127

    Google Scholar 

  64. R. B. Apte, F. S. A. Sandejas, W. C. Banyai, and D. M. Bloom, “Deformable grating light valves for high resolution displays,” Solid-State Sensor and Actuator Workshop Technical Digest, Hilton Head Island, SC, 13–16 June 1994, pp. 1–6

    Google Scholar 

  65. D. R. Pedersen and O. Solgaard, “Free-space communication link using a grating light modulator,” Sens. Actuators, A83:6–10 (2000)

    Article  Google Scholar 

  66. S. M. Bobbio, M. D. Kellam, B. W. Dudley, S. Goodwin-Johansson, S. K. Jones, J. D. Jacobson, F. M. Tranjan, and T. D. DuBois, “Integrated force arrays,” Proc. IEEE Micro Electro Mechanical Systems (MEMS 1093), Fort Lauderdale, FL, 7–10 February 1993, pp. 149–154

    Google Scholar 

  67. B. Bollée, “Electrostatic motors,” Phillips Tech. Rev., 30:178–194 (1969)

    Google Scholar 

  68. W. C. Tang, C. T.-C. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators, A20(1-2):25–32 (1992)

    Google Scholar 

  69. Sandia SUMMiT™ and other technologies: www.sandia.gov/mstc

    Google Scholar 

  70. E. J. Garcia and J. J. Sniegowski, “Surface micromachined microengine,” Sens. Actuators, A48(3):203–214 (30 May 1995)

    Article  Google Scholar 

  71. J. J. Sniegowski and E. J. Garcia, “Surface-micro-machined gear trains driven by an on-chip electrostatic microengine,” IEEE Electron Device Lett, 17(7):366–368 (July 1996)

    Article  Google Scholar 

  72. J. Möhr, M. Kohl, and W. Menz, “Micro optical switching by electrostatic linear actuators with large displacements,” Proc. Int. Solid-State Sensors and Actuators Conf. (Transducers 1993), Yokohama, Japan, June 1993, pp. 121–123

    Google Scholar 

  73. E. H. Klaassen, K. E. Petersen, J. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, and G. T. A. Kovacs, “Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures,” Sens. Actuators, A52(1-3):132–139 (March-April 1996)

    Article  Google Scholar 

  74. J. D. Grade, J. Jerman, and T. W. Kenny, “A large-deflection electrostatic actuator for optical switching applications,” Solid-State Sensor and Actuator Workshop Technical Digest, Hilton Head Island, SC, 4–8 June 2000, pp. 97–100

    Google Scholar 

  75. L.-S. Fan, Y.-C. Tai, and R. S. Muller, “IC-processed electrostatic micromotors,” Sens. Actuators, 20(1-2):41–47 (Nov. 1989)

    Article  Google Scholar 

  76. Y.-C. Tai and R. S. Muller, “IC-processed electrostatic synchronous micromotors,” Sens. Actuators, 20(1-2):49–55 (Nov. 1989)

    Article  Google Scholar 

  77. M. Mehregany, S. D. Senturia, J. H. Lang, and P. Nagarkar, “Micromotor fabrication,” IEEE Trans. Electron Devices, 39(9):2060–2069 (Sept. 1992)

    Article  Google Scholar 

  78. R. A. Brennan, M. G. Lim, A. P. Pisano, and A. T. Chou, “Large displacement linear actuator,” Tech. Digest, IEEE Solid-State Sensor and Actuator Workshop, 1990, IEEE cat. no. 90CH2783-9, pp.135–139

    Google Scholar 

  79. S. Egawa, T. Niino, and T. Higuchi, “Film actuators: planar, electrostatic surface-drive actuators,” Proc. IEEE Micro Electro Mechanical Systems (MEMS 1993), Nara, Japan, 30 Jan.–2 Feb. 1991, IEEE cat. no. 91CH2957-9, pp. 9–14

    Google Scholar 

  80. M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proc. IEEE, 85(11):1833–1856 (Nov. 1997)

    Article  Google Scholar 

  81. J. Curie and P. Curie, “Development by pressure of polar electricity in hemihedral crystals with inclined faces,” Bull. Soc. Min. France, 3:90–93 (1880)

    Google Scholar 

  82. J. F Nye, Physical Properties of Crystals — Their Representation by Tensors and Matrices, Oxford University Press (1985)

    Google Scholar 

  83. W. G. Cady, Piezoelectricity, McGraw-Hill, NY (1946), and Dover Publishers, ASIN 0486610942 (1978)

    Google Scholar 

  84. T. Ikeda, Fundamentals of Piezoelectricity, Oxford Science Publications (1990)

    Google Scholar 

  85. D. L. DeVoe, Thin-Film Zinc-Oxide Microsensors and Microactuators, Ph.D. thesis, University of California Berkeley Mechanical Engineering Department, July 1997

    Google Scholar 

  86. H. Jaffe and D. A. Berlincourt, “Piezoelectric Transducer Materials,” Proc. IEEE, 55(10): 1372–1385 (Oct. 1965)

    Article  Google Scholar 

  87. J. W. Judy, D. L. Polla, and W. P. Robbins, “A linear piezoelectric stepper motor with sub-micrometer step size and centimeter travel range,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, UFFC-37(5):428–437 (1990)

    Article  Google Scholar 

  88. A. Lai, “Silicon-based ultrasonic surgical actuators,” Proc. 20th Annual Int. Conf. IEEE Eng. in Medicine and Biology Soc, Hong Kong, China, 20:2785–2790(29 Oct. 1998)

    Google Scholar 

  89. D. L. DeVoe and A. P. Pisano, “Modeling and optimal design of piezoelectric cantilever microactuators,” J. Microelectromech. Syst., 6(3):266–270 (Sept. 1997)

    Article  Google Scholar 

  90. M.-N. Niu and E. S. Kim, “Bimorph piezoelectric acoustic transducer,” Dig. Tech. Papers Transducers 2001 Conf., Munich, June 2001, pp. 110–113

    Google Scholar 

  91. Y. Yee, H.-J. Nam, S.-H. Lee, J.-U. Bu, Y-S. Jeon, S.-M. Cho, “PZT actuated micromirror for nano-tracking of laser beam for high density optical data storage,” Proc. IEEE MEMS 2000 Conf, Miyazaki, Jan. 2000, pp. 435–438

    Google Scholar 

  92. M. Ohring, The Materials Science of Thin Films, Academic Press (1992), p. 418

    Google Scholar 

  93. J. Kondoh and S. Shiokawa, “Shear-Horizontal Surface Acoustic Wave Sensors,” in: Sensors Update, vol. 6 (H. Baltes, W. Göpel, and J. Hesse, eds.), Wiley-VCH (2000), pp. 59–78

    Google Scholar 

  94. J. W. Grate and G. C. Frye, “Acoustic Wave Sensors,” in Sensors Update, vol. 2 (H. Baltes, W. Göpel, and J. Hesse, eds.), Wiley-VCH (1996), pp. 37–83

    Google Scholar 

  95. J. W. Grate, S. J. Martin, and R. M. White, “Acoustic wave microsensors, part I,” Anal. Chem., 65:940–948 (1993)

    Article  Google Scholar 

  96. J. W. Grate, S. J. Martin, and R. M. White, “Acoustic wave microsensors, part II,” Anal. Chem., 65:987–996 (1993)

    Article  Google Scholar 

  97. B. A. Auld, Acoustic fields and waves in solids, Krieger Publishing, Malabar, FL (1990)

    Google Scholar 

  98. A. Kuoni et al., “A high insulating thin film ZnO piezoelectric actuator on a polyimide substrate,” Proc. Eurosensors XVI, Prague, Sept. 2002, pp. 228–231

    Google Scholar 

  99. B.T. Khuri-Yakub and J.G. Smits, “Reactive magnetron sputtering of ZnO,” J. Appl. Phys., 52(6):4772–4774 (1981)

    Article  Google Scholar 

  100. M. A. Dubois et al, “Measurement of the effective transverse piezoelectric coefficient 331,f of A1N and Pb(Zrx,Ti1-x)O3 thin films, Sens. Actuators, A77:106–112 (1999)

    Article  Google Scholar 

  101. T. G. Cooney and L. F Francis, “Processing of sol-gel derived PZT coatings on non-planar substrates,” J. Micromech. Microeng., 6:291–300 (1996)

    Article  Google Scholar 

  102. V. Sundar and R. E. Newnham, “Electrostriction,” in The Electrical Engineering Handbook (R. C. Dorf, ed.), CRC Press LLC, Boca Raton, FL (2000), chap. 50

    Google Scholar 

  103. J. Boland, C.-H. Chao, Y Suzuki, and Y.-C. Tai, “Micro electret power generator,” Proc. IEEE MEMS 2003 Conf, Kyoto, Jan. 2003, pp. 538–541

    Google Scholar 

  104. T. Y. Hsu, W. H. Hsieh, Y. C. Tai, and K. Furutani, “A thin film teflon electret technology for microphone applications,” Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1996, pp. 235–239

    Google Scholar 

  105. Proc. 8th Intl. Conf. on Electrorheological Fluids and Magnetorheological Suspensions, Nice, France, World Scientific (July 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 William Andrew, Inc.

About this chapter

Cite this chapter

Judy, J.W. (2006). Microactuators. In: Korvink, J.G., Paul, O. (eds) MEMS: A Practical Guide to Design, Analysis, and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33655-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33655-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21117-4

  • Online ISBN: 978-3-540-33655-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics